
Design Synthesis:
A Model of Hierarchical Case-Based Reasoning

Barry Smyth, Donal Finn
Hitachi Dublin Laboratory

Trinity College,
University of Dublin,

Dublin,
IRELAND.

Phone: +353-1-6798911
Fax: +353-1-6798926

EMail: barry@hdl.ie donal@hdl.ie

•
Mark T. Keane

Computer Science Department,
Trinity College,

University of Dublin,
Dublin,

IRELAND.

Phone: +353-1-7021534
EMail: mkeane@cs.tcd.ie

ABSTRACT

A variety of artificial intelligence techniques have been used in attempts to automate design

synthesis tasks. Two common approaches are case-based and decompositional design. While

powerful techniques in their own right, their integration has lead to a new generation of

design synthesis systems capable of tackling a larger range of problems with greater

effectiveness. In this paper previous attempts at integrating these approaches are examined in

a number of design systems. Although significant advances have been made, important

shortcomings still exist. The main focus of this paper is to address the limitations of these

design synthesis models. To this end Déjà Vu, a new hybrid model of design synthesis, has

been developed and is described. Déjà Vu integrates decompositional and case-based

approaches in a framework that exploits the power of experiential knowledge, and benefits

from far greater domain applicability when compared to existing design techniques. Two

implementations of this model, that are targeted at real-world software design tasks, have

yielded encouraging preliminary results and are also described in this paper.

Design Synthesis:
A Model of Hierarchical Case-Based Reasoning

ABSTRACT

A variety of artificial intelligence techniques have been used in attempts to automate design

synthesis tasks. Two common approaches are case-based and decompositional design. While

powerful techniques in their own right, their integration has lead to a new generation of

design synthesis systems capable of tackling a larger range of problems with greater

effectiveness. In this paper previous attempts at integrating these approaches are examined in

a number of design systems. Although significant advances have been made, important

shortcomings still exist. The main focus of this paper is to address the limitations of these

design synthesis models. To this end Déjà Vu, a new hybrid model of design synthesis, has

been developed and is described. Déjà Vu integrates decompositional and case-based

approaches in a framework that exploits the power of experiential knowledge, and benefits

from far greater domain applicability when compared to existing design techniques. Two

implementations of this model, that are targeted at real-world software design tasks, have

yielded encouraging preliminary results and are also described in this paper.

1 Introduction

Case-based reasoning (CBR) and decomposition are two distinct techniques that have been used to

model design synthesis. Decomposition has found application in design domains that are well

understood, especially where generalised decomposition strategies can be easily applied to break

down complex design problems into more manageable sub-problems. However, decomposition

techniques are difficult to apply in less tractable domains where domain knowledge is incomplete

or where generalised decomposition strategies are difficult to formulate (Chandrasekaran, 1990).

On the other hand, case-based reasoning has found application in such ill-structured domains where

cases provide a mechanism for representing incomplete or poorly defined knowledge (Maher,

1990). Unfortunately, case-based reasoning suffers disadvantages also, especially when dealing

with large complex design problems. These shortcomings have prompted researchers to develop

hybrid design synthesis models that combine decomposition and CBR techniques (Hinrichs, 1991;

Maher and Zhang, 1993; Domeshek and Kolodner, 1993). The main approach in hybrid

decompositional case-based reasoning is to initially apply a decomposition approach to simplify

complex design problems, and then to exploit case-based reasoning techniques to solve for each of

the synthesis sub-problems. Although this approach has allowed case-based reasoning to be applied

to more complex design problems, it is still only applicable to the class of design problems where

decomposition techniques are effective. Therefore hybrid decomposition-CBR remains ineffective

for design synthesis tasks in domains where decomposition techniques are fraught with difficulties.

 In this paper we propose a new model for design synthesis called Déjà Vu. Déjà Vu carries out

design synthesis using a process model that we call hierarchical case-based reasoning. In common

with other hybrid approaches, a design problem is first decomposed into simpler sub-problems and

is then solved by applying case-based reasoning. However, what distinguishes Déjà Vu from other

hybrid systems, is that, decomposition is carried out in a recursive, hierarchical manner using case-

based reasoning methods. Hierarchical case-based reasoning has a number of significant advantages

over other hybrid synthesis models developed to date and these include; design synthesis can be

carried out in ill-structured domains where generalised decomposition techniques are difficult to

apply, secondly, episodic-driven decomposition is more effective in strongly coupled domains

where traditional decomposition techniques have failed in the past, and finally case-based

decomposition facilitates learning thereby leading to more powerful design synthesis tools. Thus,

we believe that the application of this novel approach to design synthesis allows the solution of a

certain class of design problems which hitherto have been outside the realm of other hybrid models.

The paper is divided as follows. Section 2 examines design synthesis from a number of

perspectives, including; knowledge engineering requirements, generalised models of synthesis and

implemented models to date. We argue that there is a correlation between the synthesis model

chosen and the knowledge characteristics of a design domain. Section 2 concludes by identifying a

certain class of design synthesis problems that current models do not address and proposes the new

synthesis model of hierarchical cased-based reasoning. In Section 3, two domains in which this

model has been applied are briefly described. Section 4 describes Déjà Vu in detail, focusing on the

model's knowledge requirements and design processes, and closes with a description of the model's

beneficial implications. In concluding, we sum up our results and briefly contrast our model with

other hybrid design systems.

2 Design Synthesis

Gero argues that design exists because the world around us does not suit us, and the goal of

designers is to change the world through the creation of artefacts. Designers design by positioning

functions to be achieved and producing descriptions of artefacts capable of generating these

functions (Gero, 1990). Considering the process of design itself, Maher subdivides it into three

phases; formulation, synthesis and evaluation. In this proposal, a process model for design, Maher

defines formulation as the identification of the goals of the design process; synthesis as the

process of developing a design solution by considering the design space that contains the design

knowledge; and evaluation as the task of assessing whether the design goals have been satisfied

subject to design constraints (Maher, 1990). Chandrasekaran defines a task oriented structure for

design in terms of a general class of methods that he describes as propose-critique-modify methods.

In this definition, design is viewed as a series of process tasks that ultimately results in the creation

of an artefact with some desired design functionality. Functionality is described in terms of a set of

specifications that a design is expected to deliver within a set of prescribed design constraints, and

the design process is described as the task of constructing the design artefact by using a repertoire

of design components (Chandrasekaran, 1990). In these models, Gero, Maher and Chandrasekaran

agree that synthesis is the process by which one or more design solutions, consistent with the

requirements defined during formulation, are identified.

2.1 Design Synthesis - The Role of Domain Theory and Knowledge Structures

In his task oriented framework for design, Chandrasekaran identifies three broad methods in design

synthesis; decomposition/transformation methods, case-based methods and global constraint-

satisfaction methods (Chandrasekaran, 1990). Maher in her process model of design, identifies

three almost similar approaches, namely; decomposition, case-based reasoning and transformation

(Maher, 1990). In this paper we are primarily interested in decomposition and case-based

reasoning, so we do not examine design by transformation or constraint satisfaction methods in any

detail. It is our belief that the process model chosen for design synthesis tasks is strongly influenced

by the design domain itself and the available domain knowledge, and these relationships are

examined next.

2.1.1 Design Theory: Strong and Weak Domains

In this section we examine the relationship between domain theory, domain knowledge and the

design synthesis process. We define domain theory as the underlying causal theory of the real-

world design domain, whereas domain knowledge refers to the conceptual view of these theories as

represented in knowledge-based design systems (see Figure 1). In our experience this is a more

useful perspective than the usual view of shallow/deep knowledge. The question of whether the

knowledge is shallow or deep is not really important. What is important is, firstly, how well the

theory-based structures capture the design domain (strong vs. weak theory), and secondly, how

well a system's knowledge representation approximates this theory (complete vs. incomplete

domain knowledge).

Domain Knowledge

Domain Theory

System Level

Domain Level

Figure 1. Domain theory vs. domain knowledge.

A strong domain theory suggests the existence of a causally coherent model of design within a

given domain. Figure 2(a) shows a representation of such a strong domain model, where

essentially all of the design domain is covered by a theory-based framework.

Theory-BasedExperience-Based

(a) Strong Domain Theory (b) Weak Domain Theory

Figure 2. Strong vs. Weak Domain Theories.

However, in many design tasks such strong theoretical models do not exist and thus experience-

based domains are common. So called weak domains lack a comprehensive model to explain all

phenomena; the causality behind many phenomena simply does not exist, no matter how hard one

looks (Takeda et al. 1990). Another perspective is that there are holes in the theory-based

structures and experiential knowledge acts as cementing agent, thereby consolidating a domain's

theory-based model. Therefore, in weak domains (see Figure 2(b)), experiential knowledge is

necessary in some form to bridge in the gaps that exist in the domain's theory-based structures.

Such weak domains are typified by tasks such as architectural design, where many decisions are

based on non-qualitative, aesthetic criteria. Device control software design is another weak domain

task; designs often rely on empirical measurements (for example, timing considerations) that cannot

be adequately captured or predicted by the domain theory.

2.1.2 Domain Knowledge: Complete and Incomplete Knowledge

Domain knowledge refers to a system's representation of a domain’s theory-based structures. In this

context, one can meaningfully talk about complete or incomplete domain knowledge. A complete

domain knowledge representation is one that precisely models every detail of some underlying

theory (weak or strong). Such complete representations only occur in routine design applications

and can be observed in other AI domains such as planning. For example the domain knowledge of

early planning systems such as STRIPS are good examples of complete representations. Within

very restricted domains (Blocks World), a complete model of the underlying strong theory (domain

rules about moving and stacking blocks) can be formulated and encoded as some symbolic

representation (planning operators).

Incomplete domain knowledge, on the other hand, does not precisely model every aspect of a

domain theory, but is merely an approximation; that is, even though there may exist some domain

theory it cannot be accurately modelled, perhaps due to its complexity. Of course irrespective of the

strength of the domain theory, an incomplete knowledge representation requires the use of

experiential, case-type knowledge. In fact, the only situation where experiential knowledge is not

required is in a system that has a complete representation of a strong domain.

2.2 Design Synthesis: Decomposition and Case-based Reasoning

Decomposition and case-based reasoning are two commonly used process models of design

synthesis. In this section, we examine the appropriateness of each model in the context of domain

theory and domain knowledge.

2.2.1 Decomposition

Maher describes decomposition as the most ubiquitous model of design. The approach of dividing a

large complex problem into several smaller less complex problems is well accepted and practised

by designers (Maher, 1990). Maher argues that decomposition is usually carried out along two

lines, either by decomposing according to structure (an object-centred approach) or decomposing

according to function (a function-oriented approach). These ideas are borne out in the literature; for

instance in CELIA (Redmond, 1992) and PRODIGY (Velosa, 1991) decomposition is applied

along functional lines, whereas partonomic decomposition is applied in JULIA (Hinrichs, 1991)

and CLAVIER (Hennessy 1992). Chandrasekaran and Maher both suggest that decomposition

strategies are easiest to apply to well understood problems (Chandrasekaran, 1990; Maher, 1990),

in this paper we consider such problems to be synonymous where a strong domain theory exists and

complete knowledge is available.

Decomposition can offer significant advantages to designers in design situations where familiar and

well understood decomposition strategies are known. Chandrasekaran notes that such situations are

commonplace in routine design (Chandrasekaran 1990). Routine design is usually carried out

against a background of complete domain knowledge, where effective decompositions are well

known, can be easily applied and involve little search in the space of available decomposition

strategies. Another domain characteristic that favours the use of decomposition is where weak

coupling exists between the components or sub-functions of the decomposed problem. This

effectively facilitates the independent solution of the component parts and favours a simple model

of recomposition to give an overall design solution.

As decomposition is generally more effective in routine design applications, its use in domains

where only incomplete knowledge is available has proven to be more problematic, e.g., non-routine

design. Chandrasekaran notes that in weak domains where difficulty exists in expressing and

representing domain knowledge, the specification and application of decomposition strategies is

often a non-trivial task. In addition, in domains where a strong interdependency exists between

components or functions, there is no guarantee, after decomposition and solution, that

recomposition will be possible (Chandrasekaran, 1990). Maher expresses the difficulties associated

with decomposition in non-routine design in terms of the following issues; deciding what is to be

decomposed, how the decomposition is carried out, how decomposition strategies are found, how

such strategies are applied, how component solutions are recomposed to give overall solutions, etc.

(Maher, 1990).

Considering these general comments on decomposition, it is interesting to note that they are also

borne out by practitioners who have been involved in the development of application systems.

Domeshek and Kolodner report that their experience has been that decomposition in design

synthesis is a difficult task, and they argue that this is especially true where the domain theory is

weak and therefore forcing a relatively conservative approach to decomposition to be adopted

(Domeshek and Kolodner, 1993).

2.2.2 Case-Based Reasoning

Maher describes case-based reasoning in design as the generation of a design solution using the

solution or the solution process from previous design problems. She stresses that this model for

design synthesis requires design episodes in the form of cases rather than generalisations about a

design domain as in decomposition (Maher, 1990). Case-based reasoning involves several

operations and these have been well documented in the literature (Hammond, 1989; Kolodner,

1991; Reisbeck and Schank, 1989). Briefly, they include, retrieving the relevant cases from case

memory (retrieval), selecting the most promising case (mapping), modifying its solution for use in

the new problem situation (adaptation), testing the solution, evaluating the results, and finally

updating the case memory by storing the new case(learning). Design synthesis, in particular,

encompasses the operations of case retrieval, case mapping and case adaptation.

Compared to other paradigms for design synthesis, case-based reasoning is thought to offer a

number of advantages. Hua notes that a case-based design system does not require complete

domain knowledge, but can produce complete and complex designs with even a small or

incomplete knowledge-base (Hua and Faltings, 1993). Hinrichs notes that for design domains

where incomplete knowledge exists, case-based reasoning offers a powerful paradigm by which

isolated knowledge structures can be linked (Hinrichs, 1991). In addition, case-based reasoning can

be quite effective where strong interdependencies exist in a solution as it explicitly maps known

good solutions within the problem domain, this makes the paradigm particularly suitable for weak

domains where only incomplete knowledge is available.

However, there are some disadvantages associated with case-based reasoning, particularly for

design tasks. Domeshek notes that as design problems grow large, it becomes difficult to see how

retrieving a single monolithic case from memory will advance the design process very much; the

retrieval of a such huge case is just the start of another complex search, this time through the welter

of details stored in the case (Doemshek and Kolodner, 1993). Pu emphasises this point by noting

that one of the differences between traditional CBR systems and case-based design systems, is that

in non-design applications it is usually feasible to store complete solutions in a single case,

however, in design this approach is generally considered problematic because of the complexity of

design problems (Pu, 1993). Thus, in many design applications design cases are often represented

as autonomous solutions which are indexed independently of the complex design to which they

physically belong. This approach has worked well for design tasks as is evident from the array of

design systems that have adopted it.

2.3 Towards an Integrated Model of Design Synthesis

In the previous section we reviewed two models that have been used extensively in design

synthesis. However, they have shortcomings and these have prompted researchers to consider

developing hybrid design systems that incorporate both paradigms. The main approach has been to

use decomposition techniques to split large design problems into smaller more manageable sub-

problems and then to apply case-based reasoning to these simpler design tasks. Three systems,

JULIA, CADSYN and ARCHIE demonstrate this hybrid approach and they are reviewed briefly

here.

2.3.1 CADSYN

CADSYN provides a process model for design where CBR is combined with generalised

decomposition techniques (Maher and Zhang, 1993). CADSYN has been developed in the

application area of building structural design which is considered to be a weak domain but, because

of building codes and guidelines, it can be considered to have relatively complete domain

knowledge available (see Figure 3). In CADSYN, case knowledge and decomposition knowledge

are represented separately. Cases are used to describe specific design episodes and are recorded as

descriptions of the problem and its solution. Decomposition strategies are represented as

generalised decomposition knowledge and are applied as domain knowledge. Given a new design

problem, CADSYN retrieves a set of relevant cases, analyses their relevance to the current problem

and determines whether case-based reasoning can be applied directly or whether decompositional

techniques should be employed instead. If a decomposition approach is taken, then it is assumed

that ultimately a sufficiently simplified set of problem specifications will be produced so that CBR

techniques can be applied.

2.3.2 JULIA

JULIA’s problem domain is in the area of meal planning. Each of JULIA’s cases describe a

complete meal structure and consists of sub-cases, where each sub-case describes a particular meal

course (Hinrichs, 1991). JULIA tries to transfer a complete case directly, but if this fails, it then

breaks the problem down under the guidance of generalised decomposition design plans and

recursively solves for each sub-case, by retrieving and using different cases. An important

distinguishing factor in JULIA is that, decomposition techniques represent fixed decomposition

plans that operate on rigid, predetermined structures (i.e., meal courses) and therefore

decomposition can be considered to be applied in a context where complete knowledge is available

(see Figure 3).

2.3.3 ARCHIE

ARCHIE’s problem domain is conceptual design in architecture (Domeshek and Kolodner; 1993).

The authors note that in architecture, cases usually exist as large monolithic structures, and

consequently decomposition is used to break these large cases into more meaningful sub problems

that are useful to the user. ARCHIE uses architectural heuristics to guide decomposition according

to either functional or form requirements. ARCHIE can be considered to be an application in a

weak domain (conceptual design in architecture) where decomposition is guided by weak methods

(heuristics) which are based on incomplete knowledge (see Figure 3).

2.4 Positioning Hybrid Design Systems

CADSYN, JULIA and ARCHIE demonstrate how decomposition and case-based reasoning

techniques have been combined in knowledge-based design systems to date. Figure 3 illustrates our

view of the relative position of these systems in the context of a knowledge completeness spectrum.

Case-Based
Reasoning

(CBR)
DP & CBR

ARCHIE

Incomplete
Knowledge

Complete
Knowledge

Decomposition
(DP)

JULIACADSYNDéjà Vu

Figure 3. Hybrid decomposition and case-based reasoning systems.

A number of points can be made about this categorisation. Firstly, we consider the systems

discussed to address weak domain tasks. This is true for most design applications, as design is

generally considered to be an ill-structured problem (Simon, 1973). Conceptual design in domains

such as architecture is further hindered by the availability of only incomplete knowledge and

decomposition is carried out using a combination of heuristics and user intervention. In other weak

domains such as structural design, typified by CADSYN, domain knowledge is more complete and

therefore allows fixed generalised decomposition strategies to be formulated and applied. These

hybrid systems do address some of the shortcomings associated with CBR by allowing complex

design problems to be represented as a series of smaller more manageable cases; this is possible

assuming that decomposition techniques are powerful enough to effectively decompose any

presented problems. Nevertheless, the disadvantages associated with decomposition continue to

persist, particularly with domains where generalised decomposition techniques are not effective and

cannot be easily applied. This is especially true in context sensitive domains where

interdependencies exist between the various components and functions.

In this paper, we propose a new design synthesis model called Déjà Vu, which can be conceptually

described as hierarchical case-based design. This model captures specific decomposition strategies

as (decomposition) cases, and is therefore particularly suitable for applying decomposition

techniques in context sensitive domains where only incomplete knowledge is available. Thus this

model can be viewed as occupying a niche for design problems (see figure 3) where domain

decomposition knowledge is incomplete and decomposition strategies are both difficult to

generalise and apply.

3 Two Systems for Software Design

In this section two software design systems are briefly introduced, Déjà VuPCS (Smyth &

Cunningham, 1992) and Déjà VuGUI. Both have been developed in terms of the Déjà Vu model and

examples from each will be used to illustrate a more detailed discussion of this model in Section 4.

For now let us briefly examine their application domains and look at some characteristics that

render traditional methods of design inappropriate. In Section 4 we will argue that the Déjà Vu

model has been developed with domains exhibiting these problematic characteristics in mind.

3.1 Déjà VuPCS : Plant-Control Software Design

The design of Plant-Control software (PCS) is the application domain of Déjà VuPCS. Plant-control

software is concerned with controlling robotic vehicles within a factory plant environment. For

example, Figure 4, illustrates one particular class of problems that Déjà VuPCS is designed to handle;

vehicles (coil-cars) are controlled during the loading and unloading of, in this case, spools or coils

of steel in a steel-mill.

Spool-/Coil
Tension-Reel

Load / Unload
Sensor

Skid
Coil-Car

Raise/Lower

ForwardBackward

Figure 4. Plant-Control Domain

An important consideration in automating the design of plant-control software is that the formality

of the software domain1 is offset by the presence of unpredictable features in the domain, features

that lack any identifiable causal model. For example, plant-control software is highly dependent of

certain timing considerations that are known to the designer only from experience. Furthermore,

plant-control design is fraught with interactions problems between domain elements making pure

decomposition approaches impractical; generalised (plan-based) decomposition strategies cannot be

formulated without running into difficulties during recomposition.

3.2 Déjà VuGUI : Graphical User Interface Software Design

Déjà VuGUI is a prototype system for the automated design of MOTIF-based graphical user

interfaces. MOTIF is one of many GUI development languages and runs under the X window

1We acknowledge that many software design tasks have the advantage of a strong domain theory with a well defined
semantics.

system. GUI components, or widgets are defined in terms of a set of generic types (buttons, text

areas, lists etc.) and are combined to provide a graphical context for the manipulation of data

(Berlage, 1991). The design of any particular interface is driven by the data set in question and the

types of operations that are to be performed on it. For example, to design an interface allowing the

manipulation of some list of data, widgets must be created that facilitate the display of the data list,

as well as widgets to which functions can be attached that allow elements to be added or deleted to

and from the list. In general, target interfaces are more complex with many different types of data

sets and a variety of manipulation functions.

One of the most important issues in graphical user interface design relates to the “look & feel” of

the interface. The aim of any graphical interface is to provide a novice user with intuitive access to

a range of complex functions. Therefore, during the design of an interface it is important that the

designer considers what the user will find intuitive, useful, and aesthetically pleasing. Thus, like

plant-control software design, GUI design can be classified as a weak theory domain and so

suggests the use of a case-based approach. Again, the highly interactive nature of the GUI domain

causes problems for conventional design methods which further suggest case-based methods.

4 Déjà Vu: A Model of Hierarchical, Case-Based Design

The objective of this section is to advance, in the Déjà Vu architecture, a significant new model of

design synthesis. The model, which integrates decompositional design with case-based design,

addresses the shortcomings of other design methodologies. In describing this model we will first

outline its design knowledge requirements. Secondly, the case-based design synthesis process will

be examined. And finally it will be argued that this approach to design exhibits a number of

advantages, over existing methodologies, that may be exploited in future design systems.

4.1 Case-Based Design Knowledge

The Déjà Vu model integrates two distinct types of design knowledge: specific design episodes

(design cases) and specific decomposition episodes (decomposition cases). Design cases capture

actual design solutions as well as some descriptive representation of the behaviour, function, and

structure of these solutions2. The description of a case is a feature-based structure that is used

during retrieval to determine the applicability of a case to a new target situation. A similar

representation scheme is used for decomposition cases. These capture more abstract information

but are nevertheless firmly grounded in specific design episodes, and again each case contains a

solution component and some descriptive component. In fact by organising experiential design

knowledge in this way, complex designs are represented as design hierarchies (Figure 5).

2Cases may also include causal information related to the design in question and perhaps may even contain the design
rational (the justifications and evaluations of design steps) that lead to the development of the particular design;
however this approach was not taken in our prototypes.

Each design hierarchy captures a specific complex design at a number of levels of abstraction.

Design cases are the terminal nodes of these hierarchies as these contain the most specific design

details. Decomposition cases are the internal nodes, with the level of abstraction increasing as one

moves up through the hierarchy. A design hierarchy captures the decomposition structure of a

= Decomposition Case = Design Case

Figure 5. Design hierarchies.

particular design, from the most abstract level, the specification, to the most specific level, the

actual design solution.

For example, in Déjà VuPCS design cases are actual plant-control software solutions, while

decomposition cases correspond to the "rough plans" of more complex design solutions. Figure 6.

depicts a portion of a design hierarchy. The top-level node, a decomposition case whose solution is

a rough plan for a design that uses a particular vehicle (coil-car*1) to unload a coil from a tension-

reel and load it onto a skid. Part of this plan (as highlighted) is fulfilled by a design that deposits the

coil on the vehicle from the tension-reel. Another decomposition case is used to further break down

this deposition task, the components of which are solved by two design cases; the design case for

aligning the coil-car with the tension-reel is shown, and after aligning the vehicle the second design

case (not shown) releases the coil from the tension-reel onto the coil-car.

Déjà VuGUI's design hierarchies are similar in nature, but a greater variety of decomposition

perspectives are utilised. Whereas the above functional decomposition is adequate for plant-control

software, GUI software can be decomposed in a number of ways. For example, by the structure of

the data to be manipulated, or by the manipulation functions themselves, or by the desired interface

layout and geometry.

4.2 Case-Based Design Synthesis

During a typical design session an initial specification is transformed, through a set of intermediate

design abstractions, into the actual design solution; solutions are developed in a top-down,

hierarchical fashion. An iterative case-based reasoning cycle controls the processes at each level of

synthesis. The basic cycle is the retrieval and adaptation of a case. The fundamental issues that

must be resolved include, the retrieval of a suitable case and the adaptation of this case for the

current design context. In addition, after solving the component tasks of a given specification the

integration (or recomposition) of the resulting solution components must be addressed; it is often

the case that these solutions will need further modification if they are to provide a complete

solution to the target problem.

= Decomposition Case

= Design Case

Action :
Load :
Source :
Destination:
 :

Deposit
Coil*1
Tension-Reel*1
Coil-Car*1
 :

Release
Coil*1
from

Tension-
Reel*1

Align
Coil-Car*1

with
Tension-
Reel*1

Position
Check

Stop @
Spool-Stand
of Tension-Reel*1

Coil-Car*1
Slow
Ascend

Coil-Car*1
Stop

Wait 0.3
Seconds

Action :
Vehicle :
Destination:
 :

Align
Coil-car*1
Tension-Reel*1
 :

Action :
Load :
Vehicle :
Source :
Destination:
 :

Unload
Coil*1
Coil-Car*1
Tension-Reel*1
Skid*1
 :

Deposit
Coil*1 from

Tension-Reel*1
onto Coil-Car*1

Description Features

Solution
(Decomposition Strategy)

Solution
(Design Solution)

Figure 6. A plant-control design hierarchy.

4.2.1 Case Retrieval

During a design session the retrieval of a design case means that a detailed design solution can be

found by adapting its solution. However, in contrast to traditional case-based approaches, a

decomposition case may be retrieved. This indicates that the specification was too complex for

design case to be of use, but that it may be decomposed into simpler sub-specifications; the solution

of the decomposition case, when adapted, being used as the appropriate decomposition strategy for

the specification at hand. In this way the decomposition process is fully integrated into the design

model, and is used if and only if it is really necessary.

The retrieval of a suitable case is critical to the success of case-based reasoning (Cain, Pazzani and

Silverstein, 1991; Kolodner, 1989). In design problem solving the salient features for determining a

good case depend very much on the target context and so cannot be predetermined. This problem is

compounded when using complex design cases, part or all of which could be suitable to a variety of

target situations; predetermining these different relevant contexts is clearly not a viable option. In

addition, the importance of each feature as part of a fixed similarity metric cannot be predetermined

either (Alberts, Wognum and Mars, 1992). Déjà Vu employs a novel approach to similarity

measurement that does not rely on a fixed similarity metric or predetermine feature salience. Very

briefly, the similarity of a candidate with respect to the target is measured on the basis of the

adaptation requirements of the candidate. That is, the modifications that must be made to the

candidate are predicted during retrieval by analysing the mappings generated between the candidate

and target. Adaptation knowledge (knowledge about possible adaptations) is used by the retrieval

process to make these predictions. Thus feature weightings reflect their “adaptability” with respect

to the current target and are not based on some predetermined estimate of semantic salience.

Although beyond the scope of this work this retrieval approach offers many advantages, improving

the accuracy and flexibility of the case-based approach (see Smyth and Keane, 1993).

4.2.2 Case Adaptation

The retrieved case represents a specific design grounded in a specific design context. The

adaptation task is concerned with transferring this design to the current, target design context.

During adaptation the important issues are the identification of those features of the retrieved

design that can be transferred unchanged and the identification of those features that cannot. In the

Déjà Vu model both design cases and decomposition cases can be modified.

It is our experience that, in many domains, design adaptation knowledge can be most readily

captured as a set of task specific adaptation models. Each model or specialist is charged with

modifying a particular part of a retrieved design corresponding to some feature of the design. So in

this way design adaptation knowledge can be organised as feature-to-feature adaptation models or

specialists. For example, Déjà VuGUI contains adaptation specialists designed to make modifications

to the graphical elements (widgets) of an interface. To design an interface for displaying a body of

text, the system might retrieve a design for displaying a list of text elements. During adaptation the

list widget of the retrieved design must be changed to a text widget required in the target. Therefore

one type of transformation specialist is concerned with transforming list widgets into text widgets.

Unfortunately, design domains are usually highly interactive in nature; that is, dependencies exists

between elements of design domains and consequently between elements of design solutions. These

dependencies constrain the modifications that can be made on a particular design, and so the

adaptation task can be viewed from the perspective of a constraint satisfaction problem; retrieved

designs can only be transformed in a manner that preserves the integrity of the design with respect

to the target context. The "blind" application of adaptation specialists is bound to introduce

conflicts into the design that must be resolved; a specialist that alters one feature of a design may

effect another feature. To this end, we propose a second type of adaptation model, strategies. Each

strategy corresponds to some generalised conflict configuration that can occur; Hammond

(Hammond, 1989) outlines a number of such failure configurations that are applicable to a range of

planning and design tasks. Each strategy also contains a number of repair methods that can resolve

the conflict in question. Returning to the GUI design domain one common conflict configuration

occurs when the result of some specialist's action blocks the pre-condition of some solution feature.

For instance, transforming a list widget into a text widget may cause a failure because the list

accessor functions cannot be applied to text widgets; that is, a precondition of the list accessor

functions is that they can only be used on a list widget. One repair that the strategy might suggest is

to change the blocked feature to one with a compatible pre-condition; that is, change the list

accessors to text accessors (for further details with particular emphasis on the adaptation of plant

control software designs see Smyth and Keane, 1993).

4.2.3 Case Integration

During integration the generated solutions must be combined to provide a coherent solution

spanning the current specification. In fact, integration (or recomposition) is more a consequence of

the decomposition process than an externally motivated design stage in its own right; the

decomposition of a problem into sub-problems implicitly assumes that recomposition will occur.

Its recognition here reflects the fact that, for design tasks it is by no means a simple process. In

general dependencies will exist between design components and these dependencies must be

represented and dealt with during integration. Déjà Vu uses knowledge, similar in nature to its

adaptation knowledge, to carry out the task of integration. Integration models act on solution

components in an effort to combine them into a conflict free design.

4.3 Beneficial Implications

This model has a number of advantages over other approaches to design, including existing hybrid

models. Domain applicability is certainly improved and in particular Déjà Vu facilitates design in a

relatively untouched class of design tasks. In addition the model provides tractable answers to many

of the problems associated with decompositional design methods, including the selection and

application of appropriate decomposition strategies. Learning is also facilitated, not just of new

design cases but also of new decomposition strategies.

4.3.1 Domain Applicability

From the perspective of "real-world" design one of the most damaging disadvantages of

decompositional design is its restricted applicability. Decompositional design methods are unlikely

to facilitate design in domains with a weak domain theory or an incomplete design knowledge-base.

In contrast, an important advantage of case-based methods is their use of case knowledge, filling

gaps in domain theories and knowledge, and hence facilitating design in weak domains or with

incomplete knowledge.

In weak domains it may not possible to develop plan-based decomposition strategies as many

systems such as CADSYN propose. In contrast Déjà Vu's reliance on case-based strategies is a

more reasonable request from the knowledge acquisition viewpoint. The needed strategies can be

abstracted from design episodes, even in weak domains, and they do not need to be generally

applicable.

Decompositional methods are also plagued by interaction problems in context sensitive domains

where a high degree of dependencies exist between domain elements; problems cannot be

decomposed, using generalised strategies, into independent sub-problems and so recomposition

becomes problematic. Cases on the other hand constitute "good" and correct design solutions.

Conflicting dependencies between design variables have been satisfied within the scope of a

particular case. The hope is that in applying these cases to similar target problems, adaptation will

not result in the emergence of any new conflicts. That is, once cases are sufficiently similar to the

target they should lead to the target design in a fairly straightforward fashion. Consequently, during

decomposition the prevention of conflicts between the decomposed structures leads to a far simpler

integration stage.

So, as an integration of case-based and decompositional design, Déjà Vu benefits from greater

domain applicability. Of course it can be used in strong domains with complete knowledge (to

enhance performance). But more importantly it can be used in weak theory domains or in systems

with incomplete domain knowledge. And in particular, it is best utilised for weak theory domains

with incomplete knowledge where the representation of decomposition strategies is more readily

achieved as episodic structures.

4.3.2 Locating and Applying Decomposition Strategies

There are many difficulties associated with decomposition in all but the simplest of domains;

deciding what has to be decomposed, how the decomposition is to be carried out, how to find the

appropriate decomposition strategy, and how to apply this strategy.

A common approach to decomposition is to use a fixed decomposition plan. However in many

domains this is not feasible; for example, it has been argued that in weak domains such as design,

there is often no causal basis for decomposition and so general decomposition strategies cannot be

easily formulated. In addition, fixing a small number of general strategies seriously limits the

capabilities of the approach; in general a wide array of strategies might be desirable, the choice of

one in particular depending on the current target situation. The answer provided by Déjà Vu is to

make use of design experience as a framework for decomposition. This affords Déjà Vu with a

tractable mechanism for selecting the appropriate strategy. A large number of decomposition cases

can be maintained within the case-base and case retrieval methods provide a means for selecting the

appropriate strategy on the basis of their suitability to the target problem

In addition the use of plan-based strategies may cause problems when they are applied to

specifications for which they are not quite suited. Déjà Vu has the facility to adapt decomposition

cases, and hence decomposition strategies, so that they fit the target problem in a precise manner.

This results in less problems during the application of strategies, since they are tailored to the

specifics of the target problem.

A further advantage that Déjà Vu has to offer is that during design a number of strategies may be

combined at varying levels of abstraction. Again this is a benefit that many traditional approaches

don't offer. Such approaches are restricted to using one particular strategy during the decomposition

of a given problem. At each stage of design Déjà Vu can choose a decomposition strategy that is

best suited to the task at hand. This is important since as a design solution is elaborated on,

previously hidden details will emerge. A premature commitment to a particular decomposition

strategy without reference to these details may prove problematic.

4.3.3 Learning

A major advantage of the case-based reasoning approach is that new design knowledge can be

incrementally learned during problem solving. In Déjà Vu this facility extends, not only to the

accumulation of new design cases, but also new decomposition strategies. That is, as target

problems are solved, new strategies will be devised and learned that are specifically tuned to these

problem situations. Newly developed solutions are packaged as a case structures and indexed into

the case-base where they are available for future design sessions.. In using hierarchical case-based

reasoning, complex design hierarchies of interconnecting cases will be learned during the design

process, rather than just a single case as in conventional CBR systems.

5 Conclusions

This paper has been concerned with investigating hybrid approaches to design synthesis and

examining their shortcomings. In particular, with these shortcomings in mind, a new model of

design has been advanced. This model, Déjà Vu, has tackled the problems of traditional design

methods in a direct fashion, and provides tractable answers to many open questions. The result is a

model of design that relies on case-type knowledge to decompose and generate complex design

solutions. The technique can be applied to a wider range of domains than other methods. In

particular, the use of decomposition cases provides answers to many of the problems with

decompositional methods for design tasks with a weak domain theory and incomplete knowledge.

Déjà Vu is substantially different from other hybrid models of design synthesis, most notably in its

approach to decomposition. CADSYN for example, uses an "either-or" approach to design,

choosing either a generalised decomposition strategy or a case-based approach to solve the current

task. JULIA, on the other hand, does use experience-based strategies, but these represent fixed

decomposition plans. ARCHIE is also different, using a set of weak decomposition heuristics to

suggest possible ways of dividing complex situations. In contrast to these systems, Déjà Vu uses

cases to provide decomposition strategies which can be more readily acquired than generalised

plan-based strategies, in weak theory domains. Furthermore, decomposition cases are not fixed and

can be adapted to fit the target situation. In addition, Déjà Vu is capable of accumulating new

design knowledge during problem solving. The learning of new design hierarchies means that, not

only are actual design cases learned (as in many CBR systems), but new decomposition strategies

are also acquired. The overall result, is a more complete architecture in which the CBR paradigm

guides and controls all stages of the synthesis process.

Finally, this model of design has been evaluated through two implementations of software design

systems. In both, a complex design task was addressed, one that was based on a domain without a

strong causal theory and where complete knowledge was not available. Preliminary results have

been encouraging, and future work will continue to examine the applicability of the model and

extend its design capabilities to accommodate more and more complex design synthesis tasks.

References

Alberts, L.K., Wognum, P.M. and Mars, N.J.I. (1992). Structuring Design Knowledge on the Basis

of Generic Components. In Artificial Intelligence and Design '92, Netherlands: Kluwer Academic

Publishers, pp 639-656.

Berlage, T. (1991). OSF/Motif: Concepts and Programming. Addison-Wesley.

Cain T., Pazzani M.J., and Silverstein, G. (1991). Using Domain Knowledge to Influence

Similarity Judgements. In Proceedings of the Case-Based Reasoning Workshop. Morgan

Kaufmann, pp. 191-198.

Chandrasekaran, B. (1990). Design Problem Solving: A Task Analysis. AI Magazine, Winter 1990,

Vol. 11, No. 4, 59-71.

Domeshek, E. and Kolodner, J. (1993). Using Points in Large Cases. AI Engineering Design

Analysis and Manufacturing Journal, Vol 7, No. 2, 87-96.

 Gero, J.S. (1990). Design Prototypes: A Knowledge Representation Schema for Design. AI

Magazine, Winter 1990, Vol. 11, No. 4, 26-36.

Hammond, K.J. (1989). Case-Based Planning, Academic Press.

Hennessy, D. and Hinkle, D. (1992). Applying Case-based reasoniong to Autoclave Loading. IEEE

Expert, 7(5), 21-26.

Hinrichs, T. (1991). Problem Solving in Open Worlds: A Case Study in Design,. Hillsdale, New

Jersey: Lawrence Erlbaum.

Hua, K. and Faltings, B. (1993) Exploring Case-based Building Design - CADRE. AI Engineering

Design Analysis and Manufacturing Journal, Vol 7, No. 2, 135-143.

Kolodner, J. (1989). Judging Which is the "Best" Case for a Case-Based Reasoner. In Proceedings

of the Case-Based Reasoning Workshop. Morgan Kaufmann , pp 77 - 84.

Kolodner, J. (1991). Improving Human Decision Making through Case-Based Decision Aiding. AI

Magazine. Summer 199, 52-68

Maher, M.L. (1990). Process Models for Design Synthesis. AI Magazine, Winter 1990, Vol. 11,

No. 4, 49-58.

Maher, M.L. and Zhang, D.M. (1993). CADSYN: A Case-based Design Process Model. AI

Engineering Design Analysis and Manufacturing Journal, Vol 7, No. 2, 97-110.

Pu, P. (1993). Issues in Case-based Design Systems. AI Engineering Design Analysis and

Manufacturing Journal, Vol 7, No. 2, 79-85.

Redmond, M. (1992). Learning by observing and understanding expert problem solving. Ph.D

Dissertation, Georgia Institute of Technology, College of Computing. TRGIT-CC-92/43.

Reisbeck, C. K., and Schank, R. C. (1989). Inside Case-Based Reasoning. Lawrence Erlbaum

Associates.

Simon, H.A. (1973). The structure of ill structured problems. Artificial Intelligence, 4 181-201

Smyth, B. and Cunningham P. (1992). Déjà Vu: A Hierarchical Case-Based Reasoning System for

Software Design. In Proceedings of the 10th European Conference on Artificial Intelligence. Wiley,

pp 587-589.

Smyth, B. and Keane, M.T. (1993). Retrieving Adaptable Cases: The Role of Adaptation

Knowledge in Case Retrieval. Working

papers of First European Workshop on Case-Based Reasoning, Kaiserslautern, Germany.

Velosa, M. and Carbonell, J. (1991) Automating case generation, storage, and retrieval in

PRODIGY. In the Proceedings of the First International Workshop on MultiStrategy Learning.

George Mason University, Fairfax, VA, pp 363-377.

Takeda, H., Veerkamp. P., Tomiyama, T. and Yoshikawa, H. (1990) Modelling Design Processes.

AI Magazine, Winter 1990, Vol. 11, No. 4, 37-48.

