
UNIVERSITY OF DUBLIN

TRINITY COLLEGE

DEPARTMENT OF COMPUTER SCIENCE

Modular parsers Simon Dobson

29 September, 1998

Abstract

Traditional parser generators are designed to produce highly optimised parsers for
grammars known in their entirety ahead of time. There are some circumstances where
it is desirable to construct a parser from grammar fragments, for which the flexibility
of combination is more important than the speed of the final parser. We describe a
system of parser components, generating parsers for grammar fragments and which
may be combined using a small set of parser combinators to produce a final parser.

1. Introduction

Parsing is one of the most common operations in computing, lying at the heart of all
systems which must manipulate text-based data encodings. The parser’s task is to
convert a linear text-based representation into a structured representation suitable for
use within algorithms. Typically this results in a “parse trees” reflecting the nested
structure of the textual encoding.

Traditional parser generators such as lex/yacc and JavaCC/jjtree are designed
to produce highly optimised parsers for grammars known in their entirety ahead of
time. In the case of a programming language, for example, the parser generator takes
a description of the language’s grammar (its concrete syntax) and produces a tree
representing the structure of the program (its abstract syntax) for use by other
components of the compiler.

There are some circumstances, however, where it is desirable to construct a parser
from grammar fragments rather than from a complete grammar. Whilst there are
complex dependencies between fragments, in terms of the support they require from
other fragments in order to function properly, there is also considerable independence
which may be exploited to increase modularity, flexibility and re-use. Fragments may
be re-used in several different contexts, and the final grammar may be changed by
changing its component fragments.

In this paper we present a system for constructing modular, recursive descent parsers.
We allow grammar fragments to be compiled into parser components representing a
parser for that fragment. These components may be combined using parser
combinators into a “full” parser. The combinators allow new syntactic structures to
be integrated into the structure of a basic grammar, extending the definitions of its
elements. Our presentation is very pragmatic, focussing on the structure of parsers

and the way the combinators affect these structures: we leave a more abstract
treatment for possible future work.

Section two presents a brief overview of parsers and parsing. Section three outlines
the structure of parser components. Section four describes the parser combinators and
their effects in terms of the parser structure. Section five presents two examples of
“fragmentary” grammars. We conclude with a discussion of the impact of modular
parsing on programming language design.

2. Parsers and parsing

A parser converts text into trees according to some grammar. A grammar is
composed of two distinct but related elements, variously called terminals and non-
terminals or (more commonly) tokens and productions. We shall use the latter terms
here.

A token is an atomic piece of a grammar, usually representing a short text string.
Typical tokens might include reserved words, identifiers, numbers etc. A single token
is usually able to represent a large set of strings, so for example all identifiers might
be represented by a token <IDENTIFIER> which carries the actual string (the token
image) along with it. A process called tokenisation or lexical analysis converts the
parser’s input text representation into a sequence of tokens. Tokens are usually
specified using regular expressions over strings: the tokeniser repeatedly scans the
head of the text stream looking for a matching token, and uses the matched portion as
the token’s image.

���������	
	��

����

��

	��

���

���
	
������

������
	�

��
�	���
�

���������	

�
������

������
	�

��
����
���������	

�����	

public void List() #ASTList: { }

{

 <OPENSQUARE> <CLOSESQUARE>

 | Expression() <COLON> <COLON> List()

 { System.out.println(“append!”); }

}

���������	
��������
�

Figure 1: An example production in JavaCC/jjtree syntax

A production is a combination of tokens and other productions, again usually using
regular expressions. A production might, for example, define a list as either an empty
list or an element prepended to a list: the explicit syntactic parts will be identified as
tokens, with the more structured parts identified by productions (in this case, a
recursive use of the list production). The parse tree is constructed by associating a
node of the tree with some or all productions: when a production is recognised, it
generates the associated node with any nodes generated as part of its recognition as
children. (This approach is a little too simple for some parsers, which add explicitly-
coded actions to be taken during recognition.) Figure 1 shows the elements of a
production described using JavaCC syntax.

The most common approach to parser generation recognises the so-called LALR(1)
grammars. A true LALR(1) grammar has the property that the parser can always
proceed based on the next token in the token stream, and the choice made determines
the acceptable structure from there on. This means that ambiguities involving more
than one choice stemming from a common token must be resolved early, either by re-
organising the grammar (which can make it difficult to generate the desired parse tree)
or by relaxing the one-token requirement and looking further ahead in the token
stream. The parser never back-tracks once a decision has been made, so any
unexpected tokens must be syntax errors. LALR(1) parsers can be table-driven and so
be made very compact and efficient.

By contrast, recursive descent parsers perform arbitrary back-tracking: there may be
many possible alternatives for a production, and each is tried in sequence until one
succeeds or all fail. This allows easier handling of ambiguous grammars (as long as
the ambiguity can be resolved eventually), but complicates error reporting as it is hard
to differentiate between a genuine syntax error and an alternative (but still legal)
syntax which will be recognised by another production. The parsing algorithm
follows the recursive structure of the grammar, which is conceptually simpler and
lends itself to analysis but may be less efficient than the table-driven approach.

3. Parser components

In overview, a parser component is a self-contained recursive-descent parser generated
from a grammar fragment, which defines some tokens and productions in terms of
themselves and some other, externally-defined tokens and productions. A component
with no imported elements is what is traditionally meant by “a parser”; components
with imports must have them resolved by combination with other parser components
before the parser can be used.

In this section we describe the run-time structure of parser components and parser
description files as used and generated by our parser generator, using them to illustrate
the underlying ideas. This also gives us a concrete syntax with which to present
parser combinators in the next section.

3.1 Representing tokens and productions

We represent tokens and productions using objects, with the structure of the objects
reflecting the parsing structure. We use objects throughout the representation, for
both production and token regular expressions. This makes the system a little
inefficient but clearer to explain.

Regular expressions are represented using a tree of objects (figure 2). The leaves of
the tree are objects representing literals such as tokens; internal nodes represent the
various combinators for building the regular expressions such as sequencing,
alternatives, repetitions etc. A token in a production is tested against the head of the
token stream, and matches if the head token is an instance of the token being asked
for.

The matching algorithm is very simple. The algorithm maintains a token stream of
tokens derived from the input text by tokenisation, and a stack of abstract syntax tree
nodes produced during matching. To match a production, it first marks the current
positions of the token stream and node stack. It then evaluates the regular expression

for the production. If the expression is matched, it consumes the tokens from the
token stream; if it fails, it rolls the token stream and node stack back to the start.

Or

And

<COLON>

<OPENSQUARE>

<CLOSESQUARE>

And

<COLON>

Action {
 System.out.println(“append!”);
}

List()

Expression()

List()

Or����������	��
��

�
�����������
���
�����
��������

�
������������������
�����������������

���������	��	������
�	��������������

��������������
��
������

�	������	�����������
����	�����

����������������	��

����
�����������������

����	��	�������
���
�
�������������

And����������	��
���
��������
�����
����������������

Figure 2: The object structure of regular expressions

Action elements act as wrappers around a piece of code. If the matching algorithm
encounters an action, it executes it. It is important to realise that a production may fail
after an action has been executed, causing a roll-back, so any code must be written so
that roll-backs do not cause problems.

Each production may have an associated abstract syntax node type. If a production
succeeds, this type is instanciated and any nodes pushed onto the stack during
matching are popped off the stack and added as children of the new node. The new
node itself is then pushed onto the stack. For more complex nodes, an action may be
used to construct a node manually or manipulate the number and structure of the
nodes on the stack.

3.2 Imports

The major difference between a standard parser and a modular one is the existence of
imports representing tokens and productions which will be defined by another parser
component. Using the list example, the List() production uses several tokens and
another production. If we consider this production to be a grammar fragment, some or
all of the tokens and production may be imported. The list fragment may then be used
to define a syntax for lists over any sort of expression using any concrete syntax for
the tokens. Figure 3 illustrates this principle: the <COLON> token and the
Expression() production are imported, and the fragment defines list construction
over any expression.

Within a parser component an imported element is represented by a “placeholder”
token (or production) which wraps-up another element. The parser combinators
described in the next section “fill out” the placeholder with the token when the import
is resolved.

import <COLON>, Expression();

TOKEN:
{
 < OPENSQUARE: “[“ >
 | < CLOSESQUARE: “]“ >
}

public void List() : { }
{
 <OPENSQUARE> <CLOSESQUARE>
 | Expression() <COLON> <COLON> List()
}

Figure 3: Lists as a grammar fragment

3.3 Exports

The dual of importing some productions is making tokens and productions available
for use by others. Exporting subsumes two distinct functions: making a production
available to be imported by other parser components, and allowing components to
extend the definition of a production.

Importing is controlled by visibility modifiers, similar to those used in Java to control
method accesses[3]. A public production is available for import by other parser
components; protected and private productions are not available. (These
modifiers are also propagated into the definitions of the variables in the parser
component.) This allows a parser component to present a slightly abstract interface to
other components by hiding some productions.

public export priority void Expression() : { }
{
 List()
}

private void List() : { }
 { … }

Figure 4: Visibility modifiers

Extending productions is discussed in more detail below, but it is often not desirable
to allow components to extend arbitrary productions. An extra export visibility
modifier marks a production which can be extended. A further priority modifier
indicates a production which takes precedence when combined, an idea described in
the next section.

Figure 4 illustrates the visibility modifiers. The Expression() production is
declared to be public (available for import by other components), exported (available
to be extended by other components), and having priority (see later). The List()
production is not available to other components at all.

3.4 The parser component description

The final piece of a parser component is a description of the structure of the
component to be used by the combinators. The parser description maintains a list of
all the tokens and productions defined within the component, their visibility
properties, and any imported elements which must be resolved.

There are substantial similarities between the parser description structure and the
symbol table in an object file – indeed, the parser combinators perform substantially
the same function as a link loader for a compiler.

3.5 The final structure of a parser component

The parser description files for parser components use a large sub-set of the syntax
used by JavaCC/jjtree. Running the parser component generator across such a
file produces a class representing the parser. (At present these classes are in Java.)
This class may then be instanciated as required to produce a parser for the grammar
fragment.

4. Parser combination

Defining parser components allows us to represent parts of grammars in a modular
fashion. What remains is a way of combining the fragments together into a fully-
defined grammar.

The parser component system provides a single basic way to compose parsers: a base
parser component may have a fragment parser component appended to it. This
append operation it actually defined in terms of some additional, more fundamental
combinators on parsers, defining the behaviour of imported elements, additional
elements and merging. We shall describe these fundamental operations in isolation
first, and then use them to define the append operation.

4.1 Importing

Importing elements involves locating the actual definition of the named element and
re-directing any imported references to this definition. This applies equally to
productions and tokens.

As explained above, a parser component represents an imported element as a
placeholder. Resolving the import involves filling-out this placeholder with the
resolved definition (figure 5) by locating the named element in the parser description
table.

Or

Expression()

Expression()

��������	
����	���

���

��������������
�����
������	

��	����
��	��	���

���

��	��	�
������
����������

��
�
������
������	

Figure 5: Resolving an imported production

4.2 Merging productions

The final part of parser combination involves extending the base components’
productions with new alternatives. A list, for example, is generally treated as an

expression as well as being composed of other expressions. In the list fragment, we
might want to declare that the List() production should be accepted as an
additional Expression(). This may be accomplished by merging the List()
production with the base’s Expression() production (figure 6).

IntegerLiteral()

Expression() StringLiteral()

ArrayLiteral()

List()

����������	
��	��
���
�

�����
��
�����
�	���

�
����������	
���
���������	����
�

	��
��
��
��	�����
���
�	
�

����	���
���

�
�����
�����
�	��

�
��	����
�

�������	
��

Figure 6: Parsing a merged production

Structurally, merging is a simple process. All production regular expressions are
represented as a disjunction – that is to say, the root node of the tree is always an “or”.
Many productions will have only a single disjunct. To merge a fragment’s production
to a base’s, we simply add the fragment’s production regular expression en masse to
the base’s expression (figure 7). Any “self” references in the fragment are re-directed
to the overall merged production.

Or

And

Expression()

����������	
��
�	����

�

��������������
�����

�������	�����
�����
������

And

Or
List()

������	
��
�	������

��������
�
�����

������
�	����	������

��
��	����	���������
�

Figure 7: Merging productions

In general one wants to preserve the underlying structure of the base grammar. By
default, merging adds the fragment’s production as a final disjunct. This has the
important property that merging is conservative: for all strings parsed by the base, the

combined parser will generate exactly the same parse tree, because the base’s
productions will all be tried before the fragment’s productions.

There are circumstances, however, where this is unacceptable, and a fragment wishes
to insert its production before those of the base. In the case of these priority
productions, merging adds the fragment’s production as the initial disjunct of the
base’s regular expression. This allows a priority production to take precedence over
base productions, but also means that the fragment’s production can interfere with the
way in which the base parses strings, removing the conservative property.

4.3 The append operation

We may now show how the basic parser appending operation is defined for two parser
components in terms of these basic operations.

Append takes two parse components, the base and the fragment, changing the base to
reflect the additions from the fragment1. It walks over the parser description structure
of the fragment, applying whichever combinator is appropriate for each element:

• An exported production is merged with the corresponding
production in the base if that production is exported too. If it is a
priority production it is prepended to the base production’s regular
expression; otherwise (the default) it is appended. If there is an un-
exported production with the same name in the base, the fragment’s
production masks the base’s for future operations but the base
production is left unaffected.

• An imported production or token is resolved immediately if there is
a corresponding visible element, or added to the import list if not.

• Other productions are added to the productions with the correct
visibility.

• An exported token is added to the default token set.

Adding an element may also resolve an import.

There are several error conditions which may occur, mostly relating to symbol table
clashes. These throw an exception when detected.

5. Example

To illustrate parser combination, we present a parser for a simple calculator and then
add more advanced functions using an additional parser component.

The parser description in figure 8 defines a very simple parser component. The
preamble simply wraps-up the parser code into a Java class. Expressions within the

1 A more functional approach would be to produce a new component. However, the most common
arrangement in practice is to append a sequence of components together to produce a final parser, so
the default behaviour is more memory-friendly. Parser components are simply classes which may be
freely instanciated, so a new class may be created before appending if the more functional behaviour is
necessary in a particular case.

calculator consist of numbers, the four arithmetic operators (with equal precedence),
and brackets.

PARSER_BEGIN(Calculator)

import ie.tcd.cs.vanilla.grammar.*;

public class Calculator extends ParserComponent {
 public Calculator() { }

 VS_PARSER
}

PARSER_END(Calculator)

SKIP:
{
 < WHITESPACE: (“ “ | “\t” | “\n”)+ >
}

TOKEN:
{
 < NUMBER: [“0”-“9”][“0”-“9”]*
 (“.” [“0”-“9”]+)? >
 | < PLUS: “+”>
 | < MINUS: “-”>
 | < STAR: “*”>
 | < SLASH: “/”>
 | < OPEN: “(”>
 | < CLOSE: “)”>
}

public export void Expression() : { } {
 <NUMBER>
 | Expression() Operator() Expression()
 | <OPEN> Expression() <CLOSE>
}

public void Operator() : { } {
 <PLUS> | <MINUS> | <STAR> | <SLASH>
}

Figure 8: The basic calculator syntax

Compiling this grammar as a parser component will result in a file
Calculator.java implementing the parser. A sample of the code produced is
shown in figure 9. Each of the disjuncts in the grammar gives rise to an
addDisjunct() call. The details of the production are then added to the parser’s
export table.

Suppose we now wish to add two common scientific functions to the calculator.
Rather than alter the Calculator parser, we may generate an additional component
which defines the new forms of expressions and append it to the basic parser (figure
10). The component imports the Expression() production and the bracket
tokens, adds additional tokens for the function names, and defines an additional
Expression() production to be combined with the underlying production.

p = (Or) Expression.getProduction();
p.setName("Expression");
p.addDisjunct(NUMBER);
p.addDisjunct(
 (new And()).add(Expression)
 .add(Operator)
 .add(Expression));
p.addDisjunct(
 (new And()).add(OPEN)
 .add(Expression)
 .add(CLOSE));
desc = new Parser.ElementDescription();
desc.elementType = Parser.ElementDescription.PRODUCTION;
desc.visibility = Parser.ElementDescription.PUBLIC;
desc.priority = false;
desc.exported = true;
desc.imported = false;
desc.production = Expression;
exportTable.put("Expression", desc);

Figure 9: Some of the code generated for the Expression() production

It is important to note that the two parser components are not related by inheritance,
but are related by the details of their imports and exports. This maximises the
potential – admittedly rather negligible in this example! – for re-using a component to
extend other suitable parsers

PARSER_BEGIN(Functions)

import ie.tcd.cs.vanilla.grammar.*;

public class Functions extends ParserComponent {
 public Functions () { }

 VS_PARSER
}

PARSER_END(Functions)

import <OPEN>, <CLOSE>, Expression();

TOKEN:
{
 < SIN: “sin” >
 | < LN: “ln” | “log” >
}

public export void Expression() : { } {
 FunctionName() <OPEN> Expression() <CLOSE>
}

public void FunctionName() : { } {
 <SIN> | <LN>
}

Figure 10: Component adding functions to the calculator

6. Conclusions

We have presented a system of parser components which allow a parser for a grammar
to be dynamically constructed from separately-constructed fragments. This piecemeal
approach to parser generation encourages re-use of fairly abstract grammar fragments.

����� ���		���
��
����� �����
����� ��� ��� ��
���� ��
������������

����� ������ ��
� ���
������
���� ��� ������ ��� ���
��	���������
����������������

We have used modular parsers as a key component of the Vanilla modular language
system[2], so that fragments of a programming language – their syntax, type system
and interpretive semantics – may be combined to form a final language. The ability to
combine pieces of syntax makes an important contribution to exploring language
constructs within a realistic setting. A particularly interesting consequence is that the
“import” statement of a programming language may – in addition to its usual function
of bringing external definitions into scope – include additional syntax for use within
the module.

It is clear that, whilst there is substantial independence between fragments, there are
also some close couplings. In particular, one might regard a parser component as
being typed by its imports and exports, leading to the possibility of a type system over
grammar fragments. This would reduce the number of errors due to unresolved
imports and symbol clashes – although to date this has not been a problem.

Larger combinations of components will suffer from increasing numbers of symbol
clashes – and this has been a problem already, even for comparatively small
grammars. The techniques outlined in [1] for programming “in the huge”, especially
the notion of “closed” and “sealed” systems, may become useful if grammars become
unwieldy. These operations may be implemented very simply as extra combinators
which adjust the visibilities of productions.

7. References

[1] Luca Cardelli, “Typeful programming,” Research report 45, Digital SRC
(1989).

[2] Simon Dobson, “A first taste of Vanilla,” Technical report TCD-CS-1998-20,
Department of Computer Science, Trinity College Dublin (1998).

[3] David Flanagan, “Java in a nutshell,” O’Reilly (1997).

