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Abstract. A major advantage in using a case-based approach to developing
knowledge-based systems is that it can be applied to problems where a strong
domain theory may be difficult to determine. However the development of
case-based reasoning (CBR) systems that set out to support a sophisticated case
adaptation process does require a strong domain model. The Derivational
Analogy (DA) approach to CBR is a case in point. In DA the case
representation contains a trace of the reasoning process involved in producing
the solution for that case. In the adaptation process this reasoning trace is
reinstantiated in the context of the new target case; this requires a strong
domain model and the encoding of problem solving knowledge. In this paper
we analyse this issue using as an example a CBR system called CoBRA that
assists with the modelling tasks in numerical simulation.

1 Introduction

Case-Based Reasoning (CBR) has emerged from research in cognitive psychology as
a model of human memory and reminding. It has been embraced by researchers on AI
applications as a methodology that avoids some of the knowledge acquisition and
reasoning problems that occur with other methods for developing knowledge-based
systems. One of the central advantages in using a case-based approach to developing
knowledge-based systems (KBS) is that CBR systems can be developed without
encoding a strong domain theory for the problem domain [1]. In particular CBR
systems can be developed without explicit encoding of problem solving knowledge.
However there are CBR systems that incorporate a strong domain theory. Systems
that set out to support a sophisticated case adaptation process do require a strong
domain model. So there is some question as to whether these CBR systems with deep
knowledge representations loose this central advantage of the CBR approach to KBS

development.*

The Derivational Analogy (DA) approach to CBR is a case in point [2-7]. In DA
the case representation contains a trace of the reasoning process involved in
producing the solution for that case. In the adaptation process this reasoning trace is
reinstantiated in the context of the new target case. If the domain model is to support
the reinstantiation of a reasoning trace then it will have to be a fairly comprehensive
representation.

In this paper we will attempt to analyse this issue using as an example a CBR
system called CoBRA (Case-Based Reasoning Assistant) that assists with the
mathematical modelling tasks in numerical simulation. CoBRA is a DA based CBR

                                                          
*  It is worth mentioning that these comments apply to the use of CBR in developing KBS and
not to the use of CBR as a model of memory and mental processes.
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system that produces simplified models of cooling fins for heat and fluid flow
analysis. CoBRA's cases consist of model descriptions and a trace of the model
simplification process (see Figure 4). The adaptation process attempts to reapply this
reasoning trace to the fin model in the target case. This regenerative adaptation
involves the reworking of problem solving knowledge so it is necessary that domain
knowledge and problem solving knowledge be encoded in the system.

The questions we wish to consider are:-

(i) Is the advantage of CBR lost in having to support it with a deep model of
the problem solving process?

(ii) Does the use of CBR in complex problem domains manage to avoid any
of the knowledge engineering needed for a solution based on reasoning
from first principles?

(iii) Could this system have been developed as readily by encoding the
knowledge as a planning system of transformation operators?

As a counterexample to this complex CBR application we will describe Rachmann, a
system for property valuation. As an example of a CBR system using substitution
adaptation this is at the easy end of the spectrum and the advantage of CBR is
evident. We will argue that substitution adaptation works for the valuation task
because the problem structure is simple; an important characteristic being that the
solution is atomic. In tasks where the solution expression has a complex structure the
adaptation process is more delicate and interaction between solution components
must be considered. The cases in CoBRA have this kind of complexity.

In the next section we analyse the characteristics of the different types of CBR
systems, focusing on the knowledge acquisition requirements of the different
adaptation strategies. In section 3 substitution adaptation and transformation
adaptation are discussed in this perspective. The adaptation process in CoBRA is
described in section 4. In section 5 we discuss the knowledge engineering
requirements to support generative adaptation.

2 CBR and Problem Complexity

The basic tenet of CBR is that, rather than solve a problem from first principles, it
may be easier to retrieve a similar problem and transform the solution to that
problem. In Figure 1 we attempt to illustrate this trade-off graphically. SP' represents
the specification for a new problem and SL' is the solution to that problem. FP'
represents the search process that establishes this solution from first principles—the
task we wish to avoid. A CBR solution is worthwhile if the retrieval task R, and the
adaptation task A are simpler than FP'.

From an 'AI as Engineering' perspective the big issue here is the complexity of the
adaptation task A. An analysis of the CBR literature suggests that CBR adaptation
might be divided into three categories arranged in order of increasing complexity as
follows:-

• Substitution Adaptation: This is the simplest type of adaptation and
merely involves substituting some of the parameters in the solution. The
Rachmann system described in section 3.1 is a typical example of a
CBR system requiring this minimal adaptation.
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• Transformational Adaptation: This adaptation is more complex and
involves structural changes to the solution. (see [8], [1])

• Generative Adaptation: This is the most complex adaptation and is
represented by AG rather than A in  the diagram. The adaptation process
involves a reworking of the reasoning process FP in the context of the
new problem situation represented by SP'. Generative Adaptation is also
known as Derivational Analogy. [2-7]

A

FP'FP

R

SL

SP SP'

SL'

AG

SP Specification A
Adaptation
SL Solution R
Retrieval
FP First Principles

Reasoning
AG Generative

Adaptation

Figure 1. The transformation processes in CBR and in reasoning from first principles.

These different adaptation categories are appropriate for problems of different
complexity. Substitution adaptation will only work for comparatively simple
problems where the solution statement is simple or atomic (expressible as a single
price or a fault category for instance). Transformation adaptation can work where the
solution has a more complex structure (a plan perhaps) but the components of the
solution are not very interdependent. Thus the distinction between substitution and
transformation is one of degree. The other aspect to this is that transformation offers
more coverage than substitution. Cases can be transformed to a wider variety of
different solutions but a more complete domain model is required to do so (see Figure
2).

For problems where the solutions are made up of interdependent components, as
occurs in design for instance, solutions are too brittle to be transformed in this
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manner [3]. Instead, it is necessary to re-generate solutions as is done in Derivational
Analogy.

Solution Space Solution Space

Substitution Transformation

Figure 2. Transformation adaptation has more coverage than substitution. With transformation
cases can be adapted to a wider variety of solutions.

This diversity in CBR means that the different categories of CBR systems have
radically different characteristics. Some of these differences are summarised in Table
1. In CBR systems supporting substitution adaptation, retrieval is based on surface
features and only a minimal amount of domain knowledge is encoded in the system.
Transformation adaptation requires retrieval based on more abstract features and
needs access to a deep domain model. Derivational Analogy involves the replay of a
reasoning trace so problem solving knowledge is encoded in the case base. Since it is
accepted that problem solving knowledge is considerably more difficult to acquire
than domain knowledge (see arguments of Bergmann et al. [9]) this means that DA is
radically different from other approaches to CBR from the perspective of knowledge
acquisition. This is consistent with Veloso's view that DA is a bridge between
memory based reasoning (in the broad sense) and traditional first principles planning
[6].

Table 1. A summary of the different categories of CBR system.
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3 Substitution & Transformation Adaptation

The basic argument emerging from the analysis above is that there is a fundamental
difference between CBR systems involving substitution or transformation adaptation
and systems involving regenerative adaptation. The fact that the later involves
encoding problem solving knowledge results in knowledge acquisition requirements
that are considerably more complex. Before moving on to discuss Derivational
Analogy in CoBRA we will describe how a CBR system for property valuation can
operate even though there is no explicit encoding of problem solving knowledge.

3.1 Rachmann: A classic CBR system

Rachmann is a small CBR system for property valuation. Each case is a property
represented as set of features and the value of that property (see Figure 3). A target
case is a set of features representing a property for which a valuation is sought. The
system finds the best match from its case base and performs simple adaptations on
that case to determine a valuation for the target case.

The advantages of CBR for knowledge acquisition are manifest in this example.
The cases are easy to set up as the features are obvious important attributes of  houses
affecting the market value. However, the system is not completely without a domain
theory because the organisation of the indices in the discrimination network reflects
their relative importance. In addition, the partitioning of a city into locations
reflecting property values requires some expertise. So the domain model in this
system is a frame representation describing houses locations and important features.
For this task problem solving knowledge might be encoded as heuristics that link
predictive features to property values. However, in this system there is no explicit
encoding of problem solving knowledge; instead the case retrieval mechanism has
implicitly learned these relationships. For this reason the system has been much easier
to set up than an equivalent system using heuristics to reason from first principles.

Location: 
B-Rooms: 
Age: 
Rec-Rooms: 
Kitchen: 
Rear-Acc.:

Tot-Area: 
En-Suite: 
 :        :

SM-1 
3 
Modern 
2 
Large 
Yes

>1,200 
Yes 
 :        :

Price £98,000

Indices3 LR4WF
Location: 
B-Rooms: 
Age: 
Rec-Rooms: 
Kitchen: 
Rear-Acc.:

Tot-Area: 
En-Suite: 
  :        :

SM-1 
2 
Modern 
1 
Small 
No

<800 
No 
 :        :

Price £75,000

Indices

Figure 3. Example cases from Rachmann, the property valuation system

This ability of CBR systems to operate without problem solving knowledge continues
to hold true for transformation adaptation as long as the components of the solution
are not very interdependent (see CHEF [8] or Déjà Vu [1]). However, as we shall see
in the next section DA does not have this simplicity.
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4 Generative Adaptation in CoBRA

CoBRA is an example of a CBR system operating in a domain where substitution
adaptation is inadequate. The application domain of CoBRA is mathematical
modelling in numerical heat transfer analysis which is considerably more complex
than the Rachmann house valuation domain. Heat transfer problems are described
mathematically by the thermal partial differential equations (PDEs) and are usually
analysed using numerical simulation techniques such as the finite element method.
Modelling precedes numerical analysis and involves abstracting a mathematical
model from a real world problem by applying physical and mathematical
idealisations. The objective for modelling is to create a model that is computationally
realistic to solve, but, at the same time retains the important features of the physical
system. This task forms an important initial stage in real world engineering analysis
problems and for the analyst it involves making a series of assumptions and
justifications to produce the simplified model [10,11,12].

Figure 4 illustrates a typical modelling scenario associated with the analysis of an
electronic cooling fin. This problem is considered too complex to analyse directly and
must therefore be modelled before numerical analysis can be undertaken. Cooling fins
can be modelled by applying one of the following strategies; fin simplification, fin
removal and compensation (with an equivalent boundary condition) or complete fin
removal.

Plate with 
complex fin

Target 
Problem

Solution 
Space

Plate with  
simplified fin

Feature  
Simplification 

 

Plate without  
complex fin

Plate with equivalent  
boundary condition

Feature Removal 
and Substitution

q

Feature  
Removal

Problem  
Solving 
Episode

Figure 4  Model Reasoning Trace in CoBRA

The system has been implemented in frames in Common Lisp and uses an
AutoCAD interface to communicate model changes to the user. Execution involves
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selecting suitable cases and reworking the derivational trace associated with that case
in the new context. The system narrates its rework as follows:-

Checking predicates:
- Feature must face into flow
- Feature must be centred on face
- Feature must be compared to the
  width of the face on which it sits
- Feature height must equal its width

All predicates checked: applying
operations.

*** Feature not significant from flow
perspective ***

Checking predicates:
- The feature's exposed surface area
   must be small compared to the surface
   area of the face on which it sits.

All predicates checked: applying
operations.

*** Feature not significant from heat
perspective ***

*** Removing ***

Modelling strategies are based on experiential modelling episodes and therefore do
not have a strong domain theory [11]. The reasoning process involved in deciding
which strategy to apply requires the use of fundamental heat transfer knowledge in the
form of formulae, approximations, correlations and assumptions. This knowledge is
problem solving knowledge, and it provides the means to assess the applicability of a
strategy in the context of the problem under consideration. Although this problem
solving knowledge has a strong theoretical background and can be considered to be
relatively complete, its application is poorly understood and successful use is based
on experience. Furthermore, the application of such problem solving knowledge is
highly dependent on the physical system being analysed and the strategy being
assessed. The implication of this is that the use of model based or generalised
planning techniques have proven to be problematic in model generation [11]. This has
led us to examine the use of derivational analogy techniques in this domain which has
been tackled using planning and first principles approaches hitherto.

4.1 Case Descriptions in CoBRA

The nature of the reasoning process associated with problem solving in CoBRA
required the use of generative adaptation techniques, which involved the encoding of
problem solving knowledge as well as domain knowledge within the cases. In
CoBRA, a case consists of a representation of the real world physical system, the
solution in the form of a simplified model and a reasoning trace of the justifications
for the transformations in going from the real world problem to the simplified model.
Figure 5 illustrates a portion of such a case. The diagram on the left shows a cross
section of a finned heat exchanger cooler, and the task addressed by CoBRA is to
produce a simplified model of this physical system. The frame definition on the right
illustrates the problem description, the problem solution and the derivational trace
that provided this solution. A target case contains only the problem description; this is
the specification of the physical system. Cases are retrieved using an activation
network based on feature similarities and a case solution is created by using
generative adaptation involving a re-run of the reasoning trace. This adaptation by
regeneration is derivational analogy.
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Figure 5  A case in the CoBRA system

4.2 Regenerative CBR in CoBRA

In CoBRA, the derivational trace links the start and goal state of a case. Each
reasoning trace has two main components; a decision part and a resulting action part
(after [2]). The decision part contains:

• Alternative modelling strategies considered and rejected

• Assumptions and justifications for the decisions taken.

• Heat transfer domain knowledge describing dependencies of later
decisions on earlier ones.

The action part holds the steps taken as a result of the reasoning trace of the decision
part. A typical action is, "Remove the feature which faces into the flow". The main
actions in CoBRA are REMOVE, RESIZE and COMPENSATE. The actual functions
used to express these actions must be sufficiently abstract to allow their application to
cases similar to the one with which they are stored. Both the decision and action parts
operate on parameters which are common to all cases, for example:

• surface-area: the heat transfer surface area

• base-area: the surface area of the feature base.



• location: the location of a feature

A typical reasoning trace is shown in Figure 6. Each node in the reasoning trace
represents a decision point in the model simplification process. Goal_1 and Goal_2
illustrate how a reasoning trace in derivational analogy represents a known good route
through a vast search space. Goal_3 shows the various fin modelling strategies that
are considered and the actions associated with each strategy. In this situation the
modelling strategies depend on the amount of heat transfer associated with the feature
under consideration. By estimating this heat loss parameter a suitable strategy can be
chosen and the appropriate modelling actions can be applied to the target case.
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Fig. 6 A derivational trace for a windward finned appendage

5 Discussion

In the introduction, we posed three questions on the use of generative techniques in
CBR applications. These focused on the use of generative adaptation in CBR, the
knowledge acquisition process in generative adaptation and the development of CBR
systems that are based on generative adaptation. We deal with these issues in the
following sections.



5.1 Generative Adaptation in CBR

The question as to whether generative adaptation compromises some of the
advantages associated with CBR arises because of the need for a deep model to
support this category of adaptation. This is because CBR has the important advantage
that case-bases are considerably easier to set up than other knowledge
representations. There are other advantages however. In problem solving, cases
encode known good routes in the solution space thereby reducing backtracking. These
advantages will only be maximised in CBR systems where solution representations
are not made up of complex interacting components and the adaptation process is
comparatively simple. Our experience with the Rachmann system confirms this view.
However, in CoBRA, where solutions have complex representations, adaptation is
more difficult and a full domain model is required to support this adaptation, our
opinion is that some of these advantages have been lost.

5.2 Knowledge Acquisition in Generative Adaptation

We would like to consider two perspectives on the issue of knowledge acquisition.
Firstly, from the CBR viewpoint, we compare the knowledge acquisition process in
systems based on either substitution or generative adaptation. Secondly, complex
domains (like CoBRA) can also be implemented using model based or planning
approaches; we examine from a knowledge engineering perspective the knowledge
acquisition task in generative CBR and model based approaches.

Considering the CBR perspective, in the Rachmann case-base, setting up the
system required very little knowledge level analysis as the heuristics were encoded
implicitly in the cases. By contrast a rule-based system for the same task would
require the determination of the influence of features such as; location, facilities, etc.
would have on price. So, for this property valuation problem, CBR has avoided this
need to explicitly encode a domain model. In CoBRA however, the knowledge
engineering process required the explicit acquisition of problem solving knowledge
from a domain expert and representation of this knowledge in the reasoning traces.

From a knowledge engineering perspective, the conventional alternative to the
CoBRA system involves developing a model of the entities in the problem domain
and encoding heuristics that represent the transformations on these entities. The
granularity of the knowledge required for a model-based approach is similar to that
encoded in the reasoning traces in CoBRA. However, it can be said in favour of
generative CBR that the emphasis on cases focuses the knowledge acquisition process
and as a result provided no special difficulties for our domain expert. This is in
contrast to experiences for elicitation of generalised knowledge in model based
reasoning systems.

 5.3 System Issues

Given that for complex applications, the granularity of knowledge representation in
generative CBR systems is comparable to that in model based approaches, the issue
arises as to whether there are any control advantages associated with derivational
CBR. It is evident from the literature that there has been much research on complex
application domains that do not use CBR, particularly under the headings of model



based reasoning and qualitative reasoning (see for instance [13-15]). This research
emphasises representation but it is evident that the reasoning process in mind is one
of planning, with search involving backtracking through a solution space. Our
experience is that the reasoning traces in DA can help constrain this search process by
providing known good routes through complex solution spaces.

6. Conclusions

In this paper we analysed the issue of generative adaptation in CBR systems that use
derivational analogy. This study was based on comparing CoBRA, a generative CBR
system with the Rachmann system which is based on substitutional adaptation. Our
findings are that for complex application domains, using a CBR approach still
requires the explicit acquisition of  problem solving knowledge which must be
encoded as derivational traces. In our opinion, this  overhead compromises the
important advantage associated with substitutional CBR systems where domain
knowledge is encoded  implicitly in the cases. On the other hand, for complex
application domains, generative CBR may offer some advantages compared to model
based reasoning approaches.  Our experience has been that episode-based problem
solving knowledge proved easier to acquire than generalised problem solving
knowledge, and secondly, derivational traces avoid the extensive search and
backtracking associated with planning based systems by encoding a known good
route through a vast solution space.
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