
Concept Discovery in Collaborative Recommender
Systems

Patrick Clerkin1 and Pádraig Cunningham2 and Conor Hayes3

Abstract. There are two main types of recommender systems for
e-commerce applications: content-based systems and automated col-
laborative filtering systems. We are interested in combining the best
features of both approaches. In this paper, we investigate the possibil-
ity of using the k-means clustering algorithm as a basis for automat-
ically generating content descriptions from the user transaction data
that drives the collaborative filtering process. Using the the partitions
of the asset space discovered by k-means, we develop a novel rec-
ommendation strategy for recommender systems. We present some
encouraging results for two real world recommender systems. We
conclude by outlining our approach to automatically generating de-
scriptions of the clusters and report on an experiment designed to test
concepts generated for the SmartRadio recommender system.

1 INTRODUCTION
A key role for intelligent systems in e-commerce is product recom-
mendation [2]. Large e-commerce sites can have millions of products
and customers. Since it is necessary to automatically match products
to customers, recommender systems based on statistical, machine
learning and knowledge discovery techniques have been developed
to meet this need.

Broadly, there are two major approaches to the recommendation
task, namely, content-based recommendation and automated collab-
orative filtering. The objective in this paper is to explore the mech-
anisms for taking the raw data on which collaborative recommenda-
tion is based and automatically eliciting the more semantically rich
cases that can be used for content-based recommendation.

One problem with the collaborative approach is the bootstrap
problem; there is no basis for making recommendations to new users
who have not previously rated any assets (movies, songs, etc).

In this paper, we propose that the data that underpins the collab-
orative recommendation process can be mined to discover appropri-
ate representations to underpin content-based recommendation. We
show how cluster analysis can be used to generate high-level repre-
sentations that can produce good quality recommendations. We also
suggest that these representations are useful in overcoming the boot-
strap problem.

2 RECOMMENDER SYSTEMS
As stated in the introduction, there are two approaches to recom-
mendation on the Web. The recommendation process can be content

1 Machine Learning Group, Department of Computer Science, University of
Dublin, Trinity College, Dublin, Ireland, email: Patrick.Clerkin@cs.tcd.ie

2 ditto, email: Padraig.Cunningham@cs.tcd.ie
3 ditto, email: Conor.Hayes@cs.tcd.ie

Figure 1. An overview of content-based and collaborative
recommendation and the role for knowledge discovery in exploiting the

benefits of both approaches

based as represented by the upper path in Figure 1 where an appropri-
ate representation of the assets and users requirements is determined
at design time and recommendation is based on this representation.
In the Case-Based Reasoning community this is referred to as case-
based recommendation. The alternative lower path in the figure is
automatic collaborative recommendation (ACF) which works with
raw data on users ratings and behaviour and uses this data to produce
recommendations. The focus of this paper is on how knowledge dis-
covery techniques can be applied to this raw data to establish the ap-
propriate representations for content-based recommendation. First,
we will present brief descriptions of content-based and collaborative
recommendation.

2.1 Content-based recommendation

Here we will describe a CBR-like content-based recommendation
system that we can use for comparison purposes.

Table 1 shows a case-like description of a film (movie) and Table 2
shows the corresponding description of a user of the recommendation
system. In this scenario recommendation is based on how well a film
matches a users profile. In producing recommendations for a user,
the matching score for each film in turn would be determined and the
highest scoring films not already viewed would be recommended.



This process has advantages over ACF in working well for assets of
minority interest or for new assets and users.

Table 1. A case-like description of a film for content-based
recommendation.

Four Weddings And A Funeral
Title Four Weddings and a Funeral
Year 1994
Genre Comedy, Romance
Director Mike Newell
Starring Hugh Grant, Andie MacDowell
Runtime 116 mins
Country UK
Language English
Certification USA:R (UK:15)

Table 2. A case-like description of user interests.

JB-7
Name Joe Bloggs
Preferred Era 1988
Genre Thriller, Comedy, War, Romance
Director S. Spielburg, F. F. Coppola.
Actors S. Stone, S. Stallone, L. Neeson, A. MacDowell
Runtime 150 mins
Country UK, US
Language English
Certification Any

2.2 Automated Collaborative Filtering
The basic idea of ACF can be shown using a simple example. If we
have three users who have all shown an interest in assets as follows:

User 1: Asset 1, Asset 2, Asset 3
User 2: Asset 1, Asset 2, Asset 3, Asset 4, Asset 5, Asset 6
User 3: Asset 1, Asset 2, Asset 3, Asset 4, Asset 5

The high level of overlap indicates that these users have similar
tastes. Further it seems a safe bet to recommend Asset 4 and As-
set 5 to User 1 because they are endorsed by Users 2 and 3, who have
similar interests to User 1.

The type of data typically encountered in ACF is illustrated by
Table 3. Asset 1...5 are assets in a recommender systems, while User
1...4 are users who have rated these assets on a scale of one to five.

Table 3. Data for use in ACF where users have explicitly rated assets.

Asset 1 Asset 2 Asset 3 Asset 4 Asset 5
User 1 3 1 5
User 2 5
User 3 2 4
User 4 3 3

One of the great strengths of ACF is that, if enough data is avail-
able, good quality recommendations can be produced without need-
ing representations of the assets being recommended.

The basic structure of the recommendation process has two dis-
tinct phases. First the neighbourhood of users that will produce the
recommendations must be determined. Then recommendations must
be produced based on the behaviour or ratings of these users. See
below (Section 4.1) for details on how this can be done.

In this paper we make reference to two recommender systems
which employ ACF techniques.

MovieLens (http://www.movielens.umn.edu/) is an online
film recommender system, which uses collaborative filter-
ing to generate predictions. Users rate movies on a discrete
scale and are recommended further movies on the basis of
their ratings. The research team behind the system, GroupLens
(http://www.cs.umn.edu/Research/GroupLens/), have made the data
they have collected publicly available.

SmartRadio [4] is an experimental music recommender system de-
ployed on the Intranet of the TCD Computer Science Department.
The SmartRadio recommendation engine attempts to recommend
playlists of songs to users based on their ratings of playlists to which
they have listened in the past. Although the unit of recommendation
is the playlist, users are asked to explicitly rate the individual tracks
within the playlists on a scale of one to five.

3 CLUSTER ANALYSIS IN RECOMMENDER
SYSTEMS

From the machine learning point of view, a clustering task has as its
goal the unsupervised classification of a set of objects. Clustering is
unsupervised in the sense that there are no a priori target classes used
during training. In this section we outline how cluster analysis can be
applied to raw user ratings data to uncover interesting patterns, the
descriptions of which will constitute appropriate representations for
content-based recommendation. Previously puplished work on the
application of cluster analysis to recommender systems has covered
the clustering of users [1, 3] and assets [7]. Other researchers have ex-
plored the benefits of clustering both users and assets simultaneously
[6, 9, 10]. Our approach is to partition the assets in the database. In
common with other researchers, we believe that the resulting par-
titioning can be used to make recommendations. However, our ap-
proach differs in the manner in which neighbourhoods of users are
determined. Furthermore, we go on to use the clusters as the basis
for concept formation in recommender systems.

3.1 Clustering assets
The first step is to partition the assets in the database. In the case of
MovieLens the assets are the films, while in the case of SmartRadio
they are the songs in the database. In both systems each asset will
have been rated on a scale of one to five by a subset of the users. Thus,
each asset can be represented as an object with as many attributes as
there are users in the system. In recommender systems, the data sets
are of very high dimension. Furthermore, the number of unknown
attribute values for each asset is usually very high. This is because,
in recommender systems, most users will have rated only a small
fraction of the total number of assets available in the database. These
problems need to be taken into account when applying clustering
algorithms to recommender systems. Our implementation of the k-
means clustering algorithm is discussed in Section 4.2.

3.2 Cluster-based recommendation
Once we have successfully partitioned a set of assets, the next step is
to use the partitioning to form representations of users. The basic idea
is to first compute for each user their membership of each cluster in
the partitioning. The ordered series of their memberships yields their
membership vector for the given partitioning. The membership of a
user a of a cluster C is the sum of all ratings for assets in C rated by



a, divided by the sum of the ratings for all assets in the partitioning
P rated by a. The membership, M(a, Cm) of user a of a cluster Cm

is yielded by the following formula:

M(a, Cm) =

∑

i∈Cm∩i∈A
ra,i

∑

j∈A
ra,j

(1)

where i ranges over all the assets in the cluster Cm, j ranges over
all the assets in the partition P , and A is the set of all assets rated
by the user a. To generate each term of the series to construct the
membership vector, we let m range over the number of clusters in
the partition. For example, consider a partitioning P consisting of
five clusters and consider a user a for whom the membership of each
partition has been computed. (See Figure 2).

Figure 2. Each users membership of each cluster in a given partitioning is
computed. The sum of all memberships for each user is 1.0

The membership vector for a might be represented as follows:

M(a, P ) = 〈0.1, 0.6, 0.05, 0.15, 0.1〉

Intuitively, the membership vector for a user can be viewed as
a compressed representation of that users ratings data. Thus, if we
want to construct a neighbourhood of given size for a target user
(the first step in the recommendation process), it is no longer neces-
sary to compute correlations between users based on the raw ratings
data; we need only compute correlations based on the (much lower-
dimensional) membership vectors. Once neighbourhoods have been
computed, recommendations can be made in the usual manner em-
ployed in ACF. Details of the correlation and recommendation pro-
cess can be found in Section 4.1. Evaluation of the cluster-based rec-
ommendation technique is provided in the next section.

4 EVALUATION
In this section we describe our implementations of ACF and the k-
means clustering algorithm. We then describe our experiments and
provide results.

4.1 Our implementation of ACF
Our implementation of ACF is based on the published work of the
GroupLens research group [5].

To form a neighbourhood of users for a target user the correlation
between the target user and every other user in the system needs to
be computed. In our ACF system, the Pearson correlation coefficient
is used:

wa,u =

∑

i
(ra,i − ra)(ru,i − ru)

√
∑

i
(ra,i − ra)2(ru,i − ru)2

(2)

where the summations over i are over the assets which both users
a and u have rated. This function yields values in the interval [-1, 1].
In forming a neighbourhood we can choose to consider only those
users who are correlated above a certain threshold value. To predict
a users rating for a given asset, his neighbours’ ratings for that asset
are aggregated, each rating being weighted according to the Pearson
coefficient for that neighbour. In our implementation the neighbours
ratings are also normalized using their average rating.

ra,i = ra +

∑k

u=1
(ru,i − ru)wa,u

∑k

u=1
wa,u

(3)

where the summations over u are over the k users in the neigh-
bourhood of user a. In practice, it is also necessary to weight the
Pearson correlation coefficient with a value representing the signif-
icance of the correlation. This is necessary because two users could
be highly correlated on the basis of a very small number of co-rated
assets. This can lead to poor predictions. We should put more con-
fidence in less well-correlated users who have co-rated many assets.
Thus, following Herlocker et al., for MovieLens, if two users have
fewer than 50 assets in common, we multiply the correlation coef-
ficient by n/50, where n is the number of co-rated assets. If there
are 50 or more assets in common, we apply a significance weighting
of 1. Let us refer to 50 as the significance cut-off for MovieLens.
For SmartRadio, whose database is of lower dimensionality, we de-
termined through trial and error that 5 serves well as a significance
cut-off.

4.2 Our implementation of k-means
Our implementation of k-means is based on the descrip-
tions of the k-means-based products on the Clustan website
(http://www.clustan.com). We also programmed our version of the
algorithm to accommodate unknown values in the absence of the pos-
sibility of pre-processing.

The Euclidean Sum of Squares (ESS) Ep for a cluster p is given
by:

Ep = ΣxiεpΣj(xij − µpj)
2 (4)

where xij is the value of variable j in object i in cluster p and µpj

is the mean of variable j for cluster p.
The total ESS for all clusters p is thusE = ΣpEp and the increase

in the Euclidean Sum of Squares Ip∪q at the union of two clusters p
and q is:

Ip∪q = Ep∪q − Ep − Eq (5)

While standard k-means programs relocate any object to the clus-
ter with the nearest mean, we have implemented k-means to min-
imize the total Euclidean Sum of Squares E. This is preferable be-
cause while the standard approach may appear to minimizeE, it does
not necessarily converge quickly, or at all, because such relocations
may not actually reduce E.

To minimize E we must only relocate an object i from cluster p to
cluster q when Ep + Eq > Ep−i + Eq+i.

This is called the exact relocation test for minimumE. It is not the
same as relocating object i to its nearest cluster mean, because any
relocation from cluster p to cluster q causes consequential changes



to the means of p and q; and, in certain circumstances, these changes
may actually increase E. Relocating an object i from cluster p to
cluster q pulls the mean of q towards it and pushes the mean of p
away from it. This can cause the distances from the mean of other
cases in clusters p and q to increase, such that E is increased. With
large data sets, an oscillation of boundary objects between two or
more clusters can result in successive iterations. Indeed, this oscilla-
tory behaviour was observed when the standard k-means algorithm
was applied to SmartRadio.

Since E is a sum of squares, the relocation of only those objects
which yield a reduction in E must result in convergence, because E
cannot be indefinitely reduced. This guarantees that k-means anal-
ysis will converge if allowed enough iterations, since each iteration
reduces the ESS. It also means that a relatively small number of iter-
ations are required to reach a stable minimum ESS. This is important
in the case of Smart Radio, since we need to run k-means numerous
times for each value of k in order to determine the best clustering
solution.

4.3 Experimental Methodology
We ran experiments on both the MovieLens and SmartRadio data
sets. For every experiment we used five-fold cross-validation, using
80% of the data as a training set and reserving 20% as a test set on
which predictions were made.

The first experiment was to use our implementation of ACF to
generate predictions for each user-asset rating in the test sets. We
calculated the absolute error of each prediction, defined as the abso-
lute difference between the actual and predicted ratings. For each set
of predictions on a test set, the mean absolute error (MAE) was then
calculated as the sum of the absolute errors divided by the number of
predictions made.

In the second experiment, we clustered each of the training sets,
computed the membership vector for each user, and made predictions
on the test set, as described above. We also randomly partitioned the
data in each case, so as to be able to compare results generated using
k-means against a random partitioning. For each fold, we generated
five random partitionings and aggregated the MAE of the predictions
made for that fold. In contrast, when using k-means we used a one-
shot approach; that is to say, we ran k-means once for each training
set for a given value of k.4

Note that in each experiment, we made predictions for several
neighbourhood sizes. The neighbourhood sizes for SmartRadio are
smaller than those for MovieLens, reflecting the relative sizes of the
two data sets.

4.4 Results and conclusions
Fig. 3 is a plot of the MAE of predictions for MovieLens against
neighbourhood size.

ACF performs as expected. Note, in particular, how the MAE be-
gins relatively high, falls rapidly to a minimum, and then begins to
increase again as the neighbourhood size is increased. This is char-
acteristic beahaviour for ACF algorithms. When the neighbourhoods
are too small, there is not enough information to make good predic-
tions; when they are excessively large, there is too much irrelevant
and misleading information; but when there is just the right number,
the predictive capabilities of the ACF algorithm reach an optimum.
The MAE for the cluster-based prediction method is not as low as for

4 We were guided in our selection of a value for k by the silhouette
technique[8]

Figure 3. Plot of Mean Absolute Error against neighbourhood size for
MovieLens data

’traditional’ collaborative filtering methods. However, we can con-
clude that the k-means clustering algorithm has successfully iden-
tified interesting clusters, since a merely random partitioning yields
inferior results.

Fig. 4 is a plot of the MAE of predictions for SmartRadio against
neighbourhood size.

Figure 4. Plot of Mean Absolute Error against neighbourhood size for
SmartRadio data

The first thing to notice is that the MAE for SmartRadio is gener-
ally higher than that for MovieLens. That given, it can be seen that
the cluster-based method actually outperforms ACF for this data set,
with random partitioning again being very poor. Now, SmartRadio
does not exhibit the sort of behaviour discussed in relation to Movie-
Lens; certainly, the MAE starts out high and falls to a low point with
a neighbourhood size of about 4; but it does not rise again from this
optimum. This is because the SmartRadio data set is not only much
smaller than MovieLens but, also, much more sparse. SmartRadio is
a relatively new system, deployed over a university department In-
tranet, while MovieLens is longer in existence and deployed over the
World Wide Web. We must suppose therefore that the phenomenon
we see in our experiments reflect these facts, and that SmartRadio
is still in the bootstrap phase, where a new recommender system
tries to make recommedations on the basis of the ratings of rela-
tively few users. In this scenario, we conclude that, at least for the
case of SmartRadio, our cluster-based method outperforms conven-
tional ACF. This has a parallel in the work of Kohrs and Merialdo
[6]: they discovered that a prediction method based on the simul-
taneous heierarchical clustering of users and assets did better than



conventional ACF in the bootstrap phase of recommender systems.
At some time in the future we expect conventional ACF techniques
to outperform cluster-based prediction in SmartRadio. This will be
when SmartRadio acquires a critical mass of users and ratings and
the MAE plots for SmartRadio start behaving similarly to those for
MovieLens. Our work suggests that the cluster-based method could
be used when such recommender systems are initially deployed and
then, after bootstrapping is complete, conventional ACF could be in-
troduced.

5 CONCEPT FORMATION
The experiments presented above indicate that the clusters discov-
ered for SmartRadio are good for predictive purposes. In keeping
with our objective of developing a high-level representation of raw
user ratings data, the next phase is to generate descriptions of the
clusters. To do this, we leverage existing knowledge.

5.1 Concept formation: describing the clusters
The main idea is to describe each cluster probabilistically accord-
ing to the types of songs contained in each cluster. As a simplified
example, imagine that we have a database that associates a list of
descriptors with each artist in SmartRadio (Table 4).

Table 4. Artist Descriptors.

Artist Descriptors
Bob Dylan Rock ’n’ Roll, Folk Rock, Singer/Songwriter
The Beatles Rock ’n’ Roll, Pop/Rock, Psychedelic
Bruce Springsteen Rock ’n’ Roll, Pop/Rock, Singer/Songwriter
The Prodigy Electronica, Techno, Rave
Orbital Electronica, Techno, Ambient Techno

Now suppose that we have just two clusters, the first with three
songs, and the second with two, as in Table 5.

Table 5. Artist Descriptors.

Song Artist Cluster
Tangled Up In Blue Bob Dylan 1
Yellow Submarine The Beatles 1
Tunnel Of Love Bruce Springsteen 1
Firestarter The Prodigy 2
Chime Orbital 2

In building a description of a cluster, we describe that cluster in
terms of the descriptors associated with each of the songs in the clus-
ter, maintaining a count of the number of songs in the cluster that fall
under each of the decriptors. Thus, in our example, the first cluster
could be described by:

Rock ’n’ Roll = 3/3 (since three of the three songs in the first
cluster are Rock ’n’ Roll)

Folk Rock = 1/3
Singer/Songwriter = 2/3
Pop/Rock = 2/3
Psychedelic = 1/3
The description of the second cluster is as follows:
Electronica = 2/2
Techno = 2/2
Rave = 1/2

Ambient Techno = 1/2
We can interpret these descriptions probabilistically. Thus our de-

scriptions of each cluster can be viewed as logical conjunctions of
statements of the form p = P (Dx|X ∈ C), where p is the prob-
ability that a song x is described by descriptor D, given that x is a
member of cluster C.

Using the above strategy, we generated descriptions of the Smar-
tRadio clusters. The clusters of music tracks were generated by k-
means, with k = 7, on the same ratings data used in the collaborative
filtering experiments. However, this time, instead of generating five
sets of clusters in order to preform cross-validation, we ran the pro-
gram only once on the whole dataset.

Once the clustering was performed and descriptors had been auto-
matically compiled for each song, we calculated how many assets in
each cluster fell under each descriptor. Because of the nature of these
descriptors, many tracks shared descriptors, but, in some cases, only
a small number of tracks fell under certain descriptors. For example,
part of the output for the first cluster is as follows:
{’Adult Alternative’: 12, ’Adult Alternative Pop/Rock’: 30, ’Adult

Contemporary’: 8, ’Album Rock’: 13, ’Alternative Dance’: 7, ’Alter-
native Metal’: 1, ’Alternative Pop/Rock’: 31, ’Ambient’: 2, ’Ambient
Pop’: 1, ’Ambient Techno’: 3, ’American Underground’: 1, ... }

You will notice that, in this example, there are indeed some de-
scriptors which are counted as occurring only once or twice; these
descriptors are surely relatively unimportant for describing the clus-
ter, while those that have much higher counts are likely to be most
important.

5.2 Experimental set-up
Since our objective was to have users of SmartRadio evaluate the
concepts, it was essential to eliminate some descriptors in the final
description of the clusters, as there were simply too many to expect
users to examine them all. We used the following heuristic:

1. within each cluster, eliminate all descriptors which are counted
less than ten times

2. across all clusters, eliminate all descriptors which occur in three
or more clusters

The second step is to ensure that the descriptions of clusters do not
contain descriptors which are incapable of discriminating the clusters
for users. For example, an extreme case would be if a descriptor, say,
Rock was present in the description of every cluster; in such a case,
Rock will not help a user to differentiate between the clusters.

When this process was completed, one cluster was completely de-
nuded of descriptors, so we did not include it in our online exper-
iment. This left six clusters with descriptors which are recorded in
Table 6.

Users were asked to examine and rate each of the six playlist de-
scriptions in Table 8.1. They were instructed as follows: ’Imagine
that you are listening to SmartRadio and are presented with playlists
composed of songs falling under the genre descriptions presented
here. On the basis of these descriptions, how do you think you would
rate each playlist?’ The experiment was conducted online and the rat-
ings each user provided were recorded in a database for later, offline
analysis.

5.3 Results and conclusions
There are sixty-two users in the SmartRadio dataset under consider-
ation; eleven of those users participated in our experiment. For each



Table 6. Descriptions of six clusters presented to users in the SmartRadio
experiment.

Cluster Descriptors

1
World, Celtic, Adult Alternative, Ethnic Fusions, Con-
temporary Instrumental, Contemporary Celtic, Celtic
New Age

2 House
3 Folk-Rock Britpop, Rock ’n’ Roll
4 Britpop, Experimental Rock, House

5
Intelligent Dance Music, Ambient Techno, Experimental
Techno, Electro-Techno, Techno, Trance, Experimental
Jungle, Drill ’n’ Bass, Experimental Rock, Acid Techno

6 Rock ’n Roll, Folk-Rock

user, we were able to calculate on the basis of their ratings of the six
clusters in the experiment, their membership of each of those clus-
ters. This yielded what we call a perceived membership vector, a term
which captures the fact that, on the basis of high-level style descrip-
tors, users perceive themselves to be aligned in a particular manner
with the clusters. Now, we already had at our disposal the means to
compute a user’s membership of a cluster based on their ratings data.
Let us call the result generated by these computations a real member-
ship vector. Our question was: Do the perceived and real membership
vectors match up? In other words: Are they highly correlated? If the
answer to this question were affirmative, then we could conclude that
the descriptions of the clusters are useful for quickly determing the
preferences of users. The Pearson correlation coefficient computed
between real and perceived membership vectors for the eleven users
are presented in Table 8.2.

Table 7. The Pearson correlation coefficient between real and perceived
membership vectors for SmartRadio users who participated in the

experiment.
User Pearson Correlation

Anon-1 0.35
Anon-2 0.59
Anon-3 0.86
Anon-4 0.76
Anon-5 0.33
Anon-6 0.04
Anon-7 0.54
Anon-8 0.53
Anon-9 0.92
Anon-10 0.89
Anon-11 0.31

The mean Pearson coefficient is calculated to be 0.56, and the
standard deviation is 0.27. This indicates that the real and perceived
membership vectors are highly correlated. Therefore, the descrip-
tions used in the experiment are useful for determing the preferences
of users. In particular, such cluster descriptions could be applied to
the problem of making good quality recommendations to new users
in the absence of any previous ratings. In SmartRadio, a new user
might be asked to rate styles of music in order to determine their
perceived membership of clusters, and then be recommended assets
favoured by those other users whose real membership vectors closely
correlate with the new user’s perceived membership vector.

6 SUMMARY

We described a novel cluster-based strategy for predicting user pref-
erences in recommender system. Empirical evaluation of our method

suggested that it may work best in the context of bootstrapping a
recommender system in its early stages, when there is insufficient
data available for the optimal performance of conventional ACF tech-
niques. We went on to show how a partitioning of system assets can
be used as the basis for a system of concepts. Furthermore, we il-
lustrated how the concept formation process can be automated in the
case of SmartRadio by making use of pre-existing knowledge. Our
experiments reveal that the resulting concepts capture users’ under-
standing of the SmartRadio domain. This suggests that the concepts
might be useful for bootstrapping new users of the SmartRadio sys-
tem.

ACKNOWLEDGEMENTS
We would like to thank the GroupLens Research Group
for making their MovieLens data publically available at
http://www.cs.umn.edu/Research/GroupLens/data/

We would also like to thank the referees for their comments which
helped improve this paper.

REFERENCES
[1] S.H.S. Chee, J. Han and K. Wang, ‘RecTree: An Efficient Collaborative

Filtering Method’, Lecture Notes in Computer Science, 2114, 141-151,
(2001).

[2] P. Cunningham, R. Bergmann, S. Schmitt, R. Traphoner, S. Breen and
B. Smyth, ’Websell: Intelligent Sales Assistants for the World Wide
Web’, e-Business and e-Work 2001.

[3] D. Fisher, K. Hildrum, J. Hong, M. Newman, M. Thomas, and R.
Vuduc, ’Swami: A Framework for Collaborative Filtering Algorithm
Development and Evaluation’, Research and Development in Informa-
tion Retrieval, (2000).

[4] C. Hayes, P. Cunningham, ’Smart Radio: Building Music Radio on the
Fly’, Expert Systems, Cambridge, UK, (2000).

[5] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl, ’An Algorithmic
Framework for Performing Collaborative Filtering’, Proceedings of the
1999 Conference on Research and Development in Information Re-
trieval.

[6] A. Kohrs and B. Merialdo, ’Clustering for Collaborative Filtering Ap-
plications, Computational Intelligence for Modelling, Control and Au-
tomation (CIMCA’99).

[7] M. O’Connor and J. Herlocker, ’Clustering Items for Collaborative Fil-
tering’, ACM SIGIR ’99 Workshop on Recommender Systems: Algo-
rithms and Evaluation, University of California, Berkeley, USA.

[8] P. J. Rousseeuw, ’Silhouettes: A Graphical Aid to the Interpretation and
Validation of Cluster Analysis’, Journal of Computational and Applied
Mathematics, 20, 53–56, North-Holland, (1987).

[9] L. H. Ungar and D. P. Foster, ’A Formal Statistical Approach to Col-
laborative Filtering’, Proc. CONALD’98.

[10] L. H. Ungar and D. P. Foster, ’Clustering Methods for Collaborative
Filtering. Workshop on Recommendation Systems at the Fifteenth Na-
tional Conference on AificiaI Intelligence, (1998).


