
Complexity of Adaptation
in Real-World Case-Based Reasoning Systems

Barry Smyth,
Hitachi Dublin Laboratory,

Trinity College Dublin, Dublin 2

Pádraig Cunningham,
Department of Computer Science,
Trinity College Dublin, Dublin 2

Abstract

The essence of Case-Based Reasoning (CBR) as a problem solving
paradigm is that solutions are generated by adapting the solutions of
similar problems rather than solving the problem from first
principles. In this paper we present a categorisation of problem
solving tasks, arranged according to complexity. In addition we
categorise CBR systems according to the complexity of the adaptation
process involved. We describe three CBR systems; a system for
property valuation, a system for software design and a system for
modelling in engineering analysis. We discuss the manner in which
the advantage of a CBR solution to these problems shifts as the task
becomes more complex and the complexity of the adaptation process
changes.
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Complexity of Adaptation
in Real-World Case-Based Reasoning Systems

1 Introduction

Case-Based Reasoning (CBR) is a reasoning method that uses experiential
knowledge, in the form of cases, to solve problems. When faced with a new
problem a CBR system will retrieve a case that is similar, and, if necessary, adapt
it to provide the desired solution. Its current popularity as a problem solving
paradigm is representative of the shift that has occurred in automated problem
solving research; researchers are beginning to move from simple, "toy" domains
to complex, real world domains. With this move has come a recognition of the
many inadequacies of traditional problem solving approaches, and assumptions
previously deemed reasonable have proved  invalid in complex, dynamic real
world domains. Case-based reasoning methods have proved useful in dealing
with many of these problems and have had considerable initial success in real
world problem solving endeavours.

Researchers have organised problem solving into three main classes.  In order of
increasing complexity, these are: simple , routine , and innovative .  Simple
problem solving activities are characterised by domains whose simplicity
facilitate solution generation in a fairly straightforward fashion; there is a
relatively direct inference path from problem specification to problem solution.
With routine problem solving, domains are more complex and often
incomplete,  problem specifications are conceptually quite distant from their
solutions, and additional computational expense is incurred due to conflicts
between dependent domain objects.  The most difficult activity, innovative
problem solving, is identified by patchy domain models, intricate solution paths
through the problem-space, and a considerable amount of backtracking due to
interaction problems.

The aim of this paper is to characterise the relationship between case-based
reasoning and  problem solving tasks of differing complexity.  This relationship
is discussed in detail in the next sections. Sections three, four and five solidify
this discussion by introducing three real CBR systems concerned with simple,
routine, and innovative problem solving.

2 Problem Solving Complexity and CBR

Our perspective on problem solving is concerned with search-based problem
solving techniques.  Such problem solvers search a space of “world models” or
“problem states” (the problem-space) to find one in which all the problem goals
have been achieved (the goal state).  Search proceeds through the problem-space
by the application of state-transforming operators.  The task of the problem
solver is then to find some sequence of operators that transform the initial state
into the goal state.  The complexity and cost of automated problem solving is
well studied and there are many ways that it can be estimated. The classic
measure is the amount of search which has to be carried out in developing a
solution to a problem.



2

Essentially, there are two search related problems associated with conventional
problem solving methods. The first, which we term the operator chaining
problem1, is basically the problem of searching forward through the problem-
space to find the appropriate sequence (chain) of operators with which to solve
the target problem.    Relieving this problem has been (and still is) the objective
of much  research and has resulted in a range of relatively successful techniques
(e.g., heuristic search, hierarchical planning, least commitment strategy, goal
regression etc.). Further computational complexity arises from the operator
conflict problem2. As a planner interacts with its domain it receives a stream of
conjunctive goals. Were these goals independent of one another the cost of
problem solving would be linear with the number of goals.  The reality is
somewhat different. Operator conflicts can result in unfavourable interactions
between goals. Under such conditions the problem solver must backtrack over
earlier work in order to plan a new solution which avoids these interactions. If
somehow the problem solver could learn specific sequences of actions that
overcome interaction problems in certain situations, the cost per goal could be
reduced in the long run.

Case-based reasoning methods attempt to address both of these problems.  By
constraining the problem-space search, it reduces the operator chaining problem;
the retrieval of a similar case constitutes a considerable 'jump' into the problem
space thereby eliminating many potential routes from the search. Furthermore,
CBR is potentially a more efficient constraint method than conventional
approaches (e.g., heuristic evaluation etc.) whose scope is more local, pertaining
to individual problem space states rather than whole areas.  Backtracking due to
bad interactions may also be avoided, thereby relieving the operator conflict
problem.  Effectively, cases can be viewed as 'canned' solutions where operator
conflicts have been resolved in certain well defined situations As long as the
retrieved case is sufficiently similar to the target relatively few conflicts should
arise due to modifications made during adaptation.

2.1 An Overview of CBR

In CBR, problem solving knowledge is characterised as a set of episodes each
representing the solution to a specific problem situation.  A new problem (the
target) is solved by retrieving a similar episode (base case) from memory, and its
solution is then modified to conform with the target situation.  Cases are
represented by features and relationships and case retrieval depends on
matching these case representations. It can be seen from the following
descriptions of the stages in CBR that the retrieval stages is a two stage process:-

• Representation:  Cases are represented by features and operators
(relationships). The features may be surface or abstract features and
typically the more predictive features will be selected for indexing.

1This is analogous to Marks’ "Immediate Complexity" problem [Marks, Hammond, & Converse '88]
2This is analogous to Marks’ “Asymptotic Complexity” problem.
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• Base Filtering: A small number of candidate episodes which are
considered contextually similar to the target situation are selected from
the case base. The case base will often be organised as a discrimination
network (D-net) to facilitate this.

• Case Selection / Mapping: This second stage will select a case from this
candidate set based on a more detailed comparison of the cases. A
mapping between the base and target cases may also be produced at this
stage.

• Adaptation: Once the best case from the case base has been selected it
must be adapted to fit the problem in hand. In the simplest situations,
for instance diagnosis, this adaptation may be trivial and the base case
may apply without modification. Adaptation may be very complex in
more difficult problem domains, e.g. non routine design.

2.3  A CBR Perspective on Complexity

Earlier we introduced the notion of a number of types of problem solving:
simple, routine, and innovative.   In fact, we can view these as a continuum of
problem solving tasks (Figure 1) organised in terms of computational
complexity. As illustrated, the relative contribution of the operator chaining and
operator conflict problems varies across this continuum.  Due to the simplicity
of their domains, simple problem solving tasks incur the bulk of their cost from
the operator chaining problem;  the lack of domain complexity leads to few
conflicts  so little time is spent backtracking.  At the other end of the continuum,
the complexity of the domains of innovative problem solving tasks results in
the operator conflict problem being very prominent (and expensive to resolve),
with proportionately less time spent on the operator chaining problem.

Operator 
Chaining Problem

Operator
Conflict Problem

Routine

100%

0%

100%

Simple Innovative

Substitutional 
Adaptation

Transformational 
Adaptation

Generative Adaptation
(Derivational Analogy)

Figure 1. A continuum of problem solving tasks

The basic tenet of CBR is that, rather than solve a problem from first principles,
it may be easier to retrieve a similar problem and transform the solution to that
problem. In Figure 2 we attempt to illustrate these trade-offs graphically. SP'
represents the specification for a new problem and SL' is the solution to that
problem. FP' represents the search process that establishes this solution from
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first principles - the task we wish to avoid. A CBR solution is worthwhile if the
retrieval task R, and the adaptation task A are simpler than FP'. In the later
sections of this paper we will examine three CBR systems that differ in the
complexity of the transformation task A:-

• Substitution Adaptation: This is the simplest type of adaptation and
merely involves substituting some of the parameters in the solution.

• Transformational Adaptation: This adaptation is more complex and
will involve structural changes to the solution.

• Generative Adaptation: This is the most complex adaptation and is not
perfectly represented by the diagram. The adaptation process involves
a rework of the reasoning process FP in the context of the new problem
situation represented by SP'.

FP
'

F
P

R

SL

SP SP'

SL'

SP Specification A Adaptation
SL Solution R Retrieval
FP First Principles Reasoning

Figure 2. The transformation processes in CBR and in reasoning from first
principles.

From a case-based reasoning perspective there is a relationship between the
complexity of the problem solving task and the complexity of the CBR
adaptation process.   CBR systems concerned with simple problem solving tasks
will typically require simple, substitutional adaptation;  the retrieved case will
typically be very close to the target and consequently will require only very basic
substitutive adaptation, with little or no chance of bad interactions occurring.
With routine problem solving tasks, the retrieved case, while being similar to
the target , will probably require substantial modification possibly changing
some structural elements of the retrieved solution (transformational
adaptation), and consequently  bad interactions are likely to occur.  With more
complex, innovative problem solving tasks extensive modifications are
necessary during adaptation so interactions are unavoidable and difficult to
resolve.  To accommodate this adaptation complexity it is generally necessary to
augment cases with detailed knowledge such as the reasoning trace structures of
Carbonell's Derivational Analogy.
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3 Rachman: Substitutional Adaptation

Simple problem solving tasks are characterised by well-defined domain models,
and a relatively direct inference path from problem specification to problem
solution.  Case-based reasoning methods are particularly well suited to such
tasks as there is often a rich set of cases to draw upon during problem solving.
The retrieved case is typically very similar to the target problem and
consequently the adaptation problem is relatively uncomplicated; in general
modifying the attributes of solution elements will suffice without the need to
change the overall solution structure.

3.1 A Brief Overview of Rachmann

Figure 3 shows two example cases from a case-based system called Rachman that
can predict the selling value of a house given some details about it. The system
contains a large case base of houses and their selling prices and, given a house
description, it will retrieve a case or a set of cases describing similar houses and
their selling prices. These prices can be adjusted depending on differences
between the target and base cases to estimate the price of the target house. This
system is comparatively straightforward but is equivalent to a host of potential
CBR applications, for example loan risk assessment and help-desk assistants.
The complexity of this problem is greatly reduced by having a well populated
case base, so that good matches can be found and the required adaptation is not
difficult.

Location:
B-Rooms:
Age:
Rec-Rooms:
Kitchen:
Rear-Acc.:

Tot-Area:
En-Suite:
 :        :

SM-1
3
Modern
2
Large
Yes

>1,200
Yes
 :        :

Price £98,000

Indices3 LR4WF
Location:
B-Rooms:
Age:
Rec-Rooms:
Kitchen:
Rear-Acc.:

Tot-Area:
En-Suite:
  :        :

SM-1
2
Modern
1
Small
No

<800
No
 :        :

Price £75,000

Indices

Figure 3. Two sample cases from the Rachman Case-Base

The cases are divided into two sets of features, the index features and the
internal features. The index features are the most strongly predictive features
and form the basis for the D-Net (Figure 4). The main problem with the D-Net
approach is that it forces a strict ordering of the index features, in this example
the cases might be organised first under location, then number of bedrooms, etc.
However, different users may have different priorities; some, for instance,
might consider the number of bedrooms to be more important than location. In
addition, it will not be possible to retrieve matches for cases that have missing
features as the retrieval process will not be able to search below the level of that
feature in the network.
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These problems are largely solved by introducing redundancy into the D-Net.
This means that the network supports alternative orderings on the index
features (see Figure 4). The extent to which redundancy can be introduced into
the network is limited because the size of the network grows in proportion to
the number of orderings supported. Retrieval in Rachman returns clusters of
cases and the cases are ranked according to their frequency of occurrence in these
clusters.

LR3

WF5

Rear-Acc: No

Rear-Acc: Yes

WF5

Rear-Acc: No

LR3Rear-Acc: Yes

LR3Rear-Acc: Yes

Rear-Acc: No WF5

Loc: SM-1

Loc: BB-1

Loc: DB-1

B-Rooms: 1

B-Rooms: 2

B-Rooms: 3

Age: Modern

Age: 70+

B-Rooms: 1

B-Rooms: 2

B-Rooms: 3

Loc: SM-1

Loc: BB-1

B-Rooms: 1

B-Rooms: 2

B-Rooms: 3

Age: Modern

Age: 70+

Loc: SM-2

Age: Modern

Age: 70+

Figure 4. A portion of the Rachman Case-Base organised as a D-Net with some
redundancy.

3.2  Substitutional Adaptation in Rachmann

It is assumed with this system that the case base is well populated so that near or
exact matches can be found. This means that the adaptation is comparatively
straightforward using substitution specialists that adjust the price based on
differences between the base and target cases. For instance a substitution
specialist may add or remove the value of having a conservatory. The important
point is that the effect of this adjustment is quite local and does not cause
complex interactions.

4 Déjà Vu: Transformational Adaptation

In a CBR system for routine problem solving, retrieved cases, while being
comparatively similar to the target, will probably require substantial structural
modification.  Consequently  a limited opportunity exists for bad interactions to
occur.  Carbonell (Carbonell, 1983) characterises such problem solvers as
belonging to the realm of Tranformational Analogy.  Essentially,  the adaptation
stage can be considered as a solution transformation problem.  Finding the
appropriate transformation is itself a problem-solving process, but in a different
problem space.  The states of this transformation-space (T-space) are problem
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solutions, as opposed to solution states.  The transformation-space operators (T-
operators) are atomic solution transformation operators (e.g.,  Substitute
Solution Step, Delete Solution Step, Insert Solution Step, Reorder Solution
Steps etc.).  And the job of adaptation is to find the appropriate sequence of T-
operators which will transform the retrieved solution into the desired target
solution (See Figure 5).

Retrieved Solution

T-Space

Op1

Op2

Target 
Solution

Figure 5.  Transformational Adaptation.

In this section we discuss Déjà Vu, a case-based reasoning system for software
design (a routine problem solving task), paying particular attention to its
adaptation mechanism.

4.1 An Brief Overview of Déjà Vu

Déjà Vu’s application domain is that of Plant-Control software (see Smyth &
Cunningham, 1992a, 1992b); it is concerned with producing control software for
autonomous vehicles in a plant or mill environment.

Figure 6 illustrates an important class of programs in a steel-mill environment
that are concerned with controlling vehicles in the loading and unloading of
metal coils during the milling process3 . Déjà Vu's case-base consists of control
programs for carrying out tasks such as these Load/Unload operations.  The

3Tension Reels and Skids are used to hold spools or coils of steel during the milling process.  Coil-
cars are vehicles which can carry spools or coils about and perform load/unloading operations.
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programs are written in a high-level, graph-based language which can be
compiled into executable code.

Skid

Tension-ReelSpool / Coil

Coil-Car

Load / Unload 
Operation

Raise / Lower

Forward Backward 

Figure 6.  Load/Unload Plant-Control Tasks

Briefly, Déjà Vu uses a hierarchical approach to software design; during problem
solving a number of cases are retrieved at different levels of abstraction, and
these are adapted to provide solutions to the various sub-tasks of the target
problem.  Problem solving activity is co-ordinated using a blackboard control
architecture with dedicated knowledge sources handling the various problem
solving stages of analysis, problem decomposition, retrieval, adaptation, and
solution integration.

4.2 Transformational Adaptation in Déjà Vu

Déjà Vu adopts a two stage approach to adaptation; adaptation specialists are
used to transform components of the retrieved solution in the desired
component of the target  while more general adaptation strategies are used to
handle any bad interactions arising out of specialist activity.  Both types of
adaptation knowledge are based on a primitive set of transformation operators.

During retrieval the features of the target case are mapped against the features of
the base case.  Non-exact matches provide the adaptation process with a set of
conjunctive adaptation goals which must be satisfied in order to transform the
base solution into the desired target solution.   During adaptation these goals are
handled by the appropriate set of specialists,  each making its own local changes
to the base solution structure.

As an example of the type of adaptation carried out by Déjà Vu consider the
following scenario.  The target specification is given as "MOVE BUGGY
BACKWARD TO SKID USING 2 SPEEDS".  The retrieval stage selects a base case
conforming to the following specification, "MOVE BUGGY FORWARD TO
TENSION-REEL USING 1 SPEED".  Figure 7 shows the mappings between the
target features and the base features that are computed during retrieval.
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?

ACTION

VEHICLE

SPEED

DIRECTION

DESTINATION

- Move

- Buggy

- 1 Speed

- Forward

- Tension-Reel

ACTION

VEHICLE

SPEED

DIRECTION

DESTINATION

SLOWING-AT

- Move

- Buggy

- 2 Speed

- Backward

- Skid

-20cm before Skid

Base Features Target Features

Figure 7. The mappings generated between the base and target features.

Clearly the direction and destination of the base case solution must be altered,
and a command must be added to accommodate two-speed motion.   While the
direction and destination modifications are simple substitutive changes (like  in
Rachman), the accommodation of two speed motion is somewhat more
complex.  In the base case the buggy travels at a constant speed,  but in the target
it must travel some of the distance at its fast speed and then decelerate to its
slower speed before reaching its destination and stopping.  This means adding
extra solution components, not just modifying existing ones.

Déjà Vu's adaptation specialists are organised according to the type of
modification that they can perform.  For example, there is a speed specialist
capable of transforming a 1-Speed motion case into a 2-Speed motion case (see
Figure 8).   In this way the mappings set up during retrieval are used to select the
appropriate adaptation specialists.

MOVE

2-SPEED

MOVE

1-SPEED

(BEFORE 

 (COMMAND MOVE  *  SLOW  *)

 DO

       (INSERT  MOVE  *  FAST   *)

                     :                          :  )

TARGET_ACTION

TARGET_PROPERTY

BASE_ACTION

BASE_PROPERTY

ACTION

} Specialist 
Capabilities

}Specialist 
Action

Figure 8.  An example SPEED specialist

Figure 9 shows the "before-and-after" view of the adaptation process; the
direction and destination attributes have been modified and the additional
speed nodes added.
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AT 200mm 
BEFORE SKID

MOVE 
BUGGY 

FAST 
FORWARD

AT SKID

MOVE 

BUGGY 

SLOW 

FORWARD

BUGGY 

POSITION 

CHECK

STOP 

BUGGY

Base Case

BUGGY 

POSITION 

CHECK

MOVE 

BUGGY 

SLOW 

BACKWARD

STOP 

BUGGY

Target Case

AT TENSION-

REEL

Figure 9. The base to target transformation.

Although we did not discuss interaction problems in the example they can easily
occur.  For example,  a buggy's fuel restriction would mean that an increase in
speed would require a corresponding increase in fuel.  Rather than encoding
such knowledge into its adaptation specialists, Déjà Vu uses a set of strategies to
capture the abstract dependencies that exist between features such as speed and
fuel, and during adaptation these strategies will cater for any goal interactions
that arise.

5 CoBRA: Generative Adaptation

Innovative problem solving is the most difficult task category that we consider.
We argue that, in a CBR system for tasks of this complexity, it is not enough to
transform the solutions of existing problems. Instead the adaptation process
must re-enact the reasoning trace of similar cases. This is generative adaptation
or derivational analogy as presented by Carbonell [Carbonell '86].

5.1 A Brief Overview of CoBRA

CoBRA is a CBR system for creating physical models in engineering analysis.
The task being addressed is the generation of simplified models suitable for
numerical analysis. This process of model simplification is an important initial
stage in thermal analysis in engineering. The objective is to produce a simplified
geometric model suitable as a basis for a mathematical model. This simplified
model must be a reasonable approximation to the actual physical system. For the
human designer this process involves a series of assumptions and justifications
that produce the simplified model.

CoBRA has been implemented to work on a case base of cooling fins, a typical
example of which is shown in Figure 10 Each case is made up of a representation
of the basic model, the simplified model and a reasoning trace of the
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justifications for the transformations in going from the basic to the simplified
model.

Basic Fin
Model Simplified 

FinModel

Reasoning Trace

Figure 10. Example case from CoBRA, the thermal modelling system

5.1 Generative Adaptation in CoBRA

A modelling episode with CoBRA begins with a target case containing only the
basic model to be simplified. The retrieval mechanism retrieves a ranked set of
cases that have similar basic model features. Each of these retrieved cases
contains a reasoning trace; this trace is the heart of the generative adaptation
process. This adaptation process attempts to reinstantiate these reasoning traces
using the target case.

Each reasoning trace has an action part and a decision part (after [Carbonell '86]).
The decision part contains:-

• Alternatives considered and rejected
• Reasons for decisions taken
• Starts of false paths
• Dependencies of later decisions on earlier ones

The action part holds the steps taken as a result of the reasons held in the
decision part. The actual functions used to express these actions must be abstract
enough to allow their application to cases similar to the one with which they are
stored. A typical action would be, "Remove the extended surface which faces
into the flow". The two main actions in CoBRA are REMOVE and RESIZE. Both
the decision and action parts use a set of operators which are coded to be useful
over a range of model fins, e.g.:-

• altitude: the altitude of the shape
• towards-back: true if the shape is towards the back of the shape
• area-of-face:  Return the area of the face.
• etc.

In summary, each reasoning trace is made up of a set of actions and justifications
for those actions. The reasoning trace can be reinstantiated for the new case if
these justifications are valid in the new situation.
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6. Conclusion

We have described a categorisation of problem solving tasks arranged according
to increasing complexity. To parallel this we have presented descriptions of
different types of adaptation in CBR that are appropriate for tasks of different
complexity.

It is often argued that the great advantage of CBR is in the ease of setting up the
knowledge base of CBR systems. This advantage is manifest in the Rachman
system described here. However, CBR systems for more complex tasks do not
enjoy this advantage to the same extent. The case representation becomes more
elaborate as the adaptation task becomes more complex. The example systems
for transformation and generative adaptation described here illustrate that CBR
can make a contribution in complex domains. However, these complex
adaptation strategies need to be backed up with more complex case
representations and a stronger domain theory.

An alternative view of CBR is as a technique for constraining the
computationally expensive search associated with conventional problem
solvers.  As well as reducing the search through the problem space, CBR
facilitates a reduction in the time spent backtracking due to interaction
problems.  The example systems have varied in the amount of search they have
required, and real efficiency improvements have been observed when compared
to first-principles approaches, especially in innovative problem solving tasks.
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