Automated Web Service Composition

Donal Murtagh

A dissertation submitted to the University of Dublin,
in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science

2004



Declaration

I declare that the work described in this dissertation is,
except where otherwise stated, entirely my own work and
has not been submitted as an exercise for a degree at this or
any other university.

Signed:

Doénal Murtagh
13 September 2004

il



Permission to lend and/or copy

I agree that Trinity College Library may lend or copy this
dissertation upon request.

Signed:

Donal Murtagh
13 September 2004

111



Abstract

Web content has traditionally been dominated by documents intended for human
interpretation. However, the recent advent of Web Services has played a key role in
evolving the Web from a mere document repository to a provider of services. The
range of services available may be further expanded by composing Web Services
together to create new services which provide novel functionality. The ability of Web
Service composition to create new services which are capable of fulfilling a need —
that no single service can satisfy — is its major benefit. Web Service composition also
has the potential to make Web Service invocation more efficient by aggregating

disparate processes into a single service.

The full potential of Web Service composition can only be realised if the process is
automated and performed on-demand. Specific advantages of automated service
composition over static service composition include its ability to:

e Take advantage of new services as they become available

e Take account of changing user preferences

e Cope with service unavailability

In order to automate service composition, services must describe their characteristics
in an unambiguous machine-readable format. In other words, it must be possible for a
machine to determine what those services actually do. The current standard for
encoding such descriptions is OWL-S. In order to solve a Web Service composition
problem a machine must also be able to determine which services to execute, and in

what order. This problem can be solved by Al planning.
The Web Services composition solution presented in this report reasons over Web

Service described in OWL-S and uses a type of planning known as HTN planning in

order to specify the composition.

Y



Acknowledgements

Thanks of the first-order are due to Declan O’Sullivan and Dave Lewis, who
supervised this dissertation with indefatigable enthusiasm. The successes of this work

owe much to their guidance and encouragement; the failings are entirely my own.

Sincere gratitude is also due to those who developed and made freely available
various tools that were used during the course of this work. Many others contributed
by responding to my e-mails and posts to discussion lists. I am particularly indebted
on this front to Bijan Parsia, Evren Sirin, Fusun Yaman, Mithun Sheshagiri, and

Okhtay Ilghami.



Table of Contents

TabIe OF FIGUIES ....eouviiiiiiiieeeee ettt ettt viil
1 INTRODUCTION ..ottt sttt sttt st e enne e 1
1.1 Web Service COMPOSILION .....oueeviriiiriieiinienieeieeeesieee et 1
1.2 ODJECTIVES ..vveviieiieeiiieiieeteeieeereerteeeteebeessreenseeesaeesseessseeseessseeseessseensaens 3
1.3 ROAAMAD ..o 5
2 BACKGROUND ..ottt sttt et 6
2.1 OVETVIEW ..ttt ettt ettt ettt et e sttt e st e e bt e sateebeesaeeenbeens 6
22 WISDIL ..ttt sttt ettt 6
2.2.1 WSDL INtroduction ..........c.eeieeiiieiieniieieeeeeiee et 6
222 WSDL EXaAMPIE ....oiiiiiiiiiiiieiieeiteieee ettt 7
23 OWLES ettt ettt ettt et e et enbe et e s es 8
2.3.1 OWL-S INtroduCtion ......c..cecueriieniieieniienieeie ettt 8
232 ServICePTOTIle. . i 10
233 ServiceMOdel .....c.eiiiiiiiieiieiee e 11
2.3.4 ServiCEGTOUNAING ...cccvvieeiiieeiie ettt e e e e eeeaneeenes 13
24 AT PLANNING ...ttt et ettt iae e e snaeensae s 13
24.1 INErOAUCTION ... e 13
242 Classical Planning..........cccceeveeeiierieniieiieeie et 14
243 HTN Planning .......ccc.eeeeiiieiiieeciie et 17
244 Suitability of HTN Planning to Web Service Composition................ 19
3  DESIGN & IMPLEMENTATION ....ccoiiiiiiiiiieieeeseeee et 21
3.1 REQUITEMENTS ....oouiiiiiieiieciieeieeee ettt 21
3.2 Design & Implementation Technologies .........c.cceccvveeiiieeiiieenieeeieeenee, 22
3.2.1 JE S S e e e 22
32,101 JESS FaACES.utiiuiiiieieeiesteeie ettt ettt 22
3.2.1.2  JESS RUIES .couiiiiiiiiiieieeeeee et 23
322 JONA .o 23
323 OWLIESSKB ...ttt 23
3.24 OWL-S APL ..o 24
3.2.5 PRILEL .. 24
3.2.6 JSHOP ... 24
3.2.6.1  INtrOAUCHION......oiuiiiiiiieiieieitee et 24
3.2.6.2  JSHOP FOrmaliSm .......ccooouieiiiiiiiiiiiiiieiieecee e 25
3.2.6.2.1  JSHOP Domain Definition ...........cccceeveeeiiienieeiieieeieeiecieeee e 25
3.2.6.2.2  JSHOP Problem Definition.........cccoceeiiiiiiiniiiiieieieeceeeeeee, 27
3.2.6.3  JSHOP EXaMPIE....cccuiiiiiiiiiiiiiiieiieeitee et 27
33 OWLS2JSHOP AIChiteCture ........cceevueeeiieiiieiieeiieeieeiee e 28
34 Design & Implementation ISSUES..........cccueeviieriiiiiieiiieieeieeee e 30
34.1 Choosing the Planner ............ccccuveeiiieeiiiieciieccieeecee e 30
342 State Representation...........cccueeuieruieeiierieiiieie et 31
343 Conditional EXPreSSIONS .......cccveeeciieeeiiieeniieenieeesieeesieeesveeeseneesnneens 32
3.5 Component INtEractions ...........cceeruieriiierieriieeiie et eee e 34
3.6 OWLS2JISHOP Package .......cc.eevuieieriieieiiesiieieeeeee et 36
3.6.1 PLANNET ...t 38
3.6.2 OWL2JIESS .ttt sttt e 38
3.6.3 DataFIoWManageT..........cceouieiieeiieeieeieeeie ettt 38
3.64 ONtOlOZYOTACIE......eviieiiieeieeee et 39

vi



3.6.5 SHOPEIEIMENT .o, 40

3.6.6 SHOPAtOMICPTOCESS ...cueveiiiieiiieiiieiie et 40
3.6.7 SHOPAtomicProcessWithPostconditions.............ccceeveeeiieniienieennen. 40
3.6.8 SHOPCOMPOSIEEPTOCESS ....eeeuvvieeiiiieiiieeeiieeeeeee et 40
3.6.9 SHOPCompositeProcessSeqUeNCe ...........cceevveerieeiieeniieeieeniieeieeieens 40
SCENARIO ...ttt ettt et e naeeneees 41
4.1 INtrOAUCHION ...ttt 41
4.2 Scenario INPULS.......ceeiiieieiie e 41
43 Scenario Domain Definition ...........ccceeevuieriieiiienieeiieie e 45
4.4 Scenario Problem DescCription ..........ccceeecveeeiiieciieesiieeeiee e 49
4.5 Scenario SOIULION ......coviiiiriieiiiieeee e 50
RELATED WORK ....ootiiiiiiii ettt e 51
5.1 Partial-Order Planning ...........ccooceeviiiiiiniiniieiecceeee e 51
5.2 Planning and EXECULION .........cccvviiiiiieiiiieiie e 52
53 Planning with Incomplete Information ...........ccccoevvevciienieniiieniecieeee 54
5.4 State Representation.........c..eecveeeeiieeiieeeiiee et 54
5.5 Complex Action Planning...........ccccovvieiiiniiiiienieeiieeeeeee e 55
5.6 Composing Web Services without Semantic Descriptions..................... 56
CONCLUSIONS . ...ttt ettt sttt st sttt sbe e e naes 58
6.1 Evaluation .........oooiiiiiiiie e 58
6.1.1 AT Planning TYPE...cecueeruierieeiieeie ettt ettt et 58
6.1.2 State Representation.........c..eeccueeeriieeiieeeiiee e eee e e esveeeeaee e 58
6.1.3 Conditional EXPresSions .........cccuierieeiieniienieeniiesieeiiesie e eeveeiee s 59
6.1.4 OWLS2JSHOP Evaluation ..........cccceeeeiereeniieienieeeieseee e 59
6.1.5 Other CONIIDULIONS ......eeeeiieiieeiieiie ettt 62
6.2 Future Challenges ...........ceecuvieiiiiiiiieeciee et 62
6.2.1 Service DISCOVETY ....veruiiiieiiiniiiiiiiieeiteteet ettt 62
6.2.2 SCALADTIILY ..eevveiieieeie e 63
6.2.3 OWL-S TSSUES ..ieviieeeiiiee ettt e e e e e e e e e e saaeeeenn 63
BIBLIOGRAPHY ..ottt s 65
APPENDICES ...ttt sttt nae e 69
8.1 APPENAIX A oot e 69
8.1.1 BOOKPTICEPTOCESS ....vvieeiiieiiie et 69
8.1.2 BOOKFINAErProCess .....ccuviviiiiiieiiecieeitece e 72
8.1.3 BNPIICEPTOCESS. ...ciiviieiiiieciee et e 73
8.1.4 CurrencyConverterProCess ........eevveieriieeiiie et 74
8.2 APPENdix B ..o 77

vil



Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:
Figure 2.10:
Figure 2.11:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:

Figure 4.5:
Figure 4.6:
Figure 4.7:

Table of Figures

Major Elements of a WSDL Document

Example WSDL Document

Top Level of the Service Ontology

Top Level of the Process Ontology

Composite Process Decomposed to a Sequence of Atomic Processes
An Action Schema

A Planning Problem

Planning Problem Solution

Six Corresponding Linearizations into Total-Order Plans
HTN House-Building Problem

Solution to HTN House-Building Problem

Examples of JSHOP operators

Example of a JSHOP Method

Complete JSHOP Example

JSHOP Solution

OWLS2JSHOP Architecture

Sequence Diagram

Core classes in OWLS2JSHOP package

OWL-S Parameter Mappings

Type::Name of ServiceModel Inputs and Outputs

Type Hierarchy of Input and Output Classes

Scenario Initial State

Conditional Expressions Encoded as Conjunctions of JESS Atoms in
OWL-S

Scenario Domain Definition

Scenario Problem Definition

Scenario Solution

viii



1 INTRODUCTION

1.1 Web Service Composition

As Web Services proliferate it becomes increasingly difficult to find a service that can
perform the required task. Frequently, there exists no single service capable of
performing the task, but there are combinations of services that can. Combining
services to meet a need in this manner is what is meant by service composition.

Automating this process is the subject of this dissertation.

A motivating example of service composition is that of converting a document from
one format to another, for example, from .doc to .pdf. Assume there is no service
capable of performing this conversion, but there exists a service which can convert
from .doc to an intermediary format (e.g. .rtf) and another that can convert from the
intermediary format to .pdf. By invoking these services in the correct sequence the
goal can be achieved, despite the absence of a service that explicitly performs the
required conversion. The ability to dynamically create new services from existing

services is a key benefit of service composition.

The improvement in efficiency brought about by interacting with an aggregation of
services is a further benefit of service composition. Consider the example of booking
a holiday, and assume there are disparate services which provide car hire, hotel
booking, flight reservation, etc. Without service composition, the user (or agent) must
provide their name, address, credit card details etc. to each service separately, but if
these disparate services could be combined to form a single holiday booking service,
this duplicated effort would be eliminated. Furthermore, the process of booking a
holiday becomes a single operation, thus eliminating the possibility of booking a hotel
and then being unable to obtain a flight (or vice versa), which exists when each

service must be executed separately.

Current approaches to Web Service interoperation such as BPEL4AWS [BPEL4WS]

require that Web Services be composed manually. However, manual composition of



Web Services is inefficient and at the scale of the Internet, impractical. Returning to
the document conversion example, if the composition is performed manually, the user
must specify a priori what intermediary format the document must take, attempt to
locate a service which converts from .doc to this format, and from this format to .pdf.
If appropriate services cannot be found, the user must choose a different intermediary
format, and make another attempt at locating appropriate services. The inefficiencies
of this approach are obvious. For a start, the user should not have to specify the
intermediary format in advance — any will suffice — and this strategy will fail if the
only means of converting from .doc to .pdf requires the document to assume more
than one intermediary format. Ideally, the user should only have to specify their
objective — converting from .doc to .pdf — to a Web Service composition agent, which
will locate the necessary services and determine the order in which they should be
invoked. In addition to locating the relevant services and determining the order in
which they should be executed, automated service composition has other advantages

over manual service composition:

e Automated service composition can take advantage of new services. If the
composition is performed dynamically, the services that are involved may
change over time to include new services which achieve the goal faster,
cheaper, or to a higher standard.

e Automated service composition can take account of changing criteria (e.g.
preferred method of payment) by adjusting the composition to find services
which better fit the new requirements.

e Automated service composition can cope with service unavailability. If a
service in the composition becomes unavailable an alternative composition

may be found which doesn’t require the unavailable service

Fully automated Web Service composition can be characterised as a process involving

the following three steps:

1. Automated Discovery — locating candidate Web Services for composition;
2. Automated Composition — determining which Web Services to execute, and in

what sequence, in order to achieve the stated goal;



3. Automated Execution — invoking the Web Services.

The remainder of this dissertation will focus almost exclusively on the second of these

three steps.

In order to automate the process of service composition, it must be possible for a
machine to determine what a service actually does. This can be achieved by
annotating the service with machine-interpretable semantics which describe the
service’s characteristics. The current standard for such annotations is OWL-S 1.0,

which is defined:

“An OWL-based Web service ontology, which supplies Web service providers with a
core set of markup language constructs for describing the properties and capabilities

of their Web services in unambiguous, computer-interpretable form” [OWL-S 1.0]

In addition to being able to determine what a Web Service does, in order to solve a
Web Service composition problem a machine must be able to determine which
services to execute, and in what order. In other words, it must decide which sequence
of services to execute in order to achieve the goal state (.pdf, in the document
conversion problem) from the initial state (.doc). This is precisely the type of problem
which Artificial Intelligence (AI) planning addresses. In fact, a Web Service
composition problem is essentially an Al planning problem. A more detailed

description of Al planning and OWL-S is provided in the next chapter.

1.2 Objectives

The main objective of this research was to formulate and implement an approach to
composing Web Services described in OWL-S. Once Al planning emerged as a

promising candidate approach, the following more specific objectives were identified:

1. Determine the most appropriate type of Al planning with regard to Web

Service composition.



There exist several different types of Al planning (e.g. HTN, POP). Choosing

the most appropriate is crucial to the success of this project

. Determine an effective means of representing the world/problem state

In classical Al planning, state is represented as a set of ground literals in first-
order language, but the state of an OWL-S Web Service composition problem
is an OWL Knowledge Base (KB). An effective solution must represent state
in a manner that preserves the semantics of OWL, but is compatible with Al

planning.

Identify a means of expressing conditional statements

In the context of Al planning, an action’s preconditions are statements about
the state which must be true in order for the action to be applicable. In the
context of OWL-S, process preconditions have a similar interpretation.
However, OWL-S 1.0 and its predecessors have failed to specify a particular
language for encoding preconditions. In order to apply Al planning to the
problem of Web Service composition, a means of expressing preconditions in

OWL-S must be identified.

Identify a means of evaluating conditional statements

Merely identifying a means of expressing conditional statements would be
fairly pointless. In order to implement an Al planning solution to Web Service
composition, it is necessary that these conditional statements can be evaluated

by querying the world state.

. Demonstrate the solution

Develop a Web Service composition tool which implements the solutions to

objectives (1) — (4).



1.3

Roadmap

A synopsis of the material covered in the remaining chapters follows:

Chapter 2 (Background) provides an introduction to WSDL, OWL-S, and Al
planning. A familiarity with these subjects is required in order to understand
the Web Services composition solution presented in this report. The latter will
be referred to as OWLS2JSHOP hereafter

Chapter 3 (Design & Implementation) describes the architecture and
technologies of OWLS2JSHOP. Issues that arose during the design and
implementation of this system are discussed in this chapter.

Chapter 4 (Scenario) presents a detailed use case of OWLS2JSHOP

Chapter 5 (Related Work) describes other attempts at composing Web
Services and compares them to OWLS2JSHOP

Chapter 6 (Conclusions) criticises the contributions of this research, and

discusses various challenges that face Web Service composition



2 BACKGROUND

2.1 Overview

This chapter provides background information on various topics related to Web
Service composition. Specifically, this chapter consists of an introduction to the Web
Services Description Language (WSDL), OWL-S, Al Planning, and discusses their
relevancy to OWLS2JSHOP.

2.2 WSDL

2.2.1 WSDL Introduction

This section provides an introduction to the Web Services Description Language
(WSDL). The WSDL example and some of the explanations have been adapted from
[WSDL].

Fundamentally, a Web Service is characterised as follows:
e SOAP (XML over HTTP), is used to communicate between the Web Service
and the Web Client;

e The Web Service interface is described in a WSDL document.

A WSDL file is an XML document that completely describes a Web Service.
Specifically, a WSDL document specifies:

o What the Web Service consists of — types, messages, operations;

e How the Web Service is bound to a set of concrete protocols;

e  Where the Web Service is implemented — host, port.

A WSDL document defines a web service using the elements described in Figure 2.1
below. A WSDL document can also contain other elements, like extension elements

and a service element that makes it possible to group together the definitions of



several web services in a single WSDL document. A complete WSDL syntax

overview is available at [WSDL 1.2].

Element Description

<portType> | Defines the operations performed by the Web Service, and the
messages involved.

<message> | A message is a data element of an operation. Each message consists of
one or more parts, and each part has a data type

| <types> | Defines the data types of the message parts

| <binding> | Defines the communication protocols used by the Web Service

Figure 2.1: Major Elements of a WSDL Document

2.2.2 WSDL Example

Figure 2.2 shows a fragment of a simplified WSDL document (namespace details

have been omitted for the sake of readability).

<message name="getTermRequest'">

<part name="term" type="xs:string"/>
</message>
<message name="getTermResponse">

<part name="value" type="xs:string"/>
</message>

<portType name="glossaryTerms">
<operation name="getTerm">
<input message="getTermRequest"/>
<output message="getTermResponse" />
</operation>
</portType>

<binding type="glossaryTerms" name="bl">
<soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<operation>
<soap:operation
soapAction="http://example.com/getTerm" />
<input>
<soap:body use="literal"/>
</input>
<output>
<soap:body use="literal"/>
</output>
</operation>
</binding>

Figure 2.2: Example WSDL Document




This document describes a Web Service glossaryTerms that exposes a single
request-response operation getTerm. This operation has an input message named
getTermRequest (a request message sent from client to server), and an output
message named getTermResponse (a response message sent from server to client).

The message elements define the parts of each message, and the associated data types.

The binding element defines the message format and protocol details. This element
has two attributes, name and type. The former defines the name of the binding, and
the latter points to the port for the binding, which in this case is glossaryTerms. The
soap:binding element has two attributes, style and transport. The style attribute
can be either rpc or document — in this case the latter is chosen. The transport
attribute defines the SOAP protocol to use — in this case HTTP is specified. The
operation element defines each operation that the port exposes. For each operation
the corresponding soapAction action must be defined. The input and output encoding

must also be specified — 1iteral is used here.

2.3 OWL-S

2.3.1 OWL-S Introduction

Although a WSDL document describes a Web Service’s interface, protocol and
endpoint, it does not provide any machine-interpretable information about what the
Web Service actually does. For example, assume a Web Service exposes two

operations, one of which takes a numberx, and returns e*, and the other takes a

credit card number x, and returns e, the amount in Euro debited from your account.
By referring to the WSDL document, a human reader might correctly guess which
operation is which from the operation names or message names, but a machine would
be unable to distinguish between them, as they both have the same number of input

and output messages, message parts, and message part types.

Clearly, for the purpose of automated Web Service composition, it must be possible

for a machine to distinguish between these two. More generally, in order to enable



Web Service composition, services must describe in a format that is unambiguous and

machine-readable, their:

e Properties and Capabilities — for automated discovery
e Preconditions, Effects, Inputs, and Outputs — for automated composition

e Interfaces, Endpoints, and Protocols — for automated execution

The current standard for annotating Web Services with such a description is OWL-S

1.01, defined as:

“An OWL-based Web service ontology, which supplies Web service providers with a
core set of markup language constructs for describing the properties and capabilities

of their Web services in unambiguous, computer-interpretable form” [OWL-S 1.0]

The term ontology as it is understood by computer scientists is: “a formal
specification of a shared conceptualization” [Borst]. Conceptualisation refers to an
abstract model of phenomena in the world which identifies their relevant
characteristics. Formal means that the ontology has a well defined semantics, and
shared reflects the notion that an ontology captures consensual knowledge, i.e.

knowledge which is generally accepted.

OWL, the Web Ontology Language [OWL], is an XML-based language used to
describe ontologies. In practical terms, an OWL ontology consists of a set of classes,
instances and properties which describe the concepts within a particular domain.
Although OWL classes, instances and properties are analogous to those of object
orientation (OO), OWL provides a much richer range of constructs for specifying the
relationships between classes and properties than OO, which typically only facilitates
parent-child relationships. An example OWL ontology describing currencies is

available at [Currency].

" The current full release is OWL-S 1.0 and all references to OWL-S refer to this version unless
otherwise stated. Previous releases of this language were known as DAML-S, and were built upon
DAMLAOIL (the predecessor of OWL).



The term OWL-based Web service ontology refers to the fact that OWL-S is an
ontology which provides OWL classes and properties suitable for describing the
semantics of Web Services. An OWL-S description for a particular Web Service
consists of an OWL-S document that instantiates these classes with appropriate
property values. OWL-S is expressed in XML syntax, but due to its verbosity, it will
be represented diagrammatically wherever possible in this report. Figure 2.3 shows
the parent classes of which OWL-S is composed. The nodes correspond to OWL
classes and the arcs to OWL properties.

ServiceProfile
Servicelodel
ServiceGrounding

Figure 2.3: Top Level of the Service Ontology

presents

describedBy

supports

Although the service class provides little by way of description, it acts as an
organisational point of reference for OWL-S descriptions. Each Web Service
description will provide a single instance of Service, with appropriate property values
for presents, describedBy, and supports. The respective ranges of these
properties are ServiceProfile, ServiceModel, and ServiceGrounding, each of
which provides a different type of knowledge about the service being described. An

introduction to each is provided in the following subsections.

2.3.2 ServiceProfile

The service presents a serviceProfile, which has a subclass Profile. The Profile
provides a vocabulary to characterise both functional (e.g. inputs, outputs,
preconditions, effecs) and non-functional (e.g. contact information, service category)
properties of the service. The profile advertises the services capabilities, and

facilitates automated discovery, but is largely irrelevant to composition.

10



2.3.3 ServiceModel

The service is describedBy a ServiceModel, which has a subclass process. Figure

2.4 below shows the process class, its subclasses, and its relationship with the

Profile.
input hasProcess
precondition hasProfile
Condition output
‘ { affact o "\
-7 *
computedInput
commputed Output
has computed Effect
Grounding computedPrecondition
i mvocable
realizes
realizedBy composedBy

Figure 2.4: Top Level of the Process Ontology

The process class and its subclasses specify how a service works. Specifically, they
describe which atomic/composite processes are invoked when a service is executed,
their order of invocation, and their inputs, outputs, preconditions, and effects (IOPEs).
As such, for the purpose of Web Service composition, the serviceModel is the key

part of OWL-S.

An atomic process is one which has no subprocesses and is directly invocable,

whereas a composite process can be decomposed into other (atomic or composite)
2 . . .

processes”. The order in which a composite processes’ subprocesses should be

executed is speciﬁed via a ControlConstruct such as: Sequence, Unordered, If-

% In fact, there exists a third type of process, a Simpleprocess. However, for the purpose of Web
Service composition they are “neither necessary, nor convenient, nor useful [HTN °04], and therefore,
will be ignored hereafter.

11



Then-Else, Repeat-Until [OWL-S 1.0]. For example, Figure 2.5 shows a composite
process BookPriceProcess which decomposes to a sequence of the atomic processes:
BookFinderProcess, BNPriceProcess, CurrencyConverterProcess. In other
words, when BookPriceProcess is executed, it in turn executes these atomic processes,

in the order stated.

[= OutpLtPrice
JiN

BookPriceProcess

BookMName

Currency

BhPriceProcess
/ 4

Eookinfo BookPrice
< Legend

Output
BookFinderProcess O

Input

O

Figure 2.5: Composite Process Decomposed to a Sequence of Atomic Processes

CurrencyConverterProcess

Figure 2.5 also shows the inputs and outputs of each process, and how they relate to
one another. Inputs and outputs can be classified as either internal or external [PLAN
‘03]. An internal input is one which is provided by the output of another process (e.g.
BookInfo), whereas an external input must be provided by the user or agent invoking
the service (e.g. BookName). Similarly, an internal output is one which is supplied to
another process (e.g. BookInfo), whereas an external output is one which is returned
to the user/agent that invoked the service (e.g. outputPrice). This mapping between

process parameters is specified in the serviceModel by the data flow model.

In addition to inputs and outputs, processes also have preconditions and effects. While
inputs and outputs specify the information that is required and produced by process
execution, preconditions specify conditions that must be satisfied for a process to
execute and effects represent changes (to the world) resulting from execution. In the
context of a bookselling service, a typical precondition is that the items must be in
stock, and an effect is that the items purchased are shipped. Examples of an input and

output of such a service are the delivery address and a receipt respectively.

12



Effects and outputs may be either conditional or unconditional. Unconditional
outputs/effects are those which are produced for every execution of the process,
whereas conditional effects and outputs are only produced under certain conditions.
The ServiceModel defines the classes ConditionalOutput and
ConditionalEffect which allow a number of conditions to be associated with an
output and effect respectively. Although conditions pervade OWL-S — in addition to
preconditions and conditional effects/outputs, they also feature in control constructs
such as T1f-Then-Else — “OWL-S 1.0 does not mandate any language for expressing
conditions at present, leaving to the modeller the task of deciding which rule

language to adopt. Nor does OWL-S 1.0 make expressivity claims or mandate a

specific kind of logic for the rule language” [OWL-S 1.0].

234 ServiceGrounding

The service supports a ServiceGrounding, which has a subclass Grounding. This
class provides a mapping from the abstract OWL-S serviceModel to a concrete
specification. The concrete specification is invariably a WSDL description, in which
case the serviceGrounding class maps:

e OWL Classes to WSDL types

e Process inputs/outputs to WSDL input/output message parts

e Atomic processes to WSDL operations

The serviceGrounding facilitates automated invocation, but is largely irrelevant to

automated composition.

24 Al Planning

2.4.1 Introduction

This section discusses the relevancy of Al planning to Web Service composition, and

provides an introduction to Al planning in general, and Hierarchical Task Network

13



(HTN) planning in particular. Much of the material in this chapter is taken from [Al
Mod].

2.4.2 Classical Planning

A classical Al planning problem has the following elements:
e An initial state
e A goal state

e A set of actions’

The objective of Al planning is to find a plan, that is, a sequence of actions which will
achieve the goal state from the initial state. State is represented as a set of ground
literals in first-order language, and an action is an expression which has a:
e Name
e Parameter List
e Precondition List — the first-order literals which must belong to the state in
order for the action to be applicable
e Effects List — this is composed of an add list and a delete list. The former is a
list of positive effects, which are effects that the action adds to the state. The
delete list is a list of negative effects, which are effects that the action removes

from the state

A description of an action named F1y which flies p from orig to dest is shown in

Figure 2.6:

ACTION: (Fly (p, orig, dest)

PRECOND: At (p, orig) A Plane(p) A Airport(orig) A Airport (dest)
EFFECT: -At (p, orig) A At (p, dest))

Figure 2.6: An Action Schema

The parameter list of this action is (p, orig, dest). The precondition list can be

interpreted as: p must be At orig, and p must be a Plane, and orig and dest must

3 Also known as ‘operators’, both terms will be used in this report.

14




both be an airport. The ‘— indicates that the first effect in the list is a negative

effect, thus the effects of this action can be interpreted as: p is not at orig, and p is at

dest.

A simple planning problem is shown in Figure 2.7 below. Recall that a planning

problem is simply a set of actions, and an initial and goal state. In this trivial example,

the initial state is empty and the actions have no parameters.

GOAL:

INIT:

ACTION:
ACTION:
ACTION:
ACTION:

(RightShoeOn A LeftShoeOn)

0)

(RightShoe () PRECOND: RightSockOn EFFECT: RightShoeOn)
(RightSock () EFFECT: RightSockOn)

(LeftShoe () PRECOND: LeftSockOn; EFFECT: LeftShoeOn)
(LeftSock () EFFECT: LeftSockOn)

Figure 2.7: A Planning Problem

The solution to this problem is illustrated in Figure 2.8 below.

Start
Left Right
Sack Sock

LeftSockOn RightSockOn

Left Right
Shoe Shoe

\ /

LeftShoeOn, RightShoeOn

Finish

Figure 2.8: Planning Problem Solution

The state after each action is added to the plan is indicated by the literals in italics. For

example, the initial state is empty, but after the RightSock action, RightSockOn is

15




added to the state (alternatively, “RightSockOn is true”). This satisfies the
precondition of the action RightShoe, thereby enabling it to be added to the plan. The
final state is (LeftShoeOn A RightShoeOn), which satisfies the goal. In other words,

the plan shown in Figure 2.8 is a valid solution to the problem given in Figure 2.7.

The solution shown in Figure 2.8 is in fact a partial-order plan, because the sequence
in which the actions must occur is not fully specified. For example, although
RightSock must occur before RightShoe, the very first action may be either
LeftSock Or RightSock. A total-order plan is one that fully specifies the sequence in
which the actions must occur; each total-order plan is a linearization of the partial-
order plan. The partial-order solution shown in Figure 2.8 corresponds to the six total-

order plans shown in Figure 2.9.

Start Start Start Start Start Start
1 1 1 ' Y {
Right Right Left Left Right Left
Sock Sock Sock Sock Sock Sock
| | | | Y Y | +
Left Left Right Right Right Left
Sock Sock Sock Sock Shoe Shoe
1 1 1 1 1 1
Right Left Right Left Left Right
Shoe Shoe Shoe Shoe Sock Sock
Y | Y | | | | +
Left Right Left Right Left Right
Shoe Shoe Shoe Shoe Shoe Shoe
Y + * Y * Y
Finish Finish Finish Finish Finish Finish

Figure 2.9: Six Corresponding Linearizations into Total-Order Plans

16



243 HTN Planning

The key idea underpinning Hierarchical Task Network (HTN) planning is that
complexity is dealt with by hierarchical decomposition. Other examples of this
approach include [AI Mod]:

e Software Development — created from a hierarchy of object classes

e Armies — operate as a hierarchy of units

In addition to an initial state, a goal state, and a set of operators, a HTN planning
problem also includes a set of methods. Each method describes how a complex task
can be decomposed into subtasks, and each operator describes how a primitive task
can be achieved. HTN planning proceeds by using methods to decompose tasks
recursively into simpler and simpler subtasks, until only primitive tasks remain in the

plan. These primitive tasks should be directly achievable from the operators.

Figure 2.10 below describes a HTN house-building problem, involving seven

operators (actions), and a single method BuildHouse (shown graphically).

GOAL: (House)

INIT: (Money A GoodCredit)

ACTION: (BuyLand, PRECOND: Money; EFFECT: Land A —Money)
ACTION: (GetLoan, PRECOND: GoodCredit; EFFECT: Money A Mortgage)
ACTION: (BuildHouse PRECOND: Land; EFFECT: House)

ACTION: (GetPermit PRECOND: Land; EFFECT: Permit)

ACTION: (HireBuilder EFFECT: Contract)

ACTION: (Construction PRECOND: Permit A Contract;
EFFECT: HouseBuilt A —Permit)
ACTION: (PayBuilder PRECOND: Money A HouseBuilt;

EFFECT: —Money A House A —Contract)

17




Land Build House
House

decomposes to

Land| Permit
/ \ Pay Hause

Finish

Start : Construction : e
; Builder -1 Money

Figure 2.10: HTN House-Building Problem

Notice that the decomposition of BuildHouse is itself a plan. When BuildHouse is
decomposed an additional precondition (Money) and effect (-Money) are introduced
which are not stated in the high-level description. In general, the high-level
preconditions and effects are guaranteed to be a subset of the preconditions and

effects of the decomposition [Al Mod].

The solution to this problem is shown is Figure 2.11. First of all, BuyLand is added to
satisfy the Land precondition of BuildHouse. When BuildHouse is decomposed, this

introduces an extra precondition Money, which is satisfied by adding GetLoan*

M .
Start 2% Buy Land Land, | Build House_ | Finish
House
Land| Get
W // Permit p
Start e Buy Land Construction [—m Pay ause Finish

Builder
Hire /
Builder Money

Figure 2.11: Solution to HTN House-Building Problem

GoodCredit | et Loan

* This solution is in fact a hybrid of partial-order planning and HTN planning, as the problem is not
solved by task decomposition alone (due to the addition of BuyLand and GetLoan).

18



244 Suitability of HTN Planning to Web Service Composition

The appropriateness of HTN planning to the problem of Web Service composition is

suggested by the many operational similarities between OWL-S and HTN planning:

e  OWL-S atomic processes correspond to primitive actions

e OWL-S composite processes correspond to complex actions

e Both OWL-S and HTN planning use hierarchical decomposition to cope with
complexity. Specifically, OWL-S uses control constructs to decompose
composite processes to subprocesses, and HTN planning uses methods to
decompose complex actions to simpler subtasks

e When a composite process or complex action is decomposed, the parameters
of the subprocesses or subtasks may be either internal or external. In Figure
2.5, the external inputs (Currency, BookName) resulting from the
decomposition of BookPriceProcess, must be satisfied by the invoking
user/agent, whereas the external preconditions resulting from the
decomposition of BuildHouse in Figure 2.11 are satisfied by adding BuyLand

and GetLoan.

In fact, such is the similarity between OWL-S and HTN planning that OWL-S
constructs can be mapped directly to those of HTN planning, e.g. composite processes
to methods, and atomic processes to operators. Once this mapping has been
performed, given an objective (or goal) and an initial state, a HTN planner will find a
sequence of Web Services which achieves this goal from the initial state (if one

exists).

Other reasons why HTN Planning is suitable for Web Service composition are [HTN
04], [PLAN SWS]:

e HTN encourages modularity. For example, the author of a method need not
know how its subtasks may be further decomposed. This modularity fits well
with the loosely coupled nature of Web Services

e HTN scales well to large numbers of methods and operators.

19



Some HTN planners support complex precondition reasoning and provide
natural places for human intervention. The latter could be used to query the
user or an agent for input during planning, or if the planner cannot decompose

a task, it could delegate that task decomposition to the user or an agent.

20



3 DESIGN & IMPLEMENTATION

3.1 Requirements

The high-level objective is to convert OWL-S descriptions to a HTN planning domain
(i.e. a collection of methods and operators), which will be used by a HTN planner to
solve a Web Service composition problem. This introduces the following

requirements:

1. A means of reading OWL-S descriptions (programmatically)

Although OWL-S descriptions may be read with any XML parser, a more efficient
approach is to use an API designed specifically for reading OWL or better still,
OWL-S.

2. A HTN planner

Because there are a number of proven, freely available HTN planners, writing

one’s own should be considered an option of last resort.

3. An appropriate means of representing the problem state

Because the IOPEs of semantic Web Services are expressed in OWL, the state of a
Web Service composition problem should be represented as an OWL KB.
However, Al planners typically represent the state as a list of ground literals, and
support only fairly limited reasoning capabilities. Therefore, a means of
representing the problem state in a manner that is consistent with the semantics of
OWL is necessary if a generic HTN planner is used. Furthermore, in order to
realise preconditions (and postconditions), a means of expressing and evaluating

conditional expressions — by querying the state — is required.

21



4. An OWL reasoner

An OWL reasoner is needed to support type substitution. For example, if an input
of a particular type is required, it should be possible to provide instead an instance
which is:

e A subClassoOf this type

e AnequivalentClass to this type

e AnequivalentClass toa subClassOf this type

In order to realise this, an OWL reasoner is required which can determine the
relationship between OWL types. This reasoner should be able to reason over

OWL classes defined in different ontologies.

3.2 Design & Implementation Technologies

This section introduces the technologies involved in OWLS2JSHOP. Their function in

the context of OWLS2JSHOP is described in the next section.

3.2.1 JESS

The Java Expert Shell System (JESS) is a rule-based programming environment
written in Java [JESS]. The data in a rule-based system is stored in facts, and the logic

is defined as a collection of rules.

3.2.1.1 JESS Facts

A fact in a JESS KB is analogous to a row in a database table and a fact’s slots are
analogous to a table’s columns. The structure of a fact is defined by a named template
which specifies the name and number of slots in facts of this type. For example, the
following statement defines a template named person with slots for storing an

individual’s name, age, and gender:

22



(deftemplate person (slot name) (slot age) (slot gender))

3.2.1.2 JESS Rules

A JESS rule is similar to an if...then statement in a traditional programming
language, in that it consists of a conditional expression, and a series of commands to
execute when that conditional expression is satisfied. The conditional expression
occurs on the left-hand-side (LHS) of a rule and is also known as the antecedent. The
commands to execute occur on the right-hand-side (RHS) and are known as the
consequent. For example, the following defines a JESS rule named foo-rule which

prints out: “Bobby is 24 and male” if a corresponding fact exists:

(defrule foo-rule
(person (name Bobby) (age 24) (gender male))
=>

(printout t “Bobby is 24 and male”))

3.2.2 Jena

Jena is a Java framework for building Semantic Web applications [Jena]. This
framework includes:

e AnRDF API

e Reading and writing RDF in RDF/XML, N3 and N-Triples

e AnOWL API

e In-memory and persistent storage

e RDQL — a query language for RDF

3.2.3 OWLJesskB

This is a Java tool which translates an OWL ontology into a collection of JESS facts

[OWLJess]. The facts created by OWLJessKB are defined by the following template:

(deftemplate triple (slot predicate) (slot subject) (slot object))

23



So in short, OWLJessKB converts an OWL ontology to a collection of PSO triples,
which are stored in JESS. OWLJessKB performs the inferencing necessary to ensure
that all the PSO triples entailed by an OWL ontology are stored as facts in JESS.
OWLJessKB is implemented in Java, and depends on the Jena API.

3.24 OWL-S API

A Java API for reading, writing, and executing OWL-S service descriptions [OWL-S
API]. The OWL-S API also depends on the Jena API.

3.2.5 Pellet

Pellet is an open-source OWL reasoner [Pellet] from the developers of the OWL-S
API. Pellet is implemented in Java and depends on the Jena APIL.

3.2.6 JSHOP

3.2.6.1 Introduction

A HTN planner is a tool which can solve an Al planning problem given a:
e Domain Description — a list of operators and methods

e Problem Description — an initial state and a goal
The planner used by OWLS2JSHOP is JSHOP, a member of the SHOP family of

HTN planners. Some of the reasons why this particular planner was chosen are given

in subsection 3.4.1.

24



3.2.6.2 JSHOP Formalism

This section describes the elements of a JSHOP domain and problem definition. Much
of the material in this section, and the example in the next are adapted from [JSHOP]

[SHOP2].

3.2.6.2.1 JSHOP Domain Definition

A JSHOP domain consists of operators, methods, and axioms. Examples and

definitions of these constructs are provided in this subsection.

An operator has the following form:

(roperator (!h) (P) (D) (&) [c])
where:
e h, the operator’s head, consists of its name and parameter list
e P, the operator’s precondition list
e D, the operator’s delete list (list of negative effects)
e A, the operator’s add list (list of positive effects)
e ¢, the operator’s cost. It is possible to assign a cost to each operator and search
for the cheapest plan available. This parameter is optional and defaults to 1 if

omitted. This feature was not used.

Figure 3.1 shows two examples of JSHOP operators

(:operator (!pickup 2a) () () ((have ?a)))

(:operator (!drop ?a) ((have ?a)) ((have 2a)) ())

Figure 3.1: Examples of JSHOP operators

The pickup operator takes a single parameter, 2a. It has no preconditions, and when it
is invoked with a value bound to ?a, (have ?a) is added to the state. When drop is
invoked with a value bound to »a, it will only execute if (have 2a) is in the current

state. If so, (have ?a) is removed from the state.

25




A JSHOP method has the following form:

(:method (h) (C1) (T1) (C2) (T2) ... (Cx) (Tk))
where:
e h, the method head, names the task which the method decomposes
e Each C;j is a precondition list
e FEach Tj, a tail of the method, is a task list which specifies how h may be

decomposed into subtasks

A method indicates that h can be performed in k different ways by performing all of
the tasks in exactly one of the method’s tails when that tail’s precondition list is
satisfied. The preconditions are considered in the given order, so a later precondition
is considered only if all of the earlier preconditions are not satisfied. Figure 3.2 shows

an example of a method.

(:method (swap ?x ?Vy)
((have 7?x)) ((!drop ?x) (!pickup ?vy))
((have ?y)) ((!drop 2?vy) (!pickup ?x))

Figure 3.2: Example of a JSHOP Method

This method provides two alternatives for decomposing (swap 2x 2y). If (have 2x)
is in the current state, the task may be decomposed may invoking operator (!drop
2x) followed by (!pickup 2y). Alternatively, ?x and 2y may be swapped if (have

2y) 1is in the state, by calling (!drop 2y) followed by (!pickup ?x).

A JSHOP axiom has the following form:

(:= (a) ((E1)) ((Ez2)) ((E3))...((Ex)))

The intended meaning of an axiom is that a is true if any E; is true. One possible use

of these axioms is inferencing. Consider the following:

(:= (mammal ?x) ((dog ?x)) ((cat ?x)) ((human ?x)))

26




The effect of this axiom is that if the current state contains the term (dog rover) and
(cat felix), the terms (mammal rover) and (mammal felix) will also be added. In other

words, JSHOP will infer from this axiom that rover and felix are mammals.

3.2.6.2.2 JSHOP Problem Definition

A JSHOP problem definition has the form:
(defproblem p d (a; az...an) T)

e p, is the name given to the problem

e d, is the name of the domain whose operators, methods, and axioms will be
used in attempting to solve the problem

e The initial state of the problem is defined by the atoms a;...a,

e T is the list of tasks which must be completed, i.e., the problem goal

3.2.6.3 JSHOP Example

Figure 3.3 shows an example of a JSHOP domain and problem definition involving

the operators and method shown in Figures 3.1, 3.2.

(defdomain basic-example (
(:operator (!pickup 2a) () () ((have ?a)))

(:operator (!drop ?a) ((have ?a)) ((have 2a)) ())

(:method (swap ?x ?vy)
((have ?x))
((!drop ?x) (!pickup ?vy))
( (have ?vy))
((!drop ?y) (!pickup ?x)))))

(defproblem probleml basic-example

((have banjo)) ((swap banjo kiwi)))

Figure 3.3: Complete JSHOP Example

27




The solution found by JSHOP is given in Figure 3.4, which shows the output printed
by JSHOP when asked to solve this problem®.

Problem file parsed successfully
Solving Problem :probleml
Returning successfully from find-plan : No more tasks to plan
1 plans found.
Xk kkkkkkk PLANS *k*kk ok x*
Plan # 1
( (!drop banjo ) 1.0 (!'pickup kiwi ) 1.0 )

Figure 3.4: JSHOP Solution

The solution shows the primitive actions, and the sequence in which they must be
executed in order to achieve the objective: (swap banjo kiwi), given the initial

state: (have banjo). The numbers beside the actions are their cost, which all default

to 1.0.

3.3 OWLS2JSHOP Architecture

Figure 3.5 shows the architecture of the OWLS2JSHOP Web Service composition
system. A short description of each component and its function is provided below.
The manner in which these components interact to solve a Web Service composition

problem is described in section 3.5.

> The verbosity of the output is controlled by a parameter which ranges from 0 to 10 (max). In this
example, the parameter was set to 2.

28




OWL-S OWL

Types
OWWL
Instances
OWLS2JSHOP
owLsapl | Pellet | OwLlesske
Jena

l JESS facts

defdomain defproblem

JSHOP JESSles I jess
response

plan(s)
Figure 3.5: OWLS2JSHOP Architecture

OWL-S - the OWL-S service descriptions that are translated by
OWLS2JSHOP to a JSHOP domain definition file (defdomain).

OWL Instances — the initial state of the planning problem is a set of OWL
instances. These are read by OWLS2JSHOP, converted to a set of JESS facts
and stored in JESS’ KB

OWL Types — OWLS2JSHOP supports type substitution, e.g. an output may
be matched to an input if they are not of the same type, but the output type is a
subClassOf Or equivalentClass [OWL] of the input type. In order to
achieve this, OWLS2JSHOP must be provided with the ontologies in which
the input and output classes (and their subclasses and equivalent classes) are
defined.

defproblem — a JSHOP problem definition file in which the user specifies
their goal (or objective) as a list of tasks to perform.

JSHOP — the planner reads the domain and problem definitions, and attempts
to find a plan. During the planning process, preconditions (and postconditions)

are evaluated by querying JESS about the world state

29



3.4

34.1

OWLS2JSHOP — the core component of the system which choreographs the
Web Service composition process. OWLS2JSHOP is a Java package which
interoperates with JSHOP and JESS via the Java APIs which these tools
expose. It also depends on the following third-party libraries:

o OWL-S API — a Java API for reading, writing, and executing OWL-S
service descriptions [OWL-S API]

o Pellet — an open-source Java based OWL DL reasoner [Pellet], which
is used to discover the subclasses, superclasses, and equivalent classes
of a given OWL class. This information is needed to enable type
substitution.

o OWLJessKB — this tool is used to translate the OWL instances that
represent the initial state of the problem into a collection of JESS facts
[OWLlJess].

o Jena — a Java API for building Semantic Web applications [Jena],

which the OWL-S API, Pellet, and OWLJessKB all depend on

Design & Implementation Issues

Choosing the Planner

Choosing the correct planner is obviously critical to the success of any work involving

Al planning. Reasons why JSHOP was chosen ahead of other HTN Planners include:

It is implemented in the Java language, and therefore, is platform independent
and can easily be extended or integrated with other Java applications, such as
JESS and JSHOP.

SHOP planners are widely used [SHOP ‘04] and available free-of-charge

A SHOP planner won one of the top four prizes at the 2002 International
Planning Competition [PLAN CO]

SHOP planners have previously been used for Web Service Composition
[HTN “04], [PLAN SWS]

JSHOP provides advanced features such as: axiomatic inference, mixed

symbolic/numeric computations, and calls to external programs [PLAN SWS]

30



Nevertheless, JSHOP is not without its flaws, specific disadvantages include:

e It is slower than some other SHOP planners, such as SHOP2. This is most
likely attributable to the fact that SHOP2 is implemented in LISP. However
this makes SHOP?2 difficult to extend or integrate with Java applications

e The goal must be stated in terms of the tasks to perform, but in the context of
Web Services a more natural way to express the objective is in terms of the

required outputs and/or effects

3.4.2 State Representation

The IOPEs of semantic Web Services are expressed in OWL, and therefore the state
of a Web Service composition problem should be represented as an OWL KB.
However, JSHOP represents the state as a list of ground literals, and supports only
fairly limited reasoning capabilities. Therefore it cannot cope with the expressivity of
OWL. Before the problem of how to query the problem state (i.e. evaluate
preconditions/postconditions) can be addressed, a means of representing the problem
state in a manner that is consistent with the semantics of OWL is needed. One way of
bridging the gap between an OWL KB and JSHOP’s representation of the problem
state, would be to replace the former with the latter. However, this would require
drastic changes to the JSHOP source code, and in any event, something similar has
already been achieved [PLAN SWS]. OWLS2JSHOP addresses this problem using
JESS and OWLJessKB.

OWLJessKB converts the initial state — expressed as a set of OWL instances — to a
collection of PSO triples, which are stored in JESS’ KB. The semantics of any OWL
ontology can be consistently represented as a collection of triples, indeed, this is
exactly the representation used by arc-node diagrams (e.g. Figures 2.3, 2.4).
Furthermore, OWLJessKB performs the inferencing necessary to ensure that a// the
PSO triples entailed by OWL instances representing the initial state are stored as facts

in JESS.

31



In theory, it should be possible to keep the JESS KB up-to-date by adding/removing
the appropriate OWL instances (translated to JESS facts) as JSHOP modifies the plan.
For example, if JSHOP adds an operator that has an output which is an instance of the
(fictitious) OWL class ‘BookReceipt’, JESS’ KB could be kept up-to-date by
translating this instance to JESS facts and adding them to the KB. However,
OWLS2JSHOP doesn’t actually invoke Web Services, and therefore this isn’t
possible. In other words, because we never actually execute the Web Service that
produces the BookReceipt instance, we do not have a representation of it in OWL to
translate. This problem doesn’t arise when translating the initial state, because the
OWL instances therein are provided externally, and not as the outcome of a Web

Service execution.

343 Conditional Expressions

Preconditions are a key feature of Al planning, and can be defined as queries about
the state which must be true in order for an action to be applicable. Similarly,
postconditions — queries which must be true affer an action — are of benefit to the
planning process. For example, if an age-verifying service has a postcondition that the
subject’s age is at least 65, then this may be succeeded by a service which applies for
a state old-age pension. In short, a postcondition provides a guarantee about the state

after an action that the planner may use to determine which actions may succeed it.

Although neither OWL-S nor JSHOP support postconditions, a greater problem is that
OWL-S 1.0 doesn’t specify a language for encoding conditional expressions of any
type. Clearly the issue of how to encode conditional expressions in OWL-S must be
resolved before the matter of how to translate them to JSHOP constructs. Given that
the state is represented as JESS facts, JESS rules are an obvious solution’. In fact, the
decision to use JESS was motivated more strongly by this capability than the
availability of a tool (OWLJessKB) to translate between OWL and JESS.

The LHS of a JESS rule which represents a precondition (or postcondition) will
encode the terms of the condition in JESS, and the RHS will be empty as the

consequent is implied, i.e. the action is applicable. For example, assume there exists

6 JESS queries could also be used to encode conditional expressions

32



an OWL class Dog which has the URI http://www.example.org/Classes.owl#Dog. An
instance of this class (defined in the same document as its class) such as:

<Dog rdf:ID="Rover"/>would be represented in JESS’ KB as the triple:

(triple

(subject "http://www.example.org/Classes.owl#Rover")
(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(object "http://www.example.org/Classes.owl#Dog"))

A process which has a precondition that an instance of this class must exist (in JESS’

KB), could be expressed as the following JESS rule:

(defrule dog-precondition

(triple (subject ?x)

(predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")
(object "http://www.example.org/Classes.owl#Dog"))

=>

)

Again, the RHS of this rule is empty because the issue of interest is whether the LHS
is satisfied, that is, nothing needs to happen when it is. Rules such as this are
evaluated by JESS which examines the KB and determines whether they can be
activated. An activated rule is one whose LHS is satisfied and will be fired the next

time the rules engine is run.

Encoding conditional expressions as antecedents of JESS rules is consistent with
changes expected to be announced in OWL-S 1.1. This will specify the default
language for encoding conditional expressions to be a variant of SWRL — essentially,
SWRL rules without consequents — which is semantically equivalent to JESS rules
without consequents. Although this SWRL variant will be specified as the default, any
logical language such as DRS [DRS], Kif [KIF], or indeed JESS may be used.

On account of the fact that OWL-S doesn’t support postconditions, extensions were

made to the OWL-S ontology in order to provide support for postconditions in an

OWL-S description. Also, because conditional expressions (of any sort) are currently

33



unspecified in OWL-S, the source of the OWL-S API [OWL-S API] had to be
modified in order to enable conditional expressions to be read (via the API) from an
OWL-S description. These modifications make the process of translating an OWL-S
precondition to a JSHOP precondition fairly straightforward, though the same cannot
be said of postconditions, which JSHOP doesn’t support. Rather than attempt to
modify the source of JSHOP, the lack of explicit support for postconditions was
circumvented thus: an atomic process foo with preconditions y, postconditions o,
negative effects P, and positive effects a, this will be translated to the following

JSHOP domain constructs:

(:method (foo) ((y)) ((foo-op) (foo-pc)))
(:operator (!foo-op) ((y)) ((B)) ((a)))
(:operator (!foo-pc) ( ) O O)

Less formally, an atomic process with postconditions is represented as a method with
the same preconditions as the atomic process, which decomposes to a sequence of two
operators. The first of these has the same preconditions and effects as the atomic
process, and the second encodes the atomic process’ postconditions as preconditions,
and has no effects. This achieves the effect of postconditions, because whenever the
atomic process foo is added to the plan, the net result will be the addition of foo-op,
immediately followed by foo-pc. The former is identical to the atomic process in
terms of its preconditions and effects, and the latter lists foo’s postconditions in its
preconditions list. If any of these postconditions fail, both foo-op and foo-pc will be

removed from the plan.

3.5 Component Interactions

Figure 3.6 shows a sequence diagram which describes how the components of the
system combine to solve a Web Service composition problem. A description of the

interactions between the components follows the diagram.

34



OWLS2JSHOP JESS JSHOP

storeFacts{initialState) !

1

*storeRule(lD, rule)

Y

|- - {

|

|

|

|

I

I

I

|

|

|

| plan{defdomain, defproblem)
| |
|
I
|
I
|
|
|
|
|
|
I
|

I "checkCondition{ID)

H response
- - TP -

Figure 3.6: Sequence Diagram

e OWLS2JSHOP - recall that the inputs are the OWL-S descriptions
themselves, the ontologies in which the classes of the inputs and outputs are
defined, and the OWL instances which represent the initial state

O storeFacts(initialState) — using OWLJessKB, the OWL
instances which represent the initial state are converted to a set of JESS
facts, which are stored in JESS’ KB

O *storeRule(ID, rule) — OWL-S preconditions and postconditions
are expressed as JESS rules. However, JESS rules cannot be translated
directly to JSHOP preconditions because the JSHOP parser prohibits
various characters which may appear in rules. Instead, this operation
stores the rules in a Hashtable within the JSHOP programme. The
Hashtable key’ is then used (instead of the rule itself), in the JSHOP

precondition, which has the following format:

(call JESS <hashkey>)

O plan(defdomain, defproblem) — once the OWL-S description has
been converted to a JSHOP domain definition file, it is passed to
JSHOP along with the problem definition file, and JSHOP begins an
attempt to find a plan

7 The key is in fact the URI of the OWL-S precondition, with occurrences of ‘~” and ‘#’ replaced by
‘=, and ‘::” respectively. These substitutions are necessary because JSHOP prohibits the former two to
be used within identifiers.

35



e JSHOP, JESS — once the domain and problem definition files have been
passed to JSHOP, OWLS2JSHOP plays no further part. The process of solving
the problem is the sole responsibility of JSHOP and JESS

o checkCondition(ID) — when JSHOP encounters a precondition (or
postcondition) of the form: (call JESS <hashkey>), it is evaluated
by retrieving the appropriate rule from the Hashtable, and passing it
to JESS. If the rule is activated — an activated rule is one which will
fire the next time the rules engine is run — JESS returns ‘true’,
otherwise, it returns ‘false’. Of course, the ability to interoperate
between JESS and JSHOP using these preconditions is not a native
feature of JSHOP, but was achieved via custom extensions to the

JSHOP source code.

3.6 OWLS2JSHOP Package

This section describes the OWLS2JSHOP package. The source of this package along
with the various libraries it depends on is included on the enclosed CD. Instructions

for building OWLS2JSHOP are given in the readme. txt file.

Figure 3.7 shows a UML Class diagram which presents the core classes in this
package and the relationships among them. Only attributes and public or protected
methods (excluding constructors) are shown, and abstract classes or methods are

displayed in italics.

36



Planner

OWL2Jess l—dfm: DataElowMan.?gellf i : :
- +executeSHOP (DomainFilePath: String, ProblemFilePath: 8tring)
—olkb: OWLJessKEB +main{args: String[])
+getRete ()@ Rete
1 OntologyOracle

+reasoner: Reasoner

| tcurrentOntology: OWLOntology
DataFIowManager t+allParsedontolegies: Set
-aliases: Hashtable +ontelegyContainingOWlclase (classURT:URT) : OWLOntology
—axioms: ArrayList +getOWLClass (classURI: URL) : OWLClass
-dataFlow: DataFlow L +getSuperClasses (classURL: URI) : Set
—ontologyOracle: OntologyOracle tgetEquivalentClaszes (classURI: URI) : Set
t+getAnioms () : ArrayList +get8ubClasses (classURI: URI) : Set
tgetCommonlame (parameter: Paramseter): String tgetSameClasses (classURI:URI) : Set
SHOPAtomicProcess
#atomicProcess: AtomicProcess
SHOPEIement #operatorName: String
#dataFlowManager: DataFlowManager zpreconditionList: gtring
initi . ; negativeEffects: String
tgetSHOPDefinitions () : String <} ______ EpositiveRffacts: String
4§ +get8HOPDefinitions (): Btring
1
1
1
1
1
LEGEND i
vat SHOPCompositeProcess - - —
- private FoompositeProcesc: Compositebrocess SHOPAtomicProcessWithPostconditions
-methodDef: String
#prOtE’Cted -operator_op: String
. —cperator poi String
+pUb“c +get SHOPDefinitions [): String
— static SHOPCompositeProcessSequence
+get8HOPDefinitions () : String

Figure 3.7: Core classes in OWLS2JSHOP package

OWLS2JSHOP also contains several classes which are not shown in Figure 3.7, as the
functionality they provide is irrelevant to the main purpose of OWLS2JSHOP, i.e.
converting an OWL-S serviceModel description to a JSHOP domain description, and
coordinating the other system components. These additional classes are described
briefly below.
e Utilities — a collection of static methods, which are used by other classes in
this package (e.g. createFile)
e MpyAuthenticator — provides proxy server authentication
e (Constants — provides a single point of reference for String constants used
within this package (e.g. proxy server name)

e Exception subclasses

Additional information about the classes shown in Figure 3.7 is provided in the

following subsections.

37



3.6.1 Planner

This is the main class of the system. An invocation of OWLS2JSHOP begins with the

main method of this class which takes the following arguments:

1. URL of the top-level OWL-S document. This document may import other
OWL-S documents (which may in turn import others) via the owl:imports
construct

Proxy server username

Proxy server password

Directory location where the JSHOP domain file should be stored

w»ok w N

Directory location of the JSHOP problem file. This argument is optional. If
this argument is omitted a ready-made problem file will be used. This is a
problem for which a solution was found during a previous invocation of

OWLS2JSHOP with the same (1) value.

OWLS2JSHOP generates a JSHOP domain description file from an OWL-S
ServiceModel description. Once this file has been created, executesHoP is passed the
location of the JSHOP problem and domain files. From this point onwards, execution

is controlled exclusively by JSHOP and JESS.

3.6.2 OWL2JESS

This is a simple facade for OWLJessKB. The getRete () method returns a reference

to the Rete object, which represents a running instance of JESS.

3.6.3 DataFlowManager

The data flow model maps inputs/outputs of different processes to one another (c.f.
2.2.3). For example, Figure 3.8 shows the OWL fragment which maps the BookInfo
output of BookFinderProcess, defined in BF.owl, to the BookInfo input of

BNPriceProcess, defined in BNPrice.owl (c.f. Figure 2.5).

38



<process:sameValues rdf:parseType="Collection">
<process:ValueOf>
<process:theParameter rdf:resource="http://www.example.org/BF.owl#BookInfo"/>
<process:atProcess rdf:resource=" http://www.example.org/BF.owl#BookFinderProcess"/>
</process:ValueOf>
<process:ValueOf>
<process:theParameter rdf:resource=" http://www.example.org/BNPrice.owl#BookInfo" />
<process:atProcess rdf:resource=" http://www.example.org/BNPrice.owl#BNPriceProcess" />
</process:ValueOf>

</process:sameValues>

Figure 3.8: OWL-S Parameter Mappings

Although the parameters mapped to one another in Figure 2.5 all have the same name,
this is not required by OWL-S. However, in a JSHOP domain description, in order to
refer to an entity in many places, the same identifier must be used in each. The
purpose of DataFlowManager is to create a common alias for each set of parameters
that are declared samevalues by the data flow model. These aliases ensure that
parameters which are samevalues will use the same identifier in the JSHOP domain

description.

3.6.4 OntologyOracle

This class is a facade for the Pellet Reasoner class. The Reasoner class provides
methods to retrieve all the sub-classes, super-classes, equivalent classes of a given
OWL class, but it can only search a single ontology at-a-time. OntologyOracle
extends Pellet by providing similar methods which can reason over multiple
ontologies. The getsameClasses method is used to implement type substitution.
Given an OWL class, this method returns its equivalent classes, sub-classes, and the
sub-classes’ equivalent classes. The purpose of the other methods should be obvious

from their signature.

39




3.6.5 SHOPElement

An abstract class that represents an element of a SHOP domain description (e.g. an
operator or method). The get SHOPDefinitions method returns the text in the domain

description file that defines this element to JSHOP.

3.6.6 SHOPAtomicProcess

This class represents an OWL-S atomic process. Atomic processes are represented in
a SHOP domain description as an operator. Each of the attributes: operatorName,
preconditionList, negativeEffects, and positiveEffects represent the

corresponding components of a SHOP operator description.

3.6.7 SHOPAtomicProcessWithPostconditions

This class represents an OWL-S atomic process which has postconditions. These are
represented in a SHOP domain description as a method which decomposes to two
atomic processes. The method is represented by methodbef, and the atomic processes

by operator op and operator pc.

3.6.8 SHOPCompositeProcess

This abstract class represents a generic OWL-S Composite process, i.e. the control

construct that decomposes it is unspecified.

3.6.9 SHOPCompositeProcessSequence

This class represents an OWL-S Composite Process which is decomposed by the
Sequence control construct. These composite processes are represented in a JSHOP

domain description by a method.

40



4 SCENARIO

4.1 Introduction

This chapter describes in detail an OWLS2JSHOP use case. The scenario presented in
this chapter involves all the features discussed previously: type substitution,
preconditions, postconditions, etc. Instructions for building OWLS2JSHOP and

running this scenario are provided in readme. txt on the enclosed CD.

Recall that the function of OWLS2JSHOP is to convert an OWL-S description to a
JSHOP domain description, and coordinate the other system components.
OWLS2JSHOP requires three inputs:
e  OWL-S description of the service(s) which are to be converted to JSHOP
e OWL type hierarchy in which the classes of the inputs and outputs, and their
subclasses and equivalent classes are defined

e OWL instances which define the initial state

4.2 Scenario Inputs

In this example, the top-level OWL-S document describes a service
BookPriceService which has been adapted from [Book]. The OWL-S description of
this service in XML format is provided in appendix A. The top-level process of
BookPriceService IS @ composite process BookPriceProcess Which decomposes to
a sequence of three atomic processes: BookFinderProcess, BNPriceProcess,
CurrencyConverterProcess. The names and types of the inputs and outputs of these
processes are described in Figure 4.1 below. The composite process,
BookPriceProcess takes the name of a book and an Asian currency, and returns the
price of the book in this currency. This is achieved in three steps by the subprocesses,
which perform the following transformations:

e BookFinderProcess — converts the book title to a SportsBook instance

® BNPriceProcess — returns the price of this book

® CurrencyConverterProcess — converts the price to the required currency

41



Parameters in Figure 4.1 which are declared samevalues by the data flow model are
shown with the same line style (solid, dotted, etc.). For example, the output parameter
of BookFinderProcess named BookInfo is mapped to the input parameter of

BNPriceProcess with the same name.

Price:BookPrice DA
BookPriceProcess
stingzBookMame 7 w0 — —

AsianCurrencyCurrency |

Legend Price:
string: Bookhame g : | OutputPrice
urency; -
oupt O > OutputCurrency |
nput —

SportsBook:Bookinfo - Book: Bookinfa Frice-BaookPrice  PricesinputPrice
D’ ....................... BMPricePracess D —_—— CurrencyConverterProcess

Figure 4.1: Type::Name of ServiceModel Inputs and Outputs

BookFinderProcess

The type hierarchy of the input/output classes is shown in Figure 4.2°. Notice that in
Figure 4.1 parameters which are sameValues do not necessarily have the same name
€.g. Price::BookPrice and Price::InputPrice. Others have the same name, but
different types, €.g. SportsBook::BookInfo and Book::BookInfo. In accordance
with the usual rules of type substitution, two mapped parameters I and J may have
different types if:

e [ is an output of one process in a sequence, J is an input to the next process in
the sequence, and I is a subclass of J, an equivalent class to J, or an equivalent
class to a subclass of J, e.g. SportsBook: :BookInfo and Book: :BookInfo. If
on the other hand J is a specialisation of I, the ServiceModel is invalid. For
example, if the output of BookFinderProcess iS a Book and the input to
BNPriceProcess 1S a SportsBook, the ServiceModel is invalid because a

Book 1s not a type of SportsBook

¥ Thing is the common base class of all OWL classes, like Object in Java

42



I is an external output of an atomic process, J is an external output of a
composite process and I is a subclass of J, an equivalent class to J, or an
equivalent class to a subclass of J. Under these circumstances, the actual
output of the service (which is that of the atomic process) will be a
specialisation of the advertised output (which is that of the composite process).
I is an external input to an atomic process, J is an external input to a composite
process and J is a subclass of I, an equivalent class to I, or an equivalent class
to a subclass of I, €.g2. AsianCurrency::Currency  and
Currency::OutputCurrency. If however, 1 is a specialisation of J, the

ServiceModel is invalid.

LEGEND

— eguivalentClass

CUrrency

| =ubClassOf

sportsBook @rrenw CurrencyCOfAsia
FarEasternCurrency

Figure 4.2: Type Hierarchy of Input and Output Classes

The third input required by OWLS2JSHOP is the initial state, expressed as a set of

OWL instances. The initial state must satisfy the external inputs advertised by the top-

level process, which in this case are an XSD string (string: :BookName), and an

instance of the AsianCurrency class (AsianCurrency: :Currency). The latter has the

following properties:

code — the currency code (e.g. USD, GBP)
name — the name of the currency

country — country in which currency is legal tender

43



In order to demonstrate the type substitution feature, the initial state actually consisted
of an XSD string and an instance of FarEasternCurrency — a subclass of

AsianCurrency. The relevant OWL fragments are shown in Figure 4.3

<BookName rdf:datatype="http://www.w3.0org/2001/XMLSchema#string">Ulysses

</BookName>

<paramTypes:FarEasternCurrency rdf:ID="KPW">
<currency:code>KPW</currency:code>
<currency:name>Won</currency:name>
<currency:country rdf:resource="http://www.daml.org/2001/09/countries/iso#KP"/>

</paramTypes:FarEasternCurrency>

Figure 4.3: Scenario Initial State

In addition to the inputs and outputs shown in Figure 4.1,
CurrencyConverterProcess also has a precondition and a postcondition. The
meaning of the precondition is that the currency:code property value must be
exactly three characters in length, and the postcondition guarantees that the length of
this property value will be less than four characters. It should be obvious from Figure
4.3 that these conditional expressions should evaluate to ‘true’. These conditional
expressions are encoded in OWL-S as the antecedent of a JESS rule as shown in

Figure 4.4.

<process:hasPrecondition>

<expression:Condition rdf:ID="PreValidCurrencyCode">
<expression:expressionLanguage rdf:resource="http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl#JESS" />

<expression:expressionBody>

(triple

(subject ?curr) (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type") (object

"http://www.cs.tcd.ie/~domurtag/owl-s/ParameterTypes.owl#FarEasternCurrency"))

(triple (subject ?curr) (predicate "http://www.daml.ecs.soton.ac.uk/ont/currency.owl#code")

(object ?literal))

44



(triple (subject ?literal) (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#value")
(object ?value &: (eq 3 (str-length ?value))))

</expression:expressionBody>

</expression:Condition>

</process:hasPrecondition>

<process2:hasPostcondition>

<expression:Condition rdf:ID="PostValidCurrencyCode">
<expression:expressionLanguage rdf:resource="http://www.daml.org/services/owl-
s/1.1/generic/Expression.owl#JESS" />

<expression:expressionBody>

(triple (subject ?curr) (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type")

(object "http://www.cs.tcd.ie/~domurtag/owl-s/ParameterTypes.owl#FarEasternCurrency"))

(triple (subject ?curr) (predicate "http://www.daml.ecs.soton.ac.uk/ont/currency.owl#code")

(object ?literal))

(triple (subject ?literal) (predicate "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#value")
(object ?value &: (> 4 (str-length ?value))))

</expression:expressionBody>

</expression:Condition>

</process2:hasPostcondition>

Figure 4.4: Conditional Expressions Encoded as Conjunctions of JESS Atoms in OWL-S

Notice that the hasPostcondition element belongs to the process2 namespace. This
is the namespace which extends the OWL-S 1.0 ontology to provide support for
postconditions. Details of these extensions are provided in XML format in appendix

B.

4.3 Scenario Domain Definition

Given the inputs described in the previous section, OWLS2JSHOP produces the
domain definition shown in Figure 4.5. Line numbers have been added to aid the

explanation

45




@ J o b w N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

(defdomain http://www.cs.tcd.ie/~domurtag/owl-s/BookPrice.owl (

(:method

(BookPriceProcess)

((string:BookName:BookName ?x3) (AsianCurrency:Currency ?x1))
((!BookFinderProcess) (!BNPriceProcess) (CurrencyConverterProcess))

)

(:operator

(!BookFinderProcess)
((string:BookName:BookName ?x4))
()

( (SportsBook:BookInfo))

)

(:operator

(!BNPriceProcess)
((Book:BookInfo))

0
((Price:BookPrice:InputPrice))

)

(:method

(CurrencyConverterProcess)

((Currency:OutputCurrency?x2) (Price:BookPrice:InputPrice)

(call JESS http://www.cs.tcd.ie/-~domurtag/owl-s/currencyconverter.owl::prevalidcurrencycode))
((!CurrencyConverterProcess-op) (!CurrencyConverterProcess-pc))

)

(:operator

(!CurrencyConverterProcess-op)

((Currency:OutputCurrency ?x2) (Price:BookPrice:InputPrice)

(call JESS http://www.cs.tcd.ie/~domurtag/owl-s/currencyconverter.owl::prevalidcurrencycode))
()

((Price:OutputPrice:BookPrice))

)

(:operator

(!CurrencyConverterProcess-pc)

((call JESS http://www.cs.tcd.ie/~domurtag/owl-s/currencyconverter.owl: :postvalidcurrencycode))
0)

0)

)

(:=(AsianCurrency:Currency °?x) ((FarEasternCurrency:Currency ?x)) ((CurrencyOfAsia:Currency ?x)))
(:=(Currency:OutputCurrency ?x) ((AsianCurrency:Currency ?x)))

(:— (Book:BookInfo) ((SportsBook:BookInfo)))))

Figure 4.5: Scenario Domain Definition

46




Each composite process is translated to a method (lines 3-7), each atomic process
without postconditions is translated to an operator (lines 9-21), and each atomic
process with postconditions is translated to a method which decomposes to two
operators in the manner described in 4.2.3 (lines 23-43). The name of the domain is
the URL of the top-level OWL-S description, with any occurrences of ‘~’ replaced by
‘=, and any occurrences of ‘#’ replaced by °::’, because the JSHOP parser doesn’t

permit these characters.

For example, the composite process BookPriceProcess is translated to a method of
the same name, which decomposes to a sequence of three tasks (line 6) representing
the subprocesses of the composite process. The inputs to BookPriceProcess are
translated to the preconditions (string:BookName:BookName  ?x3) and
(AsianCurrency:Currency 2x1). The variables in these preconditions 2x3 and 2x1
are placeholders for the values that must be provided for these external inputs.
Although OWL-S makes a distinction between informational preconditions (inputs)
and real-world preconditions (preconditions), JSHOP does not, so both OWL-S
preconditions and inputs are represented as preconditions in JSHOP. Similarly,
JSHOP does not distinguish between informational effects (outputs) and real-world
effects (effects), so OWL-S outputs and effects are both represented as effects in
JSHOP.

In order to refer to the same entity in many places in JSHOP, the same identifier must
be used in each. Thus, parameters which are defined samevalues by the data flow
model must be identified by the same name in JSHOP. If the parameters have the
same type, this is achieved by using the alias assigned to this set of parameters by the
DataFlowManager (c.f. 4.4.3). For example, the output Price: :BookPrice and the
input Price: : InputPrice are mapped to each other by the data flow model, and are
of the same type. The JSHOP alias is formed by taking the type of the parameters and
appending the parameter names, i.e. Price:BookPrice:InputPrice (lines 20, 25,
32). If the parameters mapped by the data flow model have different (but compatible)
types, then the parameter names and a JSHOP axiom are needed to indicate
equivalency. For example, the output SportsBook::BookInfo and the input

Book: :BookInfo are mapped to each other by the data flow model, and the output is a

47



subclass of the input. Equivalency is indicated by naming the former

(SportsBook:BookInfo%thelaﬁer(Book:BookInfo),andtheaxknn(hne47)

(:— (Book:BookInfo) ((SportsBook:BookInfo)))

Recall that the meaning of this axiom is that (SportsBook:BookInfo) infers
(Book:BookInfo). Therefore, the effect (SportsBook:BookInfo) will satisfy the
precondition (Book:BookInfo) despite the fact that their identifiers differ. The axiom
shown in line 46 has a similar intent; it ensures that the Asiancurrency external input
of the composite process BookPriceProcess satisfies the Currency external input of
the atomic process CurrencyConverterProcess. The other axiom (line 45) has a
slightly different purpose. It is constructed by discovering all the subclasses,
equivalent classes, and subclasses’ equivalent classes of the external input
AsianCurrency:Currency advertised by the top-level process — an equivalent axiom
is not constructed for the other external input because its type is an XSD string rather
than an OWL class. The effect of this axiom is that a specialisation of AsianCurrency
may be provided instead of an AsianCurrency, behaviour which is equivalent to the
OO concept of polymorphic substitution. The benefit of this behaviour is that it
increases the number of services which may be invoked for a given problem state,
thereby providing a wider range of service composition possibilities. For example,
without this axiom it would not be possible to invoke the BookPriceProcess with a
string instance and an instance of FarEasternCurrency. This feature of
OWLS2JSHOP could not have been fully realised without extending Pellet to reason
over multiple ontologies, because the specialisations of a particular class, will

generally be defined in several disparate ontologies.

The OWL-S preconditions are encoded as JSHOP preconditions of the form:

(call JESS <rule URI>), where <rule URI> is the URI of the precondition, after
substituting those characters prohibited by the JSHOP parser. When these
preconditions are evaluated by JSHOP, an attempt to activate the corresponding rule
i1s made — an activated rule is one which will fire the next time the rules engine is run
— if the rule activates, the precondition evaluates to true, if not, it evaluates to false.
Atomic processes with postconditions are represented as a method with the same

name as the process (lines 23-28), which decomposes to two operators. The first of

48



these (lines 30-36) is named by appending —op to the method name, and encodes the
preconditions and effects of the atomic process, the second (lines 38-43) is named by
appending —pc to the method name, and encodes the postconditions of the atomic

process as operator preconditions.

4.4 Scenario Problem Description

The previous section describes the JSHOP domain produced by the planner. In order
to produce a plan, a problem description is also required. The problem file used in this

scenario is shown in Figure 4.6 below.

1 (defproblem my prob http://www.cs.tcd.ie/-domurtag/owl-s/BookPrice.owl
2 ((FarEasternCurrency:Currency KPW) (string:BookName:BookName Ulysses))
3 ((BookPriceProcess)))

Figure 4.6: Scenario Problem Definition

Line 3 describes the task list that represents the objective. In this case, the goal is
simply to discover the sequence of primitive tasks that correspond to the top-level
composite process, BookPriceProcess. The initial state is described by line 2, which
represents an instance of the FarEasternCurrency class, and a string. It is worth
emphasising that the initial state is represented within JSHOP simply as these two
ground’ literals:

(FarEasternCurrency:Currency KPW) and (string:BookName:BookName Ulysses)

Although type substitution is simulated via axiomatic inferencing, JSHOP doesn’t
actually know anything about the FarEasternCurrency class, its properties, subclasses,
superclasses, etc. This limitation, specifically, the inability to represent the semantics

of OWL within JSHOP is the reason why JESS is employed by OWLS2JSHOP.

? The term ‘ground’ refers to the fact that all variables must be bound. The planner satisfies the
preconditions of BookPriceProcess by binding KPW to ?x1 and Ulysses to ?x2

49




4.5 Scenario Solution

It should be obvious that the problem described in Figure 4.6 is achievable by the
domain described in Figure 4.5. The initial state satisfies the preconditions of
BookPriceProcess and BookFinderProcess — the latter being the first primitive
action in the decomposition of BookPriceProcess. The effects added by
BookFinderProcess lead to the preconditions of BNPriceProcess being satisfied;
whose effects in turn satisfy the preconditions of the method
CurrencyConverterProcess. The latter is decomposed to
CurrencyConverterProcess-op and CurrencyConverterProcess-pc, both of
which are successfully added to the plan. The formation of the plan is represented
graphically in Figure 4.7 below, along with the solution as printed by JSHOP. Recall
that the plan printed by JSHOP shows the primitive actions, and the sequence in
which they must be executed in order to achieve the objective. The cost of each action

in the scenario solution defaults to 1.0.

Legend
BookPriceProcess :
v decomposes to
|

order <7 O operator
of

i D method
planning

BookFinderProcess @icer@ CurrencyConverterFrocess

' CurrencyConverterProcess-op CurrencyConverterProcess-pc

order of execution

P

1 plans found.

*kkkkk kKK PLANS * ok kkk kK

Plan # 1

( (!'bookfinderprocess ) 1.0 (!bnpriceprocess ) 1.0
(!'currencyconverterprocess-op ) 1.0 (!currencyconverterprocess-pc )
1.0 )

Figure 4.7: Scenario Solution

50




5 RELATED WORK

5.1 Partial-Order Planning

One of the earliest attempts at applying Al planning to Web Service composition was
presented by Sheshagiri et. al. in [PLAN “03]. The solution presented converts OWL-
S serviceModel descriptions into Predicate-Subject-Object (PSO) triples, which are
used to build planning operators corresponding to each of the atomic services. The
planner then chains backwards from the ultimate goal by repeatedly applying the
following two steps:

1. Find operators that satisfy the existing goal(s) and add them to the plan

2. Convert the inputs and preconditions of these operators into a new set of goals

The planner terminates when it can no longer find any operators to satisfy the
outstanding inputs and preconditions, which must then be provided externally.
However this approach takes no account of those preconditions and inputs which are
actually capable of being provided externally, and at worst, could find a plan which
cannot be executed when one exists. This problem was avoided in OWLS2JSHOP by

providing the planner with an explicit description of the initial state.

There are a number of similarities between OWLS2JSHOP and [PLAN ‘03]. For
example, both build planning operators from OWL-S/DAML-S serviceModel
descriptions, and use JESS [JESS] to represent the problem state. However, the
decision by the authors to write their own partial-order planner (using JESS) is
questionable, given the plethora of high-quality, proven planners that are freely
available. Their planner matches inputs to outputs and preconditions to effects on the
basis of lexical matching of names alone, so it is conceivable that an output/effect
with an inappropriate type could be chosen to satisfy an input/precondition, simply
because they have the same name. However, OWLS2JHSOP considers the OWL type
during matching, and supports type substitution, e.g. an output may be matched to an
input if they are not of the same type, but the output type is a subClassOf or
equivalentClass [OWL] of the input type. Finally, the authors’ treatment of

conditional outputs and effects is questionable; they assert that:

51



“It is not necessary for a composer to represent the control structure for conditional
effects and outputs;, merely enumerating them as multiple effects or outputs is

’

sufficient for composition’

Although execution is beyond the scope of this system (and OWLS2JSHOP), this
assumption could result in the failure of a plan at execution time, as the

outputs/effects produced may differ from those assumed during planning.

[Mith ‘04] details enhancements to this partial-order planning system which include
the addition of an execution engine. Unlike the HTN planning system described in
[HTN “04], planning and execution are not interleaved, but instead, the entire plan is
formed and then executed. In the event of plan execution failure, the execution engine
can determine the cause of the failure, and ask the planner to build an alternative plan

that doesn’t involve the service responsible.

5.2 Planning and Execution

Although the Web Service composition solution discussed in the previous section is
based on Al planning, it does not employ HTN planning, and therefore is somewhat
different in approach to our own. However, the system developed by Sirin, Parsia, et.
al. [HTN 04] [PLAN SWS] [INF] [AUT] does employ HTN Planning and therefore
can readily be compared with ours. This system also uses a SHOP planner, albeit

SHOP2, rather than JSHOP.

A distinguishing feature of this system is the interleaving of planning and execution.
Specifically, services which have outputs (information-providing services) are
executed during planning, meaning that the only services which appear in the final
plan are those with effects. In order to achieve this, an assumption is made that
services have either outputs or effects but not both [AUT]. The reason for this
assumption is that services which are executed during planning may be invoked many
times while the planner tries to find a plan. However, there is an obvious need to be
cautious about executing services which have real-world effects, so if information-

providing services are to be executed during planning, they must not also have effects.

52



Although this assumption is obviously untrue of many Web Services, it can be relaxed
if the effects of the information-providing service do not interact with the plan being
sought [INF]. For example, if an information-providing service charges a fee for its
use, but the plan being sought has nothing to do with money, then this service can be

safely executed during planning.

Reasons why it is desirable to execute an information-providing service during
planning are described below:

e If the outputs of the service are conditional and it is executed during planning,
the actual outputs will be known by the planner, thus enabling it to proceed
with greater certainty and reducing the possibility of plan execution failing.

e If the service is unavailable, this will be discovered during planning, and an
attempt can be made to discover an alternative plan which does not involve the

faulty service.

Nevertheless, the point is made in [Mith ‘04] that it is unlikely to be often possible to

execute information-providing services during planning because:

“Most services (except the services that constitute the head of the plan) are dependent
on the execution of other services and cannot be executed in an arbitrary order. This
is because these services need inputs that are available after the execution of other

services”

Another argument against the interleaving of planning and execution is that service
execution is a time-intensive process, and it is more efficient to only execute those
services which are absolutely necessary, i.e. those that feature in the final plan.
Although OWLS2JSHOP doesn’t include an execution engine, it assumes there is no
interleaving of planning and execution. Therefore, the plans produced by

OWLS2JSHOP could be executed by an engine such as that described in [Mith 04].

53



5.3 Planning with Incomplete Information

An important difference between traditional Al planning, and Al planning for Web
Service composition is discussed in [INF]. Traditional planning assumes that
complete information about the initial state is available. However, as there are very
many Web Services which can provide information about the state of the world, and it
is infeasible to execute them all, the initial state in a Web Services composition
problem is necessarily incomplete. The proposed solution to this problem is WSC-
SHOP2, an algorithm for solving planning problems with incomplete information
about the initial state. WSC-SHOP?2 issues queries to learn the truth values of certain
atoms when there is not enough information in the knowledge base to determine their
values. Due to the unreliability of Web Services, while it is waiting for answers to
these queries it does not cease planning, but searches for alternative plans that do not
depend on the answers to the queries pending. This approach differs from the typical
Al approach to planning with incomplete information, which is to insert information-
gathering actions into the plan at the places where more information is needed. These
information-gathering actions are executed during plan-execution, and depending on
the information obtained, the planner chooses a pre-planned course of action. In other
words, the typical Al approach defers information gathering until plan-execution
whereas WSC-SHOP2 gathers information while planning. OWLS2JHSOP makes a
‘closed world’ assumption, meaning that any information about the state of the world
must be provided upfront before planning begins. This approach is typical of more

traditional applications of Al planning.

5.4 State Representation

Ideally, the state of a Web Service composition problem should be represented in
OWL, and preconditions and effects expressed via OWL statements similar to SWRL
atoms'® [SWRL]. In order to use an Al planner to solve such a problem, it would have

to understand the semantics of OWL, but planners typically support only fairly limited

' As mentioned in 2.2.3, OWL-S 1.0 does not mandate any language for encoding preconditions and
effects, but it is expected that OWL-S 1.1 will make the default language for encoding preconditions
and effect a variant of SWRL

54



reasoning capabilities (c.f. 2.4.2.1), and cannot cope with the expressivity of OWL
ontologies. In order to bridge this gap between Al planners and OWL, an OWL
reasoner was integrated with a SHOP2-based Web Service composition system
[PLAN SWS]. Integration of an OWL reasoner with SHOP2 means that the planner’s
interaction with the problem state is delegated to the reasoner:
e The problem state itself is represented by the reasoner as an OWL knowledge
base (KB)
e Evaluation of preconditions, which are written in OWL, is handled by the
reasoner
e When service with effects written in OWL are added to the plan, updates to

the state are performed by the reasoner

The intent of this work is very similar to our own, although the technologies involved
differ. In order to represent state in a manner that preserves the semantics of OWL, an
OWL KB is used in [PLAN SWS], whereas we use a JESS KB and OWLJesskKB to
translate from OWL to JESS. Similarly, we use JESS’ rules syntax and engine to
express and evaluate queries against this state, whereas [PLAN SWS] use OWL and

an OWL reasoner.

5.5 Complex Action Planning

[COMP] describes an approach to Web Service composition that uses complex
actions as the building blocks of a plan. These complex actions differ from those of
HTN planning in that they are composed of primitive actions using traditional
programming language constructs. For example, the complex action

goToAirprt (loc) is defined as:

if loc=Univ
then shuttle (Univ, PA); train (PA, MB); shuttle (MB, SFO)
else taxi (loc, SFO)

The preconditions and effects of these complex actions can be precompiled under a
frame assumption, which enables the complex actions to be treated as planning

operators. Standard planning techniques (rather than HTN planning) are used to build

55



a plan using these operators. This results in a plan in terms of complex actions, from
which a plan in terms of primitive actions can be obtained if desired. It is claimed that
this approach to planning can dramatically improve the efficiency of plan generation

by reducing the size of the search space and the length of a plan.

5.6 Composing Web Services without Semantic Descriptions

All the systems discussed in this chapter so far are based on some form of Al planning
and semantic markup of Web Services. However, there have been many attempts at
Web Service composition that do not involve either one or both of these. However,
systems which are based on WSDL descriptions alone (i.e. do not require semantic
annotations), are either manual or only partially automated. Examples of such systems
are BPEL4WS [BPEL4WS] and the Web Services Toolkit developed at IBM
Research Laboratories [WSTK]. Although the latter uses a planner for service
composition, construction of the operators from the service description is not fully
automated because of the absence of a mechanism for capturing domain knowledge in

WSDL.

A final example of a partially-automated Web Service composition system is
[SWORD)]. This system does not require services to be described in either DAML-
S/OWL-S or WSDL. Instead, an entity-relationship model — which must be manually
populated — is used to describe each atomic service’s data inputs/outputs and
conditional inputs/outputs11, and a JESS rule defines which outputs can be obtained
from a service, given which inputs. In order to create a composite service, the user
specifies the inputs and outputs of the composite service and submits it to SWORD,
which uses JESS’ rule engine to determine if the composite service can be realised.
SWORD includes an execution model as well as a composition model, but it can only
compose web services that do not have real-world effects. Although the SWORD
method of composing services may seem radically different to ours, in fact, they are
very similar, as an Al planner and a rules engine such as JESS are closely related. An

example of a planner implemented in JESS has already been encountered [PLAN

' Conditional inputs/outputs in SWORD are equivalent to preconditions/effects in OWL-S

56



‘03], and, in one sense JESS itself is a planner, as it implements a superset of the

PLANNER language [PLANNER], and thus basically does planning by simulation.

57



6 CONCLUSIONS

6.1 Evaluation

The objectives outlined in section 1.2 were:

1. Determine the most appropriate type of Al planning with regard to Web
Service composition

Determine an effective means of representing the world/problem state

Identify a means of expressing conditional statements

Identify a means of evaluating conditional statements

w»ok»w N

Demonstrate the solution

A discussion on how these issues are addressed by OWLS2JSHOP follows.

6.1.1 Al Planning Type

HTN planning is an extremely good fit to Web Service composition, because
hierarchical modelling is the key to both. The correspondence between the two is such
that it is possible to directly map OWL-S concepts to those of HTN planning (e.g.
composite processes to complex actions, and atomic processes to primitive actions),
which means translating an OWL-S serviceModel description to a HTN domain
description is fairly straightforward. The appropriateness of HTN planning to Web
Service composition has been exploited by other researchers [HTN °04] [PLAN
SWS]; the motivation for employing this type of planning is discussed in detail in

subsection 2.4.4.

6.1.2 State Representation

The HTN planning in OWLS2JSHOP is provided by the JSHOP planner. The reasons
why this planner was chosen are outlined in subsection 3.4.1. Although JSHOP is one
of the best HTN planners available, using it to compose Web Services presents a

number of challenges. The most significant problem with JSHOP is its inability to

58



represent the state of a Web Service composition problem as an OWL KB. It is this
issue which is responsible for much of the complexity in OWLS2JSHOP. [PLAN
SWS] overcomes this problem by integrating an OWL reasoner with a SHOP planner;
OWLS2JSHOP addresses it by converting OWL to PSO triples, and storing them in
JESS. A HTN planning tool which uses an OWL KB to represent state would negate

the need for JESS (or an OWL reasoner), but such a tool is not available currently.

6.1.3 Conditional Expressions

Although conditions pervade OWL-S, the latest release does not specify any language
for expressing them. It is expected that the next release of OWL-S will make a variant
of SWRL the default language for expressing conditions, but the details have not yet
been finalised, and is it clear how to evaluate such expressions. OWLS2JSHOP
overcomes this problem by using conjunctions of JESS atoms to express conditions,
which are evaluated by the JESS rules engine. The latter was achieved by extending
the source code of JSHOP to support interoperation between JSHOP and JESS.
Expressing conditional expressions as conjunctions of JESS atoms is consistent with
the changes expected in the next OWL-S release, which will permit the use of any

logical language for encoding conditional expressions.

6.14 OWLS2JSHOP Evaluation

OWLS2JSHOP demonstrates the appropriateness of applying HTN planning to Web
Service composition, and highlights some of the key challenges involved. However,
this system could be improved in several ways. Perhaps the most obvious
improvement which could be made is the provision of support for a wider range of

control constructs.

Although OWLS2JSHOP only provides explicit support for composite processes
which are decomposed via the sequence control construct'’, supporting control

constructs which involve conditions (e.g. If-Then-Else, Repeat-Until) is fairly

"2 The SHOPCompositeProcessSequence class (Figure 4.3) could also support the Unordered
control construct, which allows the subprocesses to be invoked in any order (including in sequence)

59



straightforward now that conditions can be expressed and evaluated. For example, in
order to support the If-Then-Else control construct, an appropriate subclass of
SHOPCompositeProcess (Figure 3.7) should be defined — assume it is named
ShopCompositeProcessIfThenElse. If the subprocesses are atomic, this class should
implement the method getSHOPDefinitions, such that the following SHOP elements

are defined:

(:method (h) (Cy) (T1) () (T2))
(:operator (!Ti) (P1) (D1) (A1))
(:operator (!Tz) (Pz) (Dz2) (Az))

where:

e h — h, the method /ead, names the composite process which it decomposes
e (C —the if-condition of the I f-Then-Else control construct

e T, —the atomic process to execute if the if-condition is true

e T, — the atomic process to execute if the if-condition is false

e P;, P, —precondition lists of T; and T, respectively

e D,, D, —delete list of T; and T, respectively

e Ay, Ay,—addlist of T; and T, respectively

If instead the subprocesses are composite, then T; and T, should be defined as
methods rather than operators. In order to complete the support for composite
processes that decompose via the T1f-Then-E1se control construct, the code shown in
bold below should be added to the private processProcessList method of the main

class, Planner:

for (int 1 = 0; 1 < processes.size(); i++) {

org.mindswap.owls.process.Process process =

(org.mindswap.owls.process.Process)processes.get (i) ;

if (process instanceof AtomicProcess) {

AtomicProcess ap = (AtomicProcess)process;

if (ap.getPostconditions () .size() == 0) {
SHOPElements[i] = new SHOPAtomicProcess (ap, dfm);

60



else {
SHOPElements[1] =

new SHOPAtomicProcessWithPostconditions (ap, dfm);

}
else if (process instanceof CompositeProcess) {
CompositeProcess cp = (CompositeProcess)process;

ControlConstruct cc = cp.getComposedOf () ;

if (cc instanceof Sequence) {
SHOPElements[i] = new SHOPCompositeProcessSequence (cp, dfm);
}

else if (cc instanceof IfThenElse) {

SHOPElements[i] = new SHOPCompositeProcessIfThenElse(cp, dfm);

No changes are needed to call the getsHOPDefinitions method of the
SHOPCompositeProcessIfThenElse objects as it will be called by the following

lines of the private writeDefDomain method of Planner:

//write the 'defdomain' line

String fileContents = new String (" (defdomain " + domainName + " (" + "\r\n");

//add the methods and operators
for (int i = 0; i < SHOPElements.length; i++) {

fileContents += SHOPElements[i].getSHOPDefinitions();

A similar approach could be used to provide support for the other control constructs
which depend on conditions (e.g. Repeat-Until, Repeat-While). Insufficient time is
the main reason why support for these other control constructs wasn’t actually
implemented, but a lack of available OWL-S services that use these control constructs
(which would be necessary for testing) is another factor. However, there are a couple
of control constructs which cannot be supported by JSHOP, split and split+Join.
The reason for this is that the components of these control constructs must be

executed concurrently, which JSHOP does not support.

Another obvious improvement that could be made to OWLS2JSHOP is the addition

of Web Service execution. The simplest way to achieve this would be to formulate

61



the entire plan upfront, and pass it to an execution engine which invokes the relevant
services via the OWL-S serviceGrounding. A more complex solution is to
interleave planning and execution. The pros and cons of interleaving planning and

execution were discussed in detail in section 5.2.

6.1.5 Other Contributions

Another important contribution of OWLS2JSHOP is the provision of type
substitution. This enables a wider range of service composition possibilities by
permitting a specialisation of a class to be provided instead of an instance of the class
itself. This was achieved using SHOP axioms, and required Pellet to be extended to

enable reasoning over multiple ontologies.

Another novel feature of this work is the use of postconditions in service descriptions.
A postcondition aids the planning process by providing a guarantee about the state
after an action, which the planner may use to determine which actions may succeed it.
Postconditions are expressed and evaluated in the same way as preconditions, but are
not supported by OWL-S, so the OWL-S ontology was extended to enable
postconditions to be included in an OWL-S description. Reading postconditions (and

preconditions) from an OWL-S description required extensions to the OWL-S APIL.

6.2 Future Challenges

6.2.1 Service Discovery

In a broad context, the issue of service discovery will be crucial to the success of Web
Service composition. This is concerned with how people will find Web Services
suitable for service composition. Although this issue is outside the scope of
OWLS2JSHOP, being able to find relevant Web Services in an efficient manner is

obviously a prerequisite to composing them.

62



6.2.2 Scalability

A key issue to the success of an Al planning approach to composing Web Services is
that of scale. Although it is claimed that HTN planning scales well [HTN 04],
whether it can cope with composing Web Services at the scale of the Internet is
unclear. Although discovering services and building the domain description could be
performed offline (in much the same way as a search engine builds an index of
keywords), solving a planning problem should be performed on-demand, though it
may be possible to use caching to avoid repeatedly solving the same problem in quick

succession.

6.2.3 OWL-S Issues

A number of other issues — many of which can be attributed to the recentness of
OWL-S — have hindered the composition of Web Services on a large scale. The first
of these is the paucity of OWL-S tools that are available. For example, it is only since
the turn of the year (2004) that an OWL-S API has become available [OWL-S API].
Also, because any OWL-S tools that are available are invariably recently developed,
they are often not as reliable as more mature tools. A second issue is the scarcity of
OWL-S services themselves. A lack of OWL-S examples makes developing and
testing OWL-S tools difficult, and creating your own OWL-S services can be a
prohibitively lengthy process due to the verbosity of the XML format. Other
difficulties with the semantic markup of Web Services include [EXP]":
e Lack of support for a service with multiple interfaces, that is, one which may
accept different types of input parameters
e (Conceptual model is imprecise. The many different models within OWL-S
(ServiceProfile, ServiceModel, ServiceGrounding, WSDL), and the
unclear links between them causes confusion and unnecessary complexity
e No clear correspondence between OWL-S and traditional software
engineering concepts

e Mapping from OWL-S to WSDL limits expressivity

" The semantic Web Services markup referred to in this paper is in fact DAML-S, but the issues raised
apply equally to OWL-S

63



However, perhaps the most important reason why OWL-S hasn’t yet been widely
deployed is its instability. In the last year alone, the de facto standard for marking up
semantic Web Services has changed from DAML-S 0.9 to OWL-S 1.0, and a beta
release of OWL-S 1.1 is currently available [OWL-S 1.1]. Extensive changes are
proposed by the latter — particularly to the serviceModel — examples include:
e A process’ conditional outputs and effects are replaced by a Result class. A
Result bundles together:
o Zero or more effects
o Zero or more outputs
o The conditions under which these outputs and effects will occur.
e Preconditions, effects and results are logical expressions represented in
SWRL, or another logical language such as DRS, or KIF.
e A new type of process parameter, Local, is defined. A Local parameter is a
variable other than an input that is bound in a precondition of an atomic

Pprocess.

Of course, every time the standard changes, corresponding changes must be made to
dependent tools such as the OWL-S API. It is understandable that many would prefer
to wait until the standard stabilises before developing any applications which depend

on it.

Obviously the widespread adoption of OWL-S is crucial to the success of Web
Service composition. There is little point in developing a sophisticated Web Service
composition tool if the range of services available for composition is meagre.
Fortunately, most of the issues mentioned above can be regarded as ‘teething
problems’. It is expected that as the standard stabilises, and the variety and quality of
OWL-S tools available improves, OWL-S will be widely adopted as the semantic

Web Service markup language of choice.

64



[AI Mod]

[AUT]

[Book]

[Borst]

[BPEL4WS]

[COMP]

[Currency]

[DRS]

BIBLIOGRAPHY

RUSSELL, S., NORVIG, P. 2003. Artificial Intelligence: A Modern
Approach, 2nd ed. Prentice Hall. ISBN 0-130-80302-2

WU, D., SIRIN, E., HENDLER, J., NAU, D., PARSIA, B. 2003.
Automatic Web Service Composition Using SHOP2.
Workshop on Planning for Web Services, Trento, Italy

OWL-S Book Price Service
Available online at

http://www.mindswap.org/2004/owl-s/1.0/BookPrice.owl

BORST, W. N. 1997. Construction of Engineering Ontologies for
Knowledge Sharing and Reuse. Ph.D. thesis, Universiteit Twente, The
Netherlands

Business Process Execution Language for Web Services Version 1.1
Available online at:

http:/www-106.ibm.com/developerworks/library/ws-bpel/

MCILRAITH, S., FADEL, R. 2002. Planning with Complex Actions.
In Proceedings of the International Workshop on Non-Monotonic

Reasoning

OWL Currency Ontology

Available online at: http://www.daml.ecs.soton.ac.uk/ont/currency.owl

MCDERMOTT, D. 2004. DRS: A Set of Conventions for Representing
Logical Languages in RDF. Available online at:

http://www.daml.org/services/owl-s/1.0/drsguide.pdf

65



[EXP]

[HTN “04]

[INF]

[Jena]

[JESS]

[JSHOP]

[KIF]

[Mith *04]

[OWL]

SABOU, M., RICHARDS, D., VAN SPLUNTER, S. 2003.

An Experience Report on using DAML-S. In Proceedings of the
WWWO03 Workshop on EServices and the Semantic Web, Budapest,
Hungary

SIRIN, E., PARSIA, B., WU, D., HENDLER, J., NAU, D. 2004.
HTN planning for web service composition using SHOP2.

In Journal of Web Semantics

KUTER, U., SIRIN, E., NAU, D., PARSIA, B., HENDLER 1J. 2004.
Information gathering during planning for web service composition.
In Submitted to Workshop on Planning and Scheduling for Web and
Grid Services at ICAPS04

Jena Semantic Web Framework

Available online at http://jena.sourceforge.net/

FRIEDMAN-HILL, E. 2003.
Jess in Action, Manning. ISBN 1-930110-89-8

YAMAN, F. 2002. Documentation for JSHOP 1.0.1. Dept. of
Computer Science, University of Maryland. Available online at:

http:// www.cs.umd.edu/projects/shop/

Knowledge Interchange Format
Draft Proposed American National Standard

Available online at: http://logic.stanford.edu/kif/dpans.html

SHESHAGIRI, M. 2004. Automatic Composition and Invocation of
Semantic Web Services. M.Sc. thesis, University of Maryland, USA

OWL Web Ontology Language Overview

Available online at: http://www.w3.org/TR/owl-features/

66



[OWL-S 1.0]

[OWL-S 1.1]

OWL-S 1.0 Release

Available online at: http://www.daml.org/services/owl-s/1.0/

OWL-S 1.1 Beta Release

Available online at: http://www.daml.org/services/owl-s/1.1B/

[OWL-S API] OWL-S API

[OWLJess]

[Pellet]

[PLAN “03]

[PLAN CO]

[PLANNER]

[PLAN SWS]

[SHOP “04]

Available online at http://www.mindswap.org/2004/owl-s/api/

OWLJessKB: A Semantic Web Reasoning Tool
Available online at:

http://edge.cs.drexel.edu/assemblies/software/owljesskb/

Pellet OWL Reasoner
Available online at http://www.mindswap.org/2003/pellet/

SHESHAGIRI, M., DESJARDINS, M., FININ, T. 2003. 4 Planner for
Composing Services Described in DAML-S. In AAMAS Workshop on

Web Services and Agent-Based Engineering, Melbourne, Australia

2002 International Planning Competition

Available online at: http://planning.cis.strath.ac.uk/competition/

HEWITT, C. E. 1969. Planner: A language for Proving Theorems in
Robots. In Proceedings of the 1st [JICAI Washington, D.C., USA

SIRIN, E., PARSIA B. 2004. Planning for semantic web services. In

Submitted to 3rd International Semantic Web Conference

NAU, D., AU, T. C., ILGHAMI, O., KUTER, U., MUNOZ-AVILA,
H., MURDOCK, J. W., WU, D., YAMAN, F. 2004.
Applications of SHOP and SHOPZ2. Available online at:

http://www.cs.umd.edu/~nau/papers/nau04applications.pdf

67



[SHOP2]

[SWORD]

[SWRL]

[WSDL]

[WSDL 1.2]

[WSTK]

Documentation for SHOP2. Dept. of Computer Science, University of
Maryland. Available online at: http://www.cs.umd.edu/projects/shop/

PONNEKANTIL, S. R., FOX, A. 2002. Sword: A developer toolkit for
web service composition. In Proceedings of the Eleventh World Wide

Web Conference (Web Engineering Track), Honolulu, Hawaii, USA

HORROCKS, I., PATEL-SCHNEIDER, P. F., BOLEY, H., TABET,
S., GROSOF, B., DEAN, M. 2004. SWRL: A Semantic WebRule
Language Combining OWL and RuleML. W3C Member Submission.
Available online at: http://www.w3.org/Submission/SWRL/

WSDL Tutorial

Available online at: http://www.w3schools.com/wsdl/default.asp

WSDL Syntax

Available online at: http://www.w3schools.com/wsdl/wsdl syntax.asp

alphaWorks: Web Services Toolkit, IBM
Available online at:

http://www.alphaworks.ibm.com/tech/webservicestoolkit

68



8 APPENDICES

8.1 Appendix A

This appendix presents the OWL-S description of Figure 4.1 in XML format.
Subsection 8.1.1 presents the description of the top-level composite process
BookPriceProcess, and subsections 8.1.2-8.1.4 each describe one of the atomic
subprocesses. The serviceGrounding has been removed for the sake of brevity and
the most relevant section of each description — the serviceModel — is shown in bold.
These descriptions are available in full in the owl-s directory of the enclosed CD, or

online at: http://www.cs.tcd.ie/~domurtag/owl-s/

8.1.1 BookPriceProcess

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
xmlns:owl= "http:// www.w3.0rg/2002/07/owl#"
xmlns:rdfs= "http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf= "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:factbook= "http://www.daml.org/2003/09/factbook/factbook-ont#"
xmlns:service= "http://www.daml.org/services/owl-s/1.0/Service.owl#"
xmlns:process= "http://www.daml.org/services/owl-s/1.0/Process.owl#"
xmlns:profile= "http://www.daml.org/services/owl-s/1.0/Profile.owl#"
xmlns:grounding= "http://www.daml.org/services/owl-s/1.0/Grounding.owl#"
xml:base= "http://www.cs.tcd.ie/~domurtag/owl-s/BookPrice.owl"
>

<owl:Ontology rdf:about="">
<owl:imports rdf:resource="http:// www.cs.tcd.ie/~domurtag/owl-
s/BookFinder.owl"/>
<owl:imports rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-s/BNPrice.owl"/>
<owl:imports rdfiresource="http://www.cs.tcd.ie/~domurtag/owl-
s/CurrencyConverter.owl"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="BookPriceService">
<service:presents rdf:resource="#BookPriceProfile"/>
<service:describedBy rdf:resource="#BookPriceProcessModel"/>
</service:Service>

<!-- Profile description -->

<profile:Profile rdf:ID="BookPriceProfile">
<service:isPresentedBy rdf:resource="#BookPriceService"/>

69



<profile:serviceName xml:lang="en">Book Price Finder</profile:serviceName>

<profile:textDescription xml:lang="en">Returns the price of a book in the desired currency.
First the ISBN number for the given book is found and then this ISBN number is used to get the prive
of the book from Barnes &amp; Nobles service.</profile:textDescription>

<profile:hasInput rdfi:resource="#BookName"/>

<profile:hasInput rdf:resource="#Currency"/>

<profile:hasOutput rdf:resource="#BookPrice"/>
</profile:Profile>

<!-- Process Model description -->

<process:ProcessModel rdf:ID=""BookPriceProcessModel">
<service:describes rdf:resource="#BookPriceService'/>
<process:hasProcess rdf:resource="#BookPriceProcess' />

</process:ProcessModel>

<process:CompositeProcess rdf:ID="BookPriceProcess'>
<process:hasInput rdf:resource="#BookName'' />
<process:hasInput rdf:resource="#Currency" />
<process:hasOutput rdf:resource="#BookPrice' />

<process:composedOf>
<process:Sequence>
<process:components rdf:parseType=""Collection'>
<process:AtomicProcess
rdf:about=""http://www.cs.tcd.ie/~domurtag/owl-s/BookFinder.owl#BookFinderProcess' />
<process:AtomicProcess
rdf:about=""http://www.cs.tcd.ie/~domurtag/owl-s/BNPrice.owl#BNPriceProcess' />
<process:AtomicProcess
rdf:about=""http://www.cs.tcd.ie/~domurtag/owl-
s/CurrencyConverter.owl#CurrencyConverterProcess' />
</process:components>
</process:Sequence>
</process:composedOf>

<process:sameValues rdf:parseType="Collection'>
<process:ValueOf>
<process:theParameter rdf:resource="#BookName' />
<process:atProcess rdf:resource="#BookPriceProcess' />
</process:ValueOf>
<process:ValueOf>
<process:theParameter
rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-s/BookFinder.owl#BookName''/>
<process:atProcess rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/BookFinder.owl#BookFinderProcess" />
</process:ValueOf>
</process:sameValues>

<process:sameValues rdf:parseType=""Collection'>
<process:ValueOf>
<process:theParameter
rdf:resource=""http://www.cs.tcd.ie/~domurtag/owl-s/BookFinder.owl#BookInfo' />
<process:atProcess rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/BookFinder.owl#BookFinderProcess" />
</process:ValueOf>
<process:ValueOf>
<process:theParameter
rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-s/BNPrice.owl#BookInfo' />
<process:atProcess rdf:resource="http://www.cs.ted.ie/~domurtag/owl-
s/BNPrice.owl#BNPriceProcess'' />

70



</process:ValueOf>
</process:sameValues>

<process:sameValues rdf:parseType=""Collection'>
<process:ValueOf>
<process:theParameter
rdf:resource=""http://www.cs.tcd.ie/~domurtag/owl-s/BNPrice.owl#BookPrice' />
<process:atProcess rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/BNPrice.owl#BNPriceProcess' />
</process:ValueOf>
<process:ValueOf>
<process:theParameter
rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-s/CurrencyConverter.owl#InputPrice" />
<process:atProcess rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/CurrencyConverter.owl#CurrencyConverterProcess' />
</process:ValueOf>
</process:sameValues>

<process:sameValues rdf:parseType=""Collection'>
<process:ValueOf>
<process:theParameter rdf:resource="#Currency'/>
<process:atProcess rdf:resource="#BookPriceProcess'/>
</process:ValueOf>
<process:ValueOf>
<process:theParameter
rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/CurrencyConverter.owl#OutputCurrency'/>
<process:atProcess rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/CurrencyConverter.owl#CurrencyConverterProcess' />
</process:ValueOf>
</process:sameValues>

<process:sameValues rdf:parseType=""Collection'>
<process:ValueOf>
<process:theParameter
rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-s/CurrencyConverter.owl#OutputPrice" />
<process:atProcess rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/CurrencyConverter.owl#CurrencyConverterProcess' />
</process:ValueOf>
<process:ValueOf>
<process:theParameter rdf:resource="#BookPrice' />
<process:atProcess rdf:resource="#BookPriceProcess'/>
</process:ValueOf>
</process:sameValues>
</process:CompositeProcess>

<process:Input rdf:ID="BookName''>
<process:parameterType

rdf:resource="http://www.w3.0rg/2001/XMLSchemat#string" />
<rdfs:label>Book Name</rdfs:label>

</process:Input>

<process:Input rdf:ID=""Currency'>

<process:parameter Type rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/ParameterTypes.owl#AsianCurrency' />

<rdfs:label>Currency</rdfs:label>
</process:Input>

<process:Output rdf:ID=""BookPrice'>

71



<process:parameterType rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl#Price' />
<rdfs:label>Book Price</rdfs:label>

</process:Output>
</rdf:RDF>
8.1.2 BookFinderProcess

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
xmlns:owl= "http://www.w3.0rg/2002/07/owl#"
xmlns:rdfs= "http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf= "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:service= "http://www.daml.org/services/owl-s/1.0/Service.owl#"
xmlns:process= "http://www.daml.org/services/owl-s/1.0/Process.owl#"
xmlns:profile= "http://www.daml.org/services/owl-s/1.0/Profile.owl#"
xmlns:grounding= "http://www.daml.org/services/owl-s/1.0/Grounding.owl#"
xml:base= "http://www.cs.tcd.ie/~domurtag/owl-s/BookFinder.owl"
>

<owl:Ontology rdf:about="">

<owl:imports
rdfiresource="http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems.owl"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="BookFinderService">
<service:presents rdf:resource="#BookFinderProfile"/>
<service:describedBy rdf:resource="#BookFinderProcessModel"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="BookFinderProfile">
<service:isPresentedBy rdf:resource="#BookFinderService"/>

<profile:serviceName xml:lang="en">Book Finder</profile:serviceName>
<profile:textDescription xml:lang="en">This service returns the information of a book whose
title best matches the give string.</profile:textDescription>

<profile:hasInput rdf:resource="#BookName"/>
<profile:hasOutput rdf:resource="#BookInfo"/>
</profile:Profile>

<!-- Process Model description -->

<process:ProcessModel rdf:ID="BookFinderProcessModel'>
<service:describes rdf:resource="#BookFinderService'/>
<process:hasProcess rdf:resource="#BookFinderProcess' />

</process:ProcessModel>

<process:AtomicProcess rdf:ID="BookFinderProcess'>
<process:hasInput rdf:resource="#BookName" />
<process:hasOutput rdf:resource="#BookInfo" />
</process:AtomicProcess>

<process:Input rdf:ID="BookName''>

72



<process:parameterType
rdf:resource="http://www.w3.0rg/2001/XMLSchemaf#string" />
<rdfs:label>Book Name</rdfs:label>
</process:Input>

<process:Output rdf:ID=""BookInfo'">

<process:parameterType rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/ParameterTypes.owl#SportsBook'' />

<rdfs:label>Book Info</rdfs:label>

</process:Output>

</rdf:RDF>

8.1.3 BNPriceProcess

<?xml version="1.0" encoding="UTF-8"?>

<rdf:RDF
xmlns:owl= "http://www.w3.0rg/2002/07/owl#"
xmlns:rdfs= "http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf= "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:service= "http://www.daml.org/services/owl-s/1.0/Service.owl#"
xmlns:process= "http://www.daml.org/services/owl-s/1.0/Process.owl#"
xmlns:profile= "http://www.daml.org/services/owl-s/1.0/Profile.owl#"
xmlns:grounding= "http://www.daml.org/services/owl-s/1.0/Grounding.owl#"
xml:base= "http://www.cs.tcd.ie/~domurtag/owl-s/BNPrice.owl"

>

<owl:Ontology rdf:about="">

<owl:imports
rdf:resource="http://www.mindswap.org/2003/owl/geo/geoCoordinateSystems.owl"/>
</owl:Ontology>

<!-- Service description -->
<service:Service rdf:ID="BNPriceService">
<service:presents rdf:resource="#BNPriceProfile"/>
<service:describedBy rdf:resource="#BNPriceProcessModel"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="BNPriceProfile">
<service:isPresentedBy rdf:resource="#BNPriceService"/>

<profile:serviceName xml:lang="en">BN Price Check</profile:serviceName>

<profile:textDescription xml:lang="en">This service returns the price of a book as advertised
in Barnes and Nobles web site given the ISBN Number.</profile:textDescription>

<profile:hasInput rdf:resource="#BookInfo"/>

<profile:hasOutput rdf:resource="#BookPrice"/>
</profile:Profile>

<!-- Process Model description -->

<process:ProcessModel rdf:ID="BNPriceProcessModel">
<service:describes rdf:resource="#BNPriceService' />
<process:hasProcess rdf:resource="#BNPriceProcess" />

</process:ProcessModel>

<process:AtomicProcess rdf:ID="BNPriceProcess'>
<process:hasInput rdf:resource="+#BookInfo' />

73



<process:hasOutput rdf:resource="#BookPrice' />
</process:AtomicProcess>

<process:Input rdf:ID=""BookInfo'>

<process:parameterType rdf:resource="http://www.cs.tcd.ie/~domurtag/owl-
s/ParameterTypes.owl#Book'' />

<rdfs:label>ISBN Number</rdfs:label>
</process:Input>

<process:Output rdf:ID=""BookPrice">

<process:parameter Type rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl#Price' />

<rdfs:label>Book Price</rdfs:label>

</process:Output>
</tdf:RDF>
8.14 CurrencyConverterProcess

<?xml version="1.0" encoding="UTF-8"?>

<IDOCTYPE owl [
<IENTITY expr "http://www.daml.org/services/owl-s/1.1/generic/Expression.owl">

>

<rdf:RDF
xmlns:owl= "http:// www.w3.0rg/2002/07/owl#"
xmlns:rdfs= "http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:rdf= "http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:service= "http://www.daml.org/services/owl-s/1.0/Service.owl#"
xmlns:process= "http://www.daml.org/services/owl-s/1.0/Process.owl#"
xmlns:process2= "http://www.cs.tcd.ie/~domurtag/owl-s/Process2.owl#"
xmlns:profile= "http://www.daml.org/services/owl-s/1.0/Profile.owl#"
xmlns:grounding= "http://www.daml.org/services/owl-s/1.0/Grounding.owl#"
xmlns:expression= "&expri#"
xml:base= "http://www.cs.ted.ie/~domurtag/owl-s/CurrencyConverter.owl"
>

<!-- This isn't part of the service description, just an OWL instance referred to therein -->
<expression:LogicLanguage rdf:ID="JESS">

<expression:refURI
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#any URI">http://herzberg.ca.sandia.gov/jess/</ex
pression:refURI>
</expression:LogicLanguage>

<!-- Service description -->
<service:Service rdf:ID="CurrencyConverterService">
<service:presents rdf:resource="#CurrencyConverterProfile"/>
<service:describedBy rdf:resource="#CurrencyConverterProcessModel"/>
</service:Service>

<!-- Profile description -->
<profile:Profile rdf:ID="CurrencyConverterProfile">

<service:isPresentedBy rdf:resource="#CurrencyConverterService"/>

<profile:serviceName xml:lang="en">Price Converter</profile:serviceName>

74



<profile:textDescription xml:lang="en">Converts the given price to another
currency.</profile:textDescription>

<profile:hasInput rdfiresource="#InputPrice"/>
<profile:hasInput rdfiresource="#OutputCurrency"/>

<profile:hasOutput rdf:resource="#OutputPrice"/>
</profile:Profile>

<!-- Process Model description -->

<process:ProcessModel rdf:ID=""CurrencyConverterProcessModel">
<service:describes rdf:resource="#CurrencyConverterService'/>
<process:hasProcess rdf:resource="#CurrencyConverterProcess" />

</process:ProcessModel>

<process:AtomicProcess rdf:ID=""CurrencyConverterProcess'>
<process:hasInput rdf:resource="#InputPrice'/>
<process:hasInput rdf:resource="#OutputCurrency' />
<process:hasOutput rdf:resource="#OutputPrice'" />
<process:hasPrecondition>
<expression:Condition rdf:ID="PreValidCurrencyCode'>
<expression:expressionLanguage rdf:resource="&expr;#JESS"/>
<expression:expressionBody>(triple (subject ?curr) (predicate
&quot;http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type&quot;) (object
&quot;http://www.cs.tcd.ie/~domurtag/owl-s/Parameter Types.owl#FarEasternCurrency&quot;))
(triple (subject ?curr) (predicate
&quot;http://www.daml.ecs.soton.ac.uk/ont/currency.owl#code&quot;) (object ?literal)) (triple
(subject ?literal) (predicate &quot;http://www.w3.0rg/1999/02/22-rdf-syntax-ns#value&quot;)
(object ?value &amp;: (eq 3 (str-length ?value))))</expression:expressionBody>
</expression:Condition>
</process:hasPrecondition>

<process2:hasPostcondition>
<expression:Condition rdf:ID=""PostValidCurrencyCode'>
<expression:expressionLanguage rdf:resource="&expr;#JESS" />
<expression:expressionBody>(triple (subject ?curr) (predicate
&quot;http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type&quot;) (object
&quot;http://www.cs.ted.ie/~domurtag/owl-s/Parameter Types.owl#FarEasternCurrency&quot;))
(triple (subject ?curr) (predicate
&quot;http://www.daml.ecs.soton.ac.uk/ont/currency.owl#code&quot;) (object ?literal)) (triple
(subject ?literal) (predicate &quot;http://www.w3.0rg/1999/02/22-rdf-syntax-ns#value&quot;)
(object ?value &amp;: (> 4 (str-length ?value))))</expression:expressionBody>
</expression:Condition>
</process2:hasPostcondition>

</process:AtomicProcess>
<process:Input rdf:ID="InputPrice'>
<process:parameterType rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl#Price" />
<rdfs:label>Input Price</rdfs:label>
</process:Input>

<process:Input rdf:ID="OutputCurrency'>
<process:parameter Type
rdf:resource=""http://www.daml.ecs.soton.ac.uk/ont/currency.owl#Currency' />
<rdfs:label>Output Currency</rdfs:label>
</process:Input>

<process:Output rdf:ID="OutputPrice'">

75



<process:parameterType rdf:resource="http://www.mindswap.org/2004/owl-
s/concepts.owl#Price' />

<rdfs:label>Output Price</rdfs:label>
</process:Output>

</rdf:RDF>

76



8.2 Appendix B

This appendix shows the extensions to the OWL-S 1.0 ontology (in XML format)
which provide support for process postconditions. The relevant OWL file
(process2.owl) is available in the owl-s directory of the enclosed CD, or online at:

http://www.cs.tcd.ie/~domurtag/owl-s/Process2.owl

<?xml version='1.0" encoding="ISO-8859-1'?>

<IDOCTYPE uridef]
<IENTITY rdf "http://www.w3.0rg/1999/02/22-rdf-syntax-ns">
<IENTITY rdfs "http://www.w3.0rg/2000/01/rdf-schema">
<IENTITY owl "http://www.w3.0rg/2002/07/owl">
<IENTITY xsd "http://www.w3.0rg/2001/XMLSchema">
<IENTITY service "http://www.daml.org/services/owl-s/1.0/Service.owl">
<IENTITY process "http://www.daml.org/services/owl-s/1.0/Process.owl">
<IENTITY process2 "http://www.cs.tcd.ie/~domurtag/owl-s/Process2.owl">
<IENTITY DEFAULT "http://www.cs.tcd.ie/~domurtag/owl-s/Process2.owl">
>

<rdf:RDF
xmlns:rdf ="&rdf;#"
xmlns:rdfs ="&rdfs;#"
xmlns:owl ="&owlL;#"
xmlns:xsd ="&xsd;#"
xmlns:service ="&service;#"
xmlns:process ="&process;#"
xmlns ="&DEFAULT:;#">

<owl:Ontology rdf:about="">
<owl:imports rdfiresource="&service;"/>
</owl:Ontology>

<owl:Class rdf:ID="Postcondition"/>

<owl:ObjectProperty rdf:ID="postCondition">
<rdfs:domain rdf:resource="#Postcondition"/>
<rdfs:range rdf:resource="&process;#Condition"/>
</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="hasPostcondition">
<rdfs:domain rdfiresource="&process;#Process"/>
<rdfs:range rdf:resource="#Postcondition"/>
</owl:ObjectProperty>

</rdf:RDF>

77



