
Retrieval Issues in Real-World CBR Applications
How far can we go with discrimination-nets?

Pádraig Cunningham*,  Barry Smyth**
Donal Finn**, Eamonn Cahill**

                         * Department of Computer Science ** Hitachi Dublin Laboratory
Trinity College Trinity College
College Green College Green
Dublin 2 Dublin 2
Ireland Ireland
Phone: +353-1-772941 Phone: +353-1-6798911
Fax: +353-1-6772204 ecahill@hdl.ie
Padraig.Cunningham@cs.tcd.ie bsmyth@hdl.ie

dfinn@hdl.ie

Abstract

We propose that analogical reasoning and case based reasoning (CBR) tasks can be usefully characterised as a
continuum reflecting the remoteness of the remindings involved. Remindings in CBR are generally between
semantically close cases while analogical reasoning depends on more abstract remindings. Rather than there being
a strict demarcation between CBR and analogical reasoning on these grounds (with analogical reasoning concerned
with inter domain remindings and CBR dealing with remindings within one domain) there is a continuum of
cognitive tasks that draw on past experience during reasoning. Simpler tasks like diagnosis and classification are
located near the CBR end while more complex tasks like creative design are located towards the analogical
reasoning end. The question is how far towards the abstract end of the continuum can the index-based retrieval
techniques that are effective in CBR be used  (eg. discrimination networks). We are considering episode retrieval
as a two stage process; the first stage being the initial filtering of the case base, and the second stage selecting the
best case from this candidate set. We focus on the base filtering stage and conclude that discrimination networks
are adequate for comparatively complex cognitive tasks such as routine design. However, we argue that CBR
systems for non-routine design should provide interactive case retrieval and act as CBR assistants.

Keywords:  Abstract remindings, discrimination networks, interactive CBR



K-1

1 Introduction

Case-based reasoning (CBR) and analogical reasoning (AR) both retrieve episodes from memory based on the
similarity of that episode to a case or scenario under consideration. Conventionally, analogical reasoning is
understood to be concerned with inter-domain remindings where the domain of the analogue may be different to
the domain of the target scenario. CBR implementations tend to depend on single domain remindings where the
base and target cases come from the same domain. Our assertion is that this demarcation is artificial and the
distinction is better characterised as a continuum of abstraction of remindings with CBR towards the concrete
end and AR near the more abstract end. This assertion is based on the observation that CBR systems may be
required to support remindings between different sub-domains of a 'single' problem domain. Design reuse in
routine design might involve using old solutions from the same domain, whereas remindings to support more
innovative design might need to be from different domains.

This continuum of design tasks reflects the difficulty of the problem solving task being supported. In design
there is a broad acceptance that tasks can be partitioned into three categories (Brown & Chandrasekaran 1985;
Gero 1990; Visser 1991); these are as follows:-

Routine Design: This is the simplest category of design task requiring knowledge based problem solving.
The design process will follow well known procedures; new designs will be parametric variations of
previous designs.

Non-routine Design: This is innovative design that will produce an artefact significantly different from
existing ones. Useful remindings in non-routine design are likely to be abstract.

Creative  Design:  Creative design will produce a new type of artefact. This will create a new state space of
designs (see Figure 1). Evidently this is qualitatively different from non-routine design as it expands or
shifts the problem space.

This paper focuses on routine and non-routine tasks and emphasises the extra difficulty in supporting remindings
for non-routine design. One of our conclusions is that a pragmatic treatment of this difficulty is to work towards
interactive CBR systems for non-routine design — case-based design assistants.

Routine
designs

Non-routine
designs

Creative designs

Figure 1. State space of designs (Gero 1990).

In most CBR and AR systems case retrieval is a two stage process. First there is a pre-selection stage, often
called base filtering, where a small set of candidate cases is selected. Then there is a mapping of the target case
to these candidates to find which offers the best match. In straightforward CBR systems discrimination networks
(D-Nets) are an effective method for organising the case memory to support base filtering. Towards the AR end
of the spectrum, where remindings are more abstract, or where the system may need to support remindings at
different levels of abstraction, it becomes more difficult to organise the case-base as a D-Net. The argument
sometimes presented is that this dependence on indices will preclude remote remindings (Waltz, 1989; Thagard
& Holyoak, 1989). In this paper we will look at some practical examples of CBR and assess the extent to which
this is true.

We will begin by examining approaches to memory organisation and retrieval in AR and CBR. Some classical
analogies will be discussed with emphasis on the difficulties involved in triggering the remindings. We will
present D-Nets as a typical example of an abstraction hierarchy and also D-Nets with redundancy which
overcome some of the shortcomings of D-Nets. These ideas will be elaborated with a description of a typical
CBR application that is adequately implemented as a redundant D-Net. Then we will look at a more complex
CBR application in routine software design, requiring more abstract remindings, that causes problems for
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memory organisation based on indices. We will consider the use of more abstract indices and also index
transformation as solutions to these problems. In section 4 we argue that these indexing problems are more acute
in non-routine design and propose that CBR systems for innovative design should be interactive with user
involvement in case retrieval.

2 Episode-Based Reasoning

Both analogical reasoning and case-based reasoning methods fall under the general category of episode-based
reasoning (EBR) where problem solving knowledge is characterised as a set of episodes, each representing the
solution to a specific problem situation.  A new problem (the target) is solved by retrieving a similar episode
(base episode) from memory, and its solution is then modified to conform with the target situation.  Clearly, the
retrieval of an appropriate case is vital to the success of such techniques.  Retrieval constitutes a massive search
problem which is exacerbated by the fact that we are not concerned with complete matches but partial matches.
Conventional methods take a two-stage approach.  The initial retrieval stage (called base filtering) is responsible
for selecting a small number of candidate episodes which are considered contextually similar to the target
situation.  The second stage (mapping) performs a detailed mapping between the target situation and each
candidate episode to determine a single best episode for modification.   The motivation for this two-stage
approach is that the computational expense associated with the second stage is lessened because only a small
number of candidates are considered for mapping.  Before discussing base filtering in more detail we will
compare CBR and AR in the context of retrieval.

2.1 A Perspective on Retrieval

Most work on analogy has concentrated on inter-domain remindings where the relationship between the base
episode and the analogous new episode is of an abstract or thematic nature (for example Keane 1987).
Alternatively, CBR research has focused on single-domain remindings where significant overlap of surface
features exists between the base and target episodes.   Such differences in the nature of remindings impose
different constraints on the organisation of the episode memory and the retrieval process.

In particular, as can be seen from Figure 2, much of the variation between AR and CBR is identified by a
relative shift in emphasis from base filtering (in the case of CBR) to mapping (in the case of AR).  Essentially,
the surface feature based remindings of CBR necessitate simple, shallow mappings whereas the abstract
remindings of AR require more complex 'structure mapping' type techniques (see Falkenhainer Forbus &
Gentner, 1989).

D-Net
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Figure 2.  A perspective on retrieval in CBR and AR

We are concerned with the organisation of episode memory from the point of view of base filtering.  Episodes
must be described in terms of their salient features.  These descriptions should be structured not only to allow for
efficient retrieval but also to facilitate remindings at the appropriate level of abstraction. Supporting the kind of
'close' reminding that is required for routine design tasks is not difficult. However as we move toward more non-
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routine design tasks the remindings need to be more abstract. These issues of indexing and remindings are
discussed in the following section.

2.2  Memory Organisation

The organisation of episode memory must serve two objectives in base filtering; (a) to provide for adequate
remindings  so that all suitable episodes are considered and (b) to ensure for efficient indexing  so as to
guarantee fast retrieval of cases. Considering these in more detail:

2.2.1  Indexing

In general in EBR the expedient view is that cases should be indexed in order to support directed search
during base filtering. However, it is evident that indexed memory will present difficulties in supporting
remote or abstract remindings. The work of Waltz and Stanfill and that of Thagard and Holyoak is explicitly
directed at cross domain remindings and memory organisation that supports abstract remindings, (Thagard &
Holyoak, 1989; Thagard, Holyoak, Nelson  & Gochfeld, 1990; Waltz 1989; Stanfill & Waltz, 1986).
However as a consequence, retrieval is only possible when cases are stored without indexing. This requires
that memory is content-addressable in that all information about stored cases is matched with the target case
and the 'best' match is returned. It is assumed that the exhaustive search implied in this approach is made
feasible by parallel hardware. *

2.2.2  Remoteness of Reminding

The other important characterisation of memory organisation is the remoteness of the remindings that are
supported. The simplest perspective here is that CBR is concerned with reasoning within one domain where
base filtering is done on the basis of surface features. AR involves inter domain remindings where episodes
share a structural rather than a semantic similarity and base filtering is based on abstract remindings.

The key issue concerning the role of indexing and reminding in memory organisation is that indexing cases
according to their features permits the case base to be organised into an abstraction hierarchy thereby
facilitating base filtering. However, abstraction and classification of these features becomes increasingly
difficult as the nature of the remindings become more abstract. This issue is best considered if we examine
two examples  taken for the opposite ends of the EBR spectrum. The first example considers a purely
structural analogy between electrical and mechanical systems, where it is difficult to uncover even the most
abstract features that the two cases share, so the analogy is valid only on the basis of structural isomorphism
between the cases. The second example examines a CBR system for estimating house prices that needs to
support only the most superficial type of remindings.

2.2.3  Abstract Remindings:  an AR example

Comparison of electrical circuits and mechanical systems provides a rich supply of engineering analogies.
Figure 3 illustrates two very different systems that bear a strong structural similarity. Both exhibit damped
oscillation as shown in the behavioural graph in the centre of the diagram. If the mass in the mechanical
system is displaced it will oscillate about its equilibrium position with constant frequency and decreasing
amplitude. If the capacitor in the electrical circuit is discharged its charge q will oscillate and decay to zero.

Mechanical System
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Response

Figure 3. Two systems that exhibit damped oscillation.

*  Besides this 'anti  inexing' research there are also an 'anti discrimination networks' arguments within the
indexing school. The alternatives to retrieval basied onD-nets in indexing are parallel algorithms of spreading
activation. (Ownes 1988; Kolodner 1988; Domeshek 1989; Domeshek 1991)
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This is quite a fundamental analogy in that both systems are governed by the same differential equation:

L
d 2q

dt 2 + R
dq

dt
+ 1

C
q = 0 or M

d 2 x

dt 2 + V
dx

dt
+ Kx = 0.

This mathematical relationship can be expressed as a set of causal relationships that could be the basis for a
structural mapping. However, what is of interest for us in this example is how one of these cases might be
retrieved in base filtering as a potential analogue for the other. These cases share no surface features in
common so the question is how could we plausibly index these with functional attributes that will capture the
similarity? An abstract feature damped-oscillation captures the commonality very well. Even if the
mechanical example were indexed as damped-harmonic-motion we could argue that this would be
retrieved as a specialisation of damped-oscillation. The analogy would be more perspicuous if the capacitor
and spring belonged to an abstract class energy-reservoir and the resistor and dash-pot shared an energy-
dissipater superclass.  The issue is, are we stretching credulity by expecting a knowledge-base to have these
classifications?

2.2.4  Surface Remindings in a CBR example

 Figure 4 shows two example cases from a case-based system called Rachman that can predict the selling
value of a house given some details about it. The system contains a large case base of houses and their selling
prices and it will retrieve a case or a set of cases describing similar houses and their selling prices. These
prices can be adjusted depending on differences between the target and base cases to estimate the price of the
target house. This system is comparatively straightforward but is equivalent to a host of potential CBR
applications, for example loan risk assessment and help-desk assistants. The complexity of this problem is
greatly relieved by having a well populated case base, so good matches can be found and the required
adaptation is not difficult.

Location:
B-Rooms:
Age:
Rec-Rooms:
Kitchen:
Rear-Acc.:

Tot-Area:
En-Suite:
 :        :

SM-1
3
Modern
2
Large
Yes

>1,200
Yes
 :        :

Price £98,000

Indices3 LR4WF
Location:
B-Rooms:
Age:
Rec-Rooms:
Kitchen:
Rear-Acc.:

Tot-Area:
En-Suite:
  :        :

SM-1
2
Modern
1
Small
No

<800
No
 :        :

Price £75,000

Indices

Figure 4. Two sample cases from the Rachman Case-Base

The cases are divided into two sets of features, the index features and the internal features. The index
features are the most strongly predictive features and form the basis for the D-Net. The main problem with
the D-Net approach is that it forces a strict ordering of the index features, in this example the cases might be
organised first under location, then number of bedrooms, etc. However, different users may have different
priorities; some, for instance, might consider the number of bedrooms to be more important than location. In
addition, it will not be possible to retrieve matches for cases that have missing features as the retrieval
process will not be able to search below the level of that feature in the network.

These problems are largely solved by introducing redundancy into the D-Net. This means that the network
supports alternative orderings on the index features (see Figure 5). The extent to which redundancy can be
introduced into the network is limited because the size of the network grows in proportion to the number of
orderings supported. Retrieval in Rachman returns clusters of cases and the cases are ranked according to
their frequency of occurrence in these clusters.

The purpose of this example is to show the success of index based retrieval and to illustrate some of the
characteristics of an indexed case base. The success of this approach depends on having a case base that can
be characterised by a small set of indices that can be determined in advance. It is also important that the case
base is well populated so that near or exact matches can be found.
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LR3

WF5

Rear-Acc: No

Rear-Acc: Yes

WF5

Rear-Acc: No

LR3Rear-Acc: Yes

LR3Rear-Acc: Yes

Rear-Acc: No WF5

Loc: SM-1

Loc: BB-1

Loc: DB-1

B-Rooms: 1

B-Rooms: 2

B-Rooms: 3

Age: Modern

Age: 70+

B-Rooms: 1

B-Rooms: 2

B-Rooms: 3

Loc: SM-1

Loc: BB-1

B-Rooms: 1

B-Rooms: 2

B-Rooms: 3

Age: Modern

Age: 70+

Loc: SM-2

Age: Modern

Age: 70+

Figure 5. A portion of the Rachman case-base organised as a D-Net with some redundancy.

2.3  Case Indexing for Remote Remindings

The focus of research in AR to date has largely been on adaptation of a base case to solve a target problem rather
than on the recognition of potential candidates from within a case base (Mostow, 1989). On the other hand work
classed as CBR has tended to concern itself with relatively larger numbers of semantically similar cases from a
single domain (e.g. CHEF  Hammond, 1989). These cases also tend to embody a significant degree of structure.
Consequently the difficulty of adaptation is alleviated somewhat and instead the retrieval process is a more
immediate problem than in AR. So CBR systems are generally associated with single domain applications
whereas AR is more usually associated with cross-domain tasks such as non-routine design.

As discussed in the preceding sub-sections this division of EBR into AR and CBR based on the notion of intra-
or inter-domain remindings is somewhat nebulous. The very concept of a domain is a subjective and ill-defined
entity which is open to continual refinement e.g. is the reminding of a proof of a geometry theorem pertaining to
angles for the purpose of proving a theorem for line-segments cross-domain or not? Our experience, particularly
in research on software design using CBR, is that systems designed to operate within 'one' domain may be
required to support mappings between sub-domains of that domain (see Section 3). Therefore, our perspective is
that there exists a complete spectrum of remindings at different levels of abstraction.

It has been argued (Thagard, Holyoak, Nelson & Gochfeld, 1990; Waltz 1989) that for cross domain remindings,
indexing using abstract remindings is problematic and therefore exhaustive search of the case base with
subsequent structural mapping is a preferable approach. However it is our opinion that effective EBR systems
will only materialise when this continuum of abstraction is explicitly acknowledged in the retrieval process.

To this end we propose a hierarchical index structure for each case as illustrated in Figure 6.  This scheme aims
to support remindings across increasingly remote domains and at the same time to reflect the fuzzy nature of the
degree of semantic commonality of cases. A more useful concept than "domain" for characterising the
remoteness of reminding is that of semantic distance between cases. The greater the semantic distance between
the cases the more remote the reminding required and consequently the more abstract the perspective (and
index) required to achieve a match.

As we progress up the hierarchy there is a transition from data-type indices to more knowledge-type indices
which possess richer semantics.  The scheme attempts to characterise the human cognitive process of case
retrieval using different levels of knowledge and would appear to be more psychologically plausible than a flat
index structure. We will explain these indices in the context of the example of the LCR circuit and mechanical
spring-dash pot system presented in Section 2.2.

Surface Indices reflect observable features in a case (capacitor, coil and resistor etc.) and would be the set of
indices used at the strictly CBR end of the spectrum.
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CBR AR

Surface
Indices Behavioural

Indices Causal
Indices Teleological

Indices

Increasing Semantic Seperation

Figure 6.  An Index Abstraction Hierarchy

Behavioural Indices embody emergent behaviour of the case stemming from the interaction of the
components within the case. They capture the characteristics of the overall system (e.g. damped, oscillatory
motion) and it is at this level that matching between the electrical and mechanical systems could be
achieved. For planning-type systems a more appropriate notion for  this level of index would be the impact
of the case on the environment.

Causal Indices capture explanatory knowledge about how the behaviour comes about as a consequence of
the interaction of the sub-entities within the case e.g. the inertial effects of the mass (coil) transfers energy
between the two energy reservoirs, namely the spring and the mass (capacitor and coil). During the transfer,
energy is  dissipated by the dash-pot (resistor).

Teleological Indices detail the purpose or goal of the case (to act as a car suspension or to form a tuned
radio circuit for example).

This example of analogical reminding illustrates the conceptual and theoretical merits of the proposed indexing
scheme for remote remindings. In the next section we will address the practical issues associated with exploiting
this scheme in a real-world CBR system involving routine software design.

3  Remindings in Routine Software  Design

The Déjà Vu system is a CBR tool for routine design of plant control software involving the reuse of old
software designs. The problem domain of Déjà Vu has already been introduced in (Smyth & Cunningham, 1992)
and so will only be described in outline here. An example of the type of code is shown in the Solution section in
Figure 7. The software is for controlling loading and unloading equipment in a steel mill. The code is expressed
in this network representation that is compilable into executable code. This sample case controls the movement
of a buggy carrying an empty spool. Buggy*1 is a two speed buggy, so stopping is a two stage process with the
buggy switching to its slower speed 200mm from its destination. This case is a sub-component of a complete
solution sequence.

Advance*B1*Spool

Machine:
Content:
Action:
Speed:
Direction:
Source:
Dest.:
    :

Buggy*1
Spool
Advance

2-Speed
Forward
Skid
TR
    :

Indices

Position Check

Buggy*1
fast forward

Buggy*1
slow forward

Buggy*1
stop

Stop(TR position)

Decelerate
(200mm before TR)

Solution

Figure 7. An example case from Déjà Vu.

Describing the scenario in more detail; this buggy is part of a system for carrying coils of steel or empty spools
between a storage area (called a skid) and a tension reel where it is mounted on the rolling mill. The load is not
mounted directly on the buggy but is carried on a lifting device that is mounted on the buggy. This lifter is used
to adjust the height of the load for loading and unloading. The lifter can be a one or two speed device - a
component case for a two speed lifter is shown in Figure 8. It can be seen that the solution for the two speed
lifter has the same structure as the buggy case described above so it should be possible to reuse the solution from
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one in designing the other. This is problematic because these two cases do not share important surface features.
So if this lifter case were a target case, the useful Advance*B1*Spool case would not be retrieved using this
indexing scheme.

Building a D-Net to characterise a simple domain such as RACHMAN's property domain is a fairly straight
forward task.  Such a domain can be modelled in terms of its components (an identifiable,  finite set), and thus
can be completely described.  However in more complex domains concerned with reasoning about actions and
change this becomes a far more difficult task requiring consideration of more complex behavioural and
functional domain features.

Raise*L2*Spool

Machine:
Content:
Action:
Speed:
Direction:
Source:
Dest.:
    :

Lifter*2
Spool
Raise

2-Speed
Up
Carry-Ht
Insert-Ht
    :

Indices

Position Check

Lifter*2
fast upward

Lifter*2
slow upward

Lifter*2
stop

Stop(Reel position)

Decelerate
(50mm before Reel)

Solution

Figure 8. A two-speed lifter case.

The current example from Déjà Vu has attempted to describe two cases in terms of surface features, indicating
the ACTION, VEHICLE, and CONTENT of the cases.  The problem is that the observed difference in action
types causes the cases to be indexed under different routes within the case-base, even though  behaviourally and
structurally the cases are very similar.  There are two approaches to solving this problem, effectively drawing the
cases closer together: abstract indexing, and index transformation.*

3.1 Abstract Indices

The problem that we are addressing concerns the fact that even though the two cases differ significantly in terms
of their surface features (BUGGY*1 and ADVANCE against LIFTER*1 and RAISE), they exhibit  strong
behavioural and structural similarities.  These similarities are not captured by the chosen indices and so the cases
are distant from each other within the case-base.

One solution is to capture this behavioural and structural similarity by adding abstract behavioural indices, such
as BEHAVIOUR = MOTION and BEHAVIOUR-TYPE = 2-SPEED.  Now the two cases appear as siblings
within their appropriate behavioural route.    This is illustrated below in Figure 9 where the above behavioural
indices are used to capture the inherent similarity between the ADVANCE and RAISE cases.  Therefore, in this
'behaviour' section of the net these cases are classified as similar without the need for index processing
techniques such as index transformation.

Referring back to the pyramid of index types and the CBR-AR continuum shown in Figure 6, as more abstract
remindings are required, so these must be represented as different types of routes within the case-base structure.
In this way cases are considered for retrieval at different levels of abstraction.  In the Déjà Vu example we are
concerned with two levels, namely component and behavioural, and it is at the behavioural level that the
inherent similarities between the cases becomes apparent.

Introducing these behavioural features does solve the problem but there are some caveats. This 'closeness' in the
network depends on the redundancy of the net supporting just the right ordering of the index features to bring the
cases together. In addition 'less relevant' matches based on surface features will also be retrieved by the base
filtering. This forces a consideration of what exactly are the requirements on base filtering. One view would be
that the onus is on the base filtering process to only produce cases that are truly relevant. This appears to require
that the relative importance of indices be context dependant - that dynamic indexing be supported. Introducing
redundancy into the D-Net does support different index orderings but it cannot suppress orderings that are not
relevant in particular contexts.

* It is worth noting that if there were existing two speed lifter cases in the case base then this problem would not
arise as they would offer a better match. However, the essential point that there is a similarity that is not being
captured continues to be valid.
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Behavioural 
Routes

Component 
Routes

Cont: Sp

Cont: Coil

M/c: Lifter

M/c: Buggy

Raise*L2*Spool

Advance*B1*Spool

Act: Raise

Act: Advance Cont: Sp

Cont: Coil

Beh: Motion

Beh:  ........

Type: 1S

Type: 2S

Cont: Sp

Cont: Coil Raise*L2*Spool

Advance*B1*Spool

Figure 9. Incorporating behavioural indices facilitates recognition of behavioural similarity.

The stance taken in Déjà Vu is that it is acceptable for the base filtering to retrieve cases that may subsequently
prove to be irrelevant: the important point being that the set of cases returned by the base filtering must contain
the best case. In the case mapping phase, these cases are examined to determine the one that can most easily be
adapted to fit the target problem  (Smyth & Keane 1992) for more on adaptation driven case selection).

3.2  Index Transformation

Quoting from Sycara and Navinchandra:- "Index transformation changes given salient features to match the
indices under which previous cases have been stored making previously inaccessible cases accessible." (Sycara
& Navinchandra, 1991) In the current situation this involves altering one or more of the indices so it is evident
that a strong model of the problem domain is required to support transformation. In Déjà Vu the domain is
modelled using a frame representation that captures the attributes of the domain concepts and the interactions
between them. In this model Buggy and Lifter are sub-classes of Mover and inherit the Speed slot from that
class. The appropriate transformation in this situation involves relaxing the Buggy index and seeking cases
indexed on siblings of Buggy. In the current system, on retrieval failure, there is no way of knowing in advance
which indexes need to be relaxed so all indexes need to be transformed in turn. This greatly increases the
retrieval time. This approach has the advantage that it escapes the rigidity of the static indexing by exploiting the
available domain model.

In the absence of a close match the system is retrieving a case that is structurally similar but has different surface
features to the target case. This means that the adaptation task is more substantial. The very pragmatic argument
could be presented that there should be little interest in more abstract remindings in Déjà Vu because the
adaptation process would be too complex.

4 Remindings in Non-Routine Software Design

In Section 3, we found that for what is ostensibly a single-domain, routine design problem, the need for abstract
remindings did arise, and that surface features alone were often inadequate for retrieving suitable base cases.
Furthermore, of the two approaches considered as a means of addressing this problem, Index Transformation
and Abstract Indices, neither was found to provide an ideal solution. Nevertheless for routine design, the
problem did prove to be tractable for at least two levels of abstract indices in a D-Net. These conclusions have
challenged us to explore how far D-nets can be used to support the more complex remindings that are to be
expected with non-routine software design tasks. Therefore, in this section, we examine this issue by attempting
to support non-routine design remindings in  Déjà Vu.

4.1  Can D-Net based remindings support non-routine design ?

In plant control software generation, we consider non-routine design to be the synthesis of novel programs from
a well defined case base of previous software design episodes. What distinguishes it from routine software
design, is that although, potential base cases are usually structurally and functionally quite similar to the target
case, such cases often appear significantly different from a surface or indexing perspective. Therefore, a base
case may require some structural modification and can result in new solutions that lie outside the realm of the
existing software routines (Gero 1990).
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Our observations from experimenting with Déjà Vu on non-routine software design tasks, is that retrieval is
often based on finding similarity between apparently different surface indices through a common abstract
ancestor. Therefore, to maintain an effective retrieval mechanism for non routine design there must be support
for distant remindings. The question arises as to whether D-Nets can be used as a mechanism for supporting this
degree of concept matching. It seems unlikely that introducing multi-level indices into a D-Net will ease the
situation, but instead will probably exacerbate the problems associated with the net, primarily in the explosion
of the number of possible orderings. Therefore we believe that there is a limit to the applicability of current
automatic base filtering techniques. This problem would be alleviated somewhat if the base filtering was based
on using disjoint nets for each level of the index hierarchy. The construction of these nets would then be less
complicated, and case retrieval within a net much less computationally expensive. However, such an approach
would hardly be capable of maintaining the complex relations required for non-routine design.

This has led us to conclude that rather than trying to automatically support the type of novel and abstract
remindings typical of non-routine design, it may be more practical to involve the software designer in the
retrieval process itself.

4.2  Case Retrieval Assistance

We have  suggested that the designer be allowed to interact with, and assist, the retrieval process.  It is our belief
that index transformation is a suitable point where man-machine interaction can usefully occur.  Index
transformation allows specifications to be interpreted from different perspectives. The user can provide the
context sensitivity that can highlight certain features, de-emphasise others, and expose hidden or implicit goals.
While such subjective manipulations are difficult for a computer to perform, they are particularly easy for a
human to execute.

There are many problems with index transformation.  Firstly, it requires a strong domain model.  It is difficult
enough to specify the type of transformations which can occur, let alone represent the complex set of
interactions which can result due to their application.  Secondly, in a given situation it is very difficult to
determine which transformation processes should be applied to which indices.  One common approach is to try
all applicable transformations.  While this may be viable for the simpler transformations associated with routine
design,  the proposal quickly becomes intractable when applied to non-routine design tasks.   And thirdly, by its
very nature retrieval is extremely sensitive to any changes made to a specification's indices, and since
transformation methods  can  significantly change the indices,  it is likely that careless application will cause
large bodies of irrelevant cases to be selected by the base filtering process.  These problems, and more, are
substantially alleviated by allowing interaction between man and machine.

There are a number of different modes of index transformation: Abstraction, specialisation, elaboration, and
condensation. Each provides general strategies for altering particular aspects of a specification in a certain way.

4.2.1 Abstraction and Specialisation

A common index transformation strategy is to abstract and/or specialise a given index to provide an
alternative retrieval context.  This approach was used to good effect in section 3.2 where the Buggy index
was abstracted to Mover and in turn specialised to Lifter, resulting in the retrieval of cases which contained
the sibling index (Lifter).  Such simple modifications are indicative of the type of transformations required in
routine design;  transformations are constrained to only one or two levels of abstraction or specialisation.
Unfortunately, this restriction is not satisfactory for non-routine design tasks, where remindings will occur on
the basis of more distant similarities.  Relaxing this restriction, allowing more far reaching transformations,
will facilitate the access of such cases.  However, the likely result is that many irrelevant cases will also be
selected, thereby reducing the usefulness of base filtering.  This problem may be relieved by providing
pruning heuristics to narrow the transformation path, but in general the context sensitive nature of the
transformation process makes this very difficult.

4.2.2 Elaboration and Condensation

Often specifications are vague and fail to bring about the appropriate remindings due to the lack of certain
features.  Alternatively, representation complexities may hinder the isolation of useful cases due to excessive
remindings.  The result is that specifications must be elaborated or condensed.  Automatic elaboration and
condensation techniques exhibit problems similar to those present in the previous transformation methods;
while control heuristics may work well for routine retrievals,  the detailed transformations needed for non-
routine remindings  are often intractable.
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Each of these modes of transformation can be enhanced by user interaction.  Not only can the user judge which
indices should be altered, but he/she can also  select the most useful sequence of transformations in a given
situation, and determine whether the result is likely to prove useful or not.  Furthermore, the user can be assisted
in making these decisions by the CBR system itself. Previous retrieval results may suggest suitable candidates
for transformation.  In addition elaboration, abstraction, and mutation can be guided by providing the user with
access to the domain model.

4.3 An Example Transformation Episode

In this example we will briefly demonstrate how the above methods can result in the kind of remindings
necessary for non-routine design.  The target specification is concerned with controlling a Buggy so that it
avoids some stationary obstacle (a Block) which lies in its path.  The base case which needs to be retrieved
controls the alignment of a load carrying Lifter with a Tension-Reel.

Figure 10 shows the base case's indices and solution. The Lifter's platform is initially positioned below the
Tension-Reel (the alignment-point) * .  First, the platform is raised quickly to a position just below the Tension-
Reel.  Next, the platform position is fine-tuned by slowly lifting it to the exact Tension-Reel alignment height.

Lifter
Fast

Upward

Lifter
Slow

Upward

At Start
Position

200mm 
Below 

Tension-
Reel

At 
Tension-Reel
(Alignment 

Point)
Position
Check

Position
Check

Position
CheckVertical Align

Lifter

Tension-Reel

Action

Machine

Destination

::

Base Indices

Figure 10.  The base case's indices and solution.

Figure 11 show the indices of the target specification and the solution derived  from the retrieval and adaptation
of the above base case.  Briefly, the Buggy, initially heading towards the Block, veers quickly off to the left to a
position just right of the avoidance-point** .  Next, the Buggy position is accurately adjusted to coincide with
the avoidance-point, by move slowly to the left.  At this point the Buggy can continue moving forward and avoid
colliding with the Block.

Buggy
Fast
Left

Buggy
Slow
Left

At Start
Position

200mm 
Right of 
Block

At 
Avoidance

Point
Position
Check

Position
Check

Position
CheckLateral Avoid

Buggy

Block

Action

Machine

Obstacle

::

Target Indices

Figure 11.  The target indices and resulting solution.

The important point is that the two index sets do not coincide directly and yet the reminding is useful because of
an abstract similarity between the alignment and avoidance strategies.  By appropriately transforming the target
indices we can achieve such a reminding.

*   The alignment-point is the correct vertical height of the Lifter platform for alignment with the Tension-Reel.
** When the Buggy reaches the avoidance-point it will be able to continue in forward motion and just avoid
contact with the obstacle.
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First of all, the Buggy index can be transformed into the Lifter index by abstracting it to Vehicle and specialising
to Lifter.  Because this transformation on its own would result in the retrieval of a large number of cases similar
only in terms of the machines they use, we must transform the action indices also.  The Avoid index can be
elaborated to match with Alignment by recognising that avoiding some obstacle is similar to aligning with the
free space beside the obstacle;  that is, an implicit avoidance goal is to align with some position free of obstacles.

This is the sort of transformation that we see the user being most helpful in assisting (especially the more
complex elaboration processes).  It is our experience that many transformations are too subtle and context
sensitive to encode as robust transformation rules and that user assistance represents a viable compromise in the
move to real-world AI systems.

5  Conclusion

In analysing analogical reasoning and CBR systems an important consideration is the remoteness of the
reminding that the system needs to be able to support. The more difficult the problem solving task, the more
abstract the remindings that will be useful. In particular, more abstract remindings are needed in non-routine
design than in routine design.

In this paper we have argued for the utility of index based retrieval using D-nets in simple CBR tasks such as
routine design. However, we have presented examples of the more abstract remindings that are required for non-
routine design – a more difficult task. It is difficult to see how these abstract remindings can be effected using D-
nets, even using automatic index transformation.

The solution that we propose is that CBR systems for non-routine design should be designed as interactive
systems with user involvement in retrieval and index transformation.
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