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Abstract 

The goal of this paper is to propose, evaluate, and compare four search strategies for 
ensemble feature selection, and to consider their application to medical diagnostics, with a 
focus on the problem of the classification of acute abdominal pain. Ensembles of learnt models 
constitute one of the main current directions in machine learning and data mining. Ensembles 
allow us to get higher accuracy, sensitivity, and specificity, which are often not achievable 
with single models. One technique, which proved to be effective for ensemble construction, is 
feature selection. Lately, several strategies for ensemble feature selection were proposed, 
including random subspacing, hill-climbing-based search, and genetic search. In this paper, 
we propose two new sequential-search-based strategies for ensemble feature selection, and 
evaluate them, constructing ensembles of simple Bayesian classifiers for the problem of acute 
abdominal pain classification. We compare the search strategies with regard to achieved 
accuracy, sensitivity, specificity, and the average number of features they select. 

1. Introduction 

Current electronic data repositories, especially in medical domains, contain enormous 
amounts of data. These data includes also currently unknown and potentially interesting 
patterns and relations, which can be uncovered using knowledge discovery and data mining 
methods [5]. These methods were successfully applied in a number of medical domains, e.g. in 
the localization of a primary tumor, prognostics of recurrence of breast cancer, diagnosis of 
thyroid diseases, and rheumatology [5]. 

A popular method for creating an accurate classifier from a set of training data is to train 
several different classifiers, and then to combine their predictions [4]. An ensemble is often 
more accurate than any of the single classifiers in the ensemble. Both theoretical and empirical 
research have demonstrated that a good ensemble is one where the base classifiers in the 
ensemble are both accurate and tend to err in different parts of the input space (e.g., have high 
diversity in their predictions). One efficient way to construct an ensemble of diverse classifiers 
is to use different feature subsets. An important issue in creating an effective ensemble is the 
choice of the function for combining the predictions of the base classifiers. It was shown that 
increasing coverage of an ensemble through diversity is not enough to ensure increased 
prediction accuracy – if the integration method does not utilize coverage, then no benefit arises 
from integrating multiple models [4]. 



 

 

One effective approach for generating an ensemble of accurate and diverse base classifiers is 
to use ensemble feature selection [9]. By varying the feature subsets used to generate the base 
classifiers, it is possible to promote diversity and produce base classifiers that tend to err in 
different subareas of the instance space. While traditional feature selection algorithms have the 
goal of finding the best feature subset that is relevant to both the learning task and the selected 
inductive learning algorithm, the task of ensemble feature selection has the additional goal of 
finding a set of feature subsets that will promote disagreement among the base classifiers [9]. 

Feature selection algorithms, including ensemble feature selection, are typically composed 
of the following components [1,9]: (1) search strategy, that searches the space of feature 
subsets; and (2) fitness function, that inputs a feature subset and outputs a numeric evaluation. 
The search strategy’s goal is to maximize this function. 

In [12] we presented a technique for building ensembles of simple Bayesian classifiers in 
random subspaces. We considered also a hill-climbing-based refinement cycle, which 
improved the accuracy and diversity of the base classifiers built on random feature subsets. In 
[11] we considered an application of the technique to the problem of acute abdominal pain 
classification. The main conclusions in [11, 12] are that, in the fitness function guiding the 
search in ensemble feature selection, accuracy and diversity are both important, but the degree 
of importance differs with different data sets. 

In this paper, our focus is on the search strategy for ensemble feature selection, rather than 
on the fitness function. We develop two new strategies, in addition to already known strategies, 
which include random subspacing, hill-climbing search, and genetic search. Our new strategies 
are sequential- or greedy-search-based, and often less time consuming than genetic search or 
hill climbing. 

In Section 2 general issues with an ensemble of simple Bayesian classifiers and ensemble 
feature selection are considered. In Section 3 we present four search strategies for ensemble 
feature selection and in the next section experiments with these are discussed. We conclude 
briefly in Section 4 with a summary and further research topics. 

2. Feature selection for ensembles of simple Bayesian classifiers 

An ensemble of classifiers is created by using training data to build several base classifiers, 
which are applied in combination to derive a final classification [4]. To be effective, an 
ensemble should consist of high-accuracy classifiers that disagree on their predictions [2]. In 
this paper, ensembles are generated that comprise simple Bayesian classifiers each of which is 
separately formed from a training set, taking into account only the features of the 
corresponding selected feature subset.  

Ho [6] has shown that simple random selection of feature subsets may be an effective 
technique for ensemble feature selection because the lack of accuracy in the ensemble 
members is compensated for by their diversity. Random subspacing is used as a base in a 
number of ensemble feature selection strategies, e.g. GEFS [9] and HC [3]. 

To measure the disagreement of a base classifier and the whole ensemble, we calculate the 
diversity of the base classifier over the instances of the validation set as an average difference 
in classifications of all possible pairs of classifiers including the given one [12]. 

In this research, for each feature subset, we calculate a goodness measure using the fitness 
function proposed by Opitz [9]. The fitness Fitnessi of a classifier corresponding to a feature 
subset is proportional to the classification accuracy acci and the diversity divi of the classifier: 

 iii divaccFitness ⋅+= α , (1) 



 

 

where α  is the coefficient of the degree of the influence of diversity. When class distribution is 
uneven, accuracy in (1) should be replaced with the average of sensitivity and specificity, as 
we do in this research. 

There are two major approaches applied in forming the method for integration in ensembles 
F(y1, …, yS): (1) the combination approach, where the base classifiers produce their 
classifications and the final result is composed of these; and (2) the selection approach, where 
one of the classifiers is selected and the final result is the result produced by it. For both 
approaches, there are static and dynamic methods [10]. In contrast to the static methods, the 
integration procedure of the dynamic methods depends on each instance being processed. 

In our experiments we use five different integration methods: (1) cross-validation majority 
(a static selection approach, SS) [8]; (2) weighted voting (WV) [2] (a static combination 
approach); (3) dynamic selection (DS) [10] (a dynamic selection approach); (4) dynamic voting 
(DV) [10] (a dynamic combination approach); and (5) dynamic voting with selection (DVS) 
[12] (a dynamic hybrid approach). The three dynamic approaches are based on the same local 
accuracy estimates obtained using the weighted nearest neighbor prediction. 

3. Search strategies for feature subset selection in ensembles 

In this section, we consider four different search strategies for ensemble feature selection: 
(1) Hill Climbing (HC); (2) Genetic Ensemble Feature Selection (GEFS); (3) Ensemble 
Forward Sequential Selection (EFSS); and (4) Ensemble Backward Sequential Selection 
(EBSS). 

The use of a hill-climbing search as a local-search wrapper-like approach has been shown to 
be effective for a single feature subset selection [8]. The Hill Climbing (HC) ensemble feature 
selection strategy, which we use in this research, proposed in [3], is composed of two major 
phases: (1) construction of the initial ensemble in random subspaces; and (2) iterative 
refinement of the ensemble members with sequential mutation hill climbing. Initial feature 
subsets are constructed using the random subspace method. Then, the initial ensemble is 
formed. Further, an iterative refinement of the ensemble members is used to improve the 
accuracy and diversity of the base classifiers. The iterative refinement is based on a hill-
climbing search. For all the feature subsets, an attempt is made to switch (include or delete) 
each feature. If the resulting feature subset produces better performance on the validation set, 
that change is kept. This process is continued until no further improvements are possible. 

The use of genetic search has also been an important direction in the feature selection 
research. Genetic algorithms have been shown to be effective global optimization techniques in 
feature subset selection. The use of genetic algorithms for ensemble feature selection was first 
proposed in [9]. The Genetic Ensemble Feature Selection (GEFS) strategy [9] begins, as HC, 
with creating an initial population of classifiers where each classifier is generated by randomly 
selecting a different subset of features. Then, new candidate classifiers are continually 
produced by using the genetic operators of crossover and mutation on the feature subsets. After 
a number of generations, the fittest individuals make up the population which comprises the 
ensemble [9]. In our implementation, the representation of each individual (a feature subset) is 
simply a constant-length string of bits, where each bit corresponds to a particular feature. The 
crossover operator uses uniform crossover, in which each feature of the two children takes 
randomly a value from one of the parents. The feature subsets of two individuals in the current 
population are chosen proportional to fitness. The mutation operator randomly toggles a 
percentage of bits in an individual. 



 

 

Besides, in this paper we propose two new ensemble feature selection strategies, EFSS and 
EBSS. These are sequential feature selection strategies, which add or subtract features using a 
hill-climbing procedure, and have polynomial complexity. The most frequently studied variants 
of plain sequential feature selections algorithms (which select a single feature subset) are 
forward and backward sequential selection, FSS and BSS [1]. FSS begins with zero attributes, 
evaluates all feature subsets with exactly one feature, and selects the one with the best 
performance. It then adds to this subset the feature that yields the best performance for subsets 
of the next larger size. The cycle repeats until no improvement is obtained from extending the 
current subset. BSS instead begins with all features and repeatedly removes a feature whose 
removal yields the maximal performance improvement [1]. EFSS and EBSS iteratively apply 
FSS or BSS to form each of the base classifiers using a predefined fitness function.  

EFSS and EBSS have polynomial complexity with regard to the number of features: 
)( NNSO ′⋅⋅ , where S is the number of base classifiers, N is the total number of features, and 

N ′  is the number of features included or deleted on average in an FSS or BSS search. HC has 
similar polynomial complexity )( passesNNSO ⋅⋅ , where passesN  is the average number of passes 
through the feature subsets in HC until there is some improvement (usually no more than 4). 
The complexity of GEFS does not depend on the number of features, and is )( genNSO ⋅′ , where 
S ′  is the number of individuals (feature subsets) in one generation, and genN  is the number of 
generations. 

4. Experiments 

The experiments were conducted on three large data sets with cases of acute abdominal pain 
(AAP): (1) Small-AAP I; (2) Medium-AAP II; and (3) Large-AAP III, with the numbers of 
instances respectively 1254, 2286, and 4020 [13]. These data sets represent the same problem 
of separating acute appendicitis from other diseases that cause acute abdominal pain. Each data 
set includes 18 features from history-taking and clinical examination [13]. 

For each data set, for the sake of performance comparison, we used the same division into 
training and test sets, as in [13]. We used the reduced training data sets with approximate ratio 
of ½ of instances classified as appendicitis and the other half classified as other diagnoses. 
Additionally, 20 percent instances from the original training sets were transferred to the 
validation sets using random sampling. 30 test runs were made for 30 train/validation splits of 
the original training sets for each of the four algorithms. We experimented with six different 
values of the diversity coefficient α : 0, 0.25, 0.5, 1, 2, and 4. The size of ensemble was 
selected to be equal to 25. 

At each run of the algorithm, we collected accuracies for the five types of the integration of 
classifiers: SS, WV, DS, DV, and DVS. In the dynamic integration methods, the number of 
nearest neighbors for local accuracy estimates was pre-selected from a set of six values: 1, 3, 7, 
15, 31, 63, for each data set. Besides the classification accuracies of the base classifiers and the 
ensemble, and corresponding sensitivity and specificity values, we collected such 
characteristics as total ensemble diversity, ensemble coverage, and the average relative number 
of features in the base classifiers. All these characteristics were averaged over the 30 runs. 

The test environment was implemented within the MLC++ framework (the machine learning 
library in C++) [7]. For the simple Bayesian classifier, the numeric features were discretized 
into ten equal-length intervals (or one per observed value, whichever was less). 

Parameter settings for the genetic search in GEFS include a mutation rate of 50% (as 
proposed in [9]), a population size of 25, a search length of 100 feature subsets, of which 50 
are offsprings of the current population of 25 classifiers generated with the crossover operator, 



 

 

and 25 are mutated offsprings. Only one generation of individuals was produced, as our pilot 
experiments have shown that creating more generations does not increase performance, and 
sometimes even decreases it by 2-3%; this is probably due to overfitting the training data. 

In Table 1, the experimental results for the four search strategies on the three data sets are 
presented. The table includes the name of a data set, the best selected α  (α ), the average of 
sensitivity and specificity for the five integration methods (SS, WV, DS, DV, DVS) for the four 
search strategies (HC, GEFS, EFSS and EBSS), the average of sensitivity and specificity of the 
simple Bayes on the whole feature set (Bayes), the average relative number of features selected 
(feat), and the improvement of the final ensemble in comparison with the random subspace 
ensemble with regard to the average of sensitivity and specificity (impr). The best results for 
each search strategy are given in italic type, and for the whole data set – in bold type. 

Table 1. Results for the four search strategies 

data set strategy   SS WV DS DV DVS Bayes feat Impr 

HC 2 0.705 0.753 0.740 0.757 0.767 0.312 0.022 
GEFS ¼ 0.741 0.761 0.743 0.761 0.752 0.559 0.016 
EFSS 4 0.738 0.747 0.745 0.766 0.768 0.093 0.023 

Small (AAP I) 

EBSS 4 0.733 0.749 0.731 0.753 0.757 

0.747 

0.428 0.012 

HC 4 0.553 0.572 0.599 0.585 0.596 0.240 0.036 
GEFS 4 0.576 0.547 0.589 0.577 0.590 0.195 0.027 
EFSS 2 0.579 0.570 0.601 0.583 0.589 0.133 0.038 

Medium (AAP II) 

EBSS ¼ 0.540 0.579 0.565 0.579 0.569 

0.516 

0.591 0.016 

HC 4 0.816 0.806 0.836 0.854 0.864 0.183 0.025 
GEFS 1 0.825 0.823 0.827 0.834 0.843 0.343 0.004 
EFSS 4 0.824 0.818 0.854 0.863 0.870 0.078 0.031 

Large (AAP III) 

EBSS 4 0.833 0.828 0.838 0.854 0.862 

0.828 

0.244 0.023 

From Table 1, one can see that for all of the three data sets, most ensembles perform 
significantly better than the single global simple Bayes. For the data sets AAP I and AAP III, 
the best integration technique is DVS, and for the data set AAP II the best integration 
technique is DS, which give significantly better results than the single simple Bayes (the 
statistical significance is checked with the 1-tailed Student t-test with 0.95 level of 
significance). An interesting finding is that the best search strategy is EFSS for every data set. 
The average of sensitivity and specificity in these cases rivals the best previously published 
results for these data sets [11, 13]. The good performance of EFSS can be explained by the fact 
that EFSS is able to generate classifiers with better diversity, starting with zero feature subsets, 
in comparison with EBSS and the other strategies. EFSS generates also extremely compact 
base classifiers, including from 9 to 13% of features on average (less than 3 features). Dynamic 
integration is in general much better than static integration for these data sets, better utilizing 
the diversity of the base classifiers, supporting the results presented in [11, 12]. The selected 
values of α  are different for different search strategies, which means that the ensemble 
diversity is important, as was shown also in [11, 12], but the degree of importance depends on 
the search strategy used, and not only on the data set. 

5. Conclusion 

In this paper we considered four search strategies for ensemble feature selection, two of 
which were new sequential search strategies, EFSS and EBSS. We conducted a number of 



 

 

experiments on a collection of data sets from the medical field of acute appendicitis. In many 
cases the ensembles of simple Bayesian classifiers had higher performance than the single 
global simple Bayesian classifier. The best search strategy was EFSS, generating more diverse 
ensembles with more compact base classifiers. The average of sensitivity and specificity of 
EFSS rivaled the best previously published results. The proposed search algorithms could be 
useful for other medical domains, especially including many features with complex inter-
feature dependencies. 

In future research, it would be interesting to consider other search strategies, such as beam 
search and simulated annealing, and to try to find a better configuration for GEFS, as the 
present results with the genetic search were disappointing, not being improved with 
generations. Another interesting topic for further research is the check of the presented findings 
on other data sets with different characteristics. 
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