Distributed CBR using XML
Conor Hayes, Padraig Cunningham, Michelle Doyle

Department of Computer Science
Trinity College Dublin
Conor.Hayes@cs.tcd.ie

Abstract. CBR (case-based reasoning) has considerable potential for developing intelligent
assistants for the World Wide Web. Severa case-based intelligent applications already exist on
the web but these applications follow athin client model with the intelligence located at the server
side. In this paper we explore the advantages of making these applications more distributed. We
illustrate the kinds of application where the dialogue with the case-base is long-lived and network
latency or server load would suggest that some of the processing should be distributed to the
client side. We present an architecture for such a distributed CBR system and describe how a
case-representation language based on XML can facilitate this distribution. The advantages of
adopting an XML case-representation language are interoperability and flexibility of reuse and
these are discussed in the second half of the paper.

1. Introduction

Several web based intelligent assistants that use CBR (case-based reasoning) are already in existence
(see the web site on Case-Based reasoning on the Web* for a list). This illustrates the knowledge
engineering advantages of CBR as an effective reasoning strategy for weak theory problems; that is,
problems where it is difficult to dlicit first principle rules from which solutions may be deduced. A
characteristic of these early applications is that they involve implementations of existing CBR
technology in a web context — the client has a remote dialogue through the browser with the CBR
application at the server side.

The ideas behind our current research have three strands:

1. To extend the incremental CBR (I-CBR) approach to network applications, particularly in areas
where predictive feature are expensive or difficult to come by.

2. To examine a distributed architecture for such a system. Since both the client-server interaction is
long lived and the information theoretic technique of I-CBR is computationally expensive,
response time may be poor.

3. To dituate the first two strands as part of a process of creating open standards for case based
network computing, case base storage and possible interoperability with non-CBR systems.

Thereis currently a growing number of thin client applications on the web. By ‘thin client’ we mean an
application with presentation logic and simple error handling only at the client end while the server side
handles all the business logic and the logic required to integrate the two ends (Wilcox 1997). We argue
that this set-up may not be suitable for al online applications, particularly in those situations where the
server must be contacted several times as part of an incremental process.

In this paper we present an architecture for distributed CBR that allows some of the case-base
processing to be performed on the client side. The objective of this distribution is to improve overall
response times for the user. In addition we introduce CBML, an XML application for data represented
as cases. The Extensible Mark-up Language, XML, is a simplified subset of SGML which was
developed by the W3C XML Working Group to facilitate easy transmission of structured data over
existing network protocols (Bray, Paoli & Spergberg-McQueen 1998).

While Distributed CBR has response-time advantages for the user, a case representation language
based on XML has advantages of interoperability and ease of reuse. XML is a standard for content on
the Internet with XML parsers freely available in Java and in C++. This means that knowledge and data
marked up in CBML isreadily reusable by other applications such as Intelligent Agents.

In section 2 we describe the type of web-based CBR application where interaction is long lived and
networking problems can result in poor response times for the user. In section 3 we present our

! http://wwwagr.informatik.uni-kl.de/~l sa/ CBR/wwwcbrindex.html

architecture for Distributed CBR that addresses this problem and, in section 4 we introduce the CBML
case-representation that will be used to transport cases across the network. Section 5 discusses the
benefits of developing a standard mark up language for network based CBR applications.

2. Web Based CBR Applications

In this section we wish to establish the idea that a dialogue with a case-based assistant can be long-
lived. This can occur because the user may engage the case-based assistant with only a rough idea of
his requirements. These requirements are refined as the user interacts with the system.

Consider the following example of a web based travel advisor system. Two typical cases are shown in
Table 1. These cases are taken from the Travel Agents Case-Base”. In the scenario we will consider
here the user comes to the system knowing that he wants a car-based holiday for three people in three
star accommodation. These requirements produce a target case with just three dots filled. If thisis
passed to the case-retrieval mechanism several tens or hundreds of cases will be retrieved from the
thousands of cases available. The user will be asked to refine the query to narrow down the search. This
can be done by inviting the user to provide any extra information (Kriegsmann & Barletta, 1993) or by
indicating to the user the piece of information that will be most discriminating, i.e. most efficient in
reducing the set of candidate cases (Smyth & Cunningham, 1995; Cunningham, Smyth & Bonzano,
1998). In the scenario we evaluate here we will consider this second incremental model of CBR (I-
CBR) where the retrieval engine indicates to the user the most discriminating feature to provide next.
For instance, the system might ask the user to select aHoliday Type from several types offered.

Table 1. Two cases from the travel case-base and atarget case.

Journey149 Journey162 Target Case
HolidayType: Recreation Wandering -
Price: 922 2588 -
NumberOfPersons: 3 3 3
Region: BlackForest Thuringia -
Transportation: Car Car Car
Duration: 7 14 -
Season: August July -
Accommodation: ThreeStars ThreeStars ThreeStars
Hotel: "Berghotel Hotel Finsterbergen, ?

Kandel, Black Thuringia

Forest

This process continues until a consistent set of cases remains, i.e. a discriminating set of user
requirements has been determined - or until no cases are available to meet the users requirements. In
which situation the user will be invited to backtrack and relax some requirements. The key point hereis
that the process involves a long-lived interaction with the case-base. If the system is implemented as a
thin-client with case-base processing at the back end then network latency and server load may produce
poor response times for the user. Two existing commercial systems that have these characteristics of
long-lived interaction are the OP Amp selection assistant from Analog Devices® and the Configuration
Agent from Cisco®.

In the next section we describe an architecture for distributed CBR that allows some of the case-base
processing to be distributed to the front end. This will eliminate some of the delay due to network
latency, reduce the load on the server and make use of available machine cycles at the client side.

3. Distributed CBR

Our architecture for Distributed CBR is shown in Figure 1. The current thin-client alternative to this
has a Browser based interface at the front-end that connects to the server at the back-end; al the case-

2 available at http://wwwagr.informatik.uni-kl.de/~bergmann/casuel /casebases.html
® http://imsgrp.com/anal og/query.htm
* http://www.ci sco.com/pegi-bin/front.x/config_root.pl

base processing is performed at the back-end. In the distributed architecture the CBR engine is
downloaded to the client side to allow for the later stages of processing to be performed there.

The detail of the operation of the distributed system is best explained in the context of the travel
example presented in section 2. The interface allows the user to describe his requirements. This is
marshalled into a partial case-description that is passed to the CBR Front-end as a Query Context.
Initially this will be passed to the CBR Back-end to find matching cases. If too many potential matches
are found the CBR engine will identify which feature of the matched cases is the most discriminating.
This is then passed to the user interface as a Refining Question. The response to this request for extra
information is passed to the back-end as a refined Query Context. This process is continued until such
time as the Query Context is sufficiently discriminating. At this point, matching cases are passed to the
user interface.

Client

Query
Context
— - Server
22173 4 CBML =
% g = W o w m
28 g m = e Mol £ 3
@ 3 S50 N AWEYS WK B
2o CB E QX 2P
Refining @ = e
Question
Matching
Case(s)

Figure 1. Architecture for Distributed CBR

In this process, as the Query Context is refined, the set of potentially matching cases reduces. The
advantage of the distributed architecture is that once this set is sufficiently small it can be passed to the
front end where processing can be completed without further interaction across the network. The
decision as to when precisely to do this depends on the size of the cases and the response time across
the network.

In a Java implementation in an Intranet context, the reduced case-base could be passed as serialised
objects to the client side. This would have the advantage that the cases would not have to be re-parsed
and loaded into memory after downloading. Unfortunately this will not work across firewalls on the
Internet. Consequently we are developing the XML based case representation that can be passed as
plain text using the http protocol (which can pass through firewalls via proxy servers).

4. Case-Representation in XML

The background to this section of the paper situates itself in two areas of research. The first is
concerned with case representation, a fundamental aspect of the CBR paradigm. What are at issue are
methodologies of representing cases in a manner that alows for efficient retrieval, easy maintenance
and that provides for transmission over a network. The second research area is connected with devising
open standards for intelligent web applications. Such standards provide for inter agent communication
and the movement of data through a network from application to application, entailing a truly
distributed computing environment.

4.1 Introduction to CBM L

As previously mentioned, we are developing a case representation language in XML for use with our
system. This language is currently named CBML (Case-Based Markup Language). In this section the
design goals of CBML are briefly discussed and some example cases marked up in CBML version 1.0
are given. A detailed discussion of the language is beyond the scope of this paper.

Our main goal was to develop a representation language that could be used by all CBR systems that
exchange information across an Internet or Intranet. This language was developed in XML, a meta-
language for representing structured data over network systems. The reasons for this will be discussed
further in section 5. Another criterion was that the language would provide similar functionality to the
CASUEL case representation language (INRECA 1997); therefore its design, as it evolves, will be

based in part on CASUEL. However CASUEL is an object-oriented language that makes use of
inheritance, and this is a feature that we have not included in version 1.0 of CBML for simplicity.
Future versions of CBML will probably be object-oriented so that more complex cases can be
represented. Asit stands, CBML isasimple, flat feature-value representation. A case-base marked up
in CBML consists of two main files® - one describing the structure of a case in this domain, the other
containing the cases themselves.

The first file (CaseStruct .xml) contains information about the features in the case-base - their type
constraints, weights etc. The extract below shows three features from the previously mentioned Travel
Agents case base, now marked up in CBML version 1.0.

<?XML version="1.0"?>
<!DOCTYPE domaindef SYSTEM "CaseStruct.dtd"s>

<slotdef name = "JourneyCode">
<type a_kind of="integer"/>

</slotdef>

<slotdef name = "Holiday">

<type a_kind of="symbol">
<range><enumeration>Arbitrary Active Adventure Bathing City Diving
Education Language Recreation Skiing Shopping
Surfing Wandering</enumerations>
</range>
</type>
</slotdef>

<slotdef name = "Duration"s>
<type a_kind of="integer">
<range>
<intervals<start value="1"/><finish value="56"/></interval>
</range>
</type>
</slotdef>

</domaindef>

The first two lines of the above example simply state that the version of XML being used is 1.0, and
that the DTD (document type definition) can be found in the file casestruct.dtd. A full
explanation of DTDs is outside the scope of this section, but in essence, a DTD allows you to define
the tags to be used in your language. Inthe DTD you also indicate the permitted contents of each tag
(either character data, or another nested tag), and its allowed attributes. In the above example we can
seethat <slotdef>, <types, <range> and <enumerations are some of the tags defined in CBML.
The <enumerations tag contains character data while the <range> tag contains either the
<intervals tag or the <enumerations> tag. The <slotdef> tag has an attribute called name. An
XML document for which there is a DTD, and which conforms to that DTD, is termed "valid". A
partial DTD for the <slotdefs, <type> and <enumerations tags is given below (taken from
CaseStruct.dtd).

<!ELEMENT slotdef (type, weight?, constraint?)> # consists of one type tag, weight tag
and constraint tag are both optional
slotdef has attribute "name"
type consists of optional range tag
type has attribute "a kind of" with certain allowed values
<!ATTLIST type a kind of (integer|symbol|ordered symbol|string|real) "symbol"s>

<!ATTLIST slotdef name ID #REQUIRED>
< !ELEMENT type (range?) >

+

<!ELEMENT enumeration (#PCDATA) >

In the example overleaf, we see partial contents of the second file, CaseBase.xml. Because the DTD
is so short, it is enclosed within the file instead of being referenced as an external file. This example
gives a brief indication of what cases marked up in CBML will look like.

® There is a third file, the DTD (document type definition) for the case structure file. This will be
explained later

<?XML VERSION="1.0"?>

<!DOCTYPE cases [<!ELEMENT cases (casedef+)>
<!ELEMENT casedef (attributes, solution)>
<!ATTLIST casedef casename ID #REQUIRED>
<!ELEMENT attributes (attribute+)>
<!ELEMENT attribute (#PCDATA) >
<!ATTLIST attribute name CDATA #REQUIRED>
<!ELEMENT solution (#PCDATA) >

1>

<cases>

<casedef casename="nl">

<attributess>
<attribute name="JourneyCode">l</attributes>
<attribute name="HolidayType">Bathing</attributes>
<attribute name="Price">2498</attribute>
<attribute name="NumberOfPersons">2</attributes>
<attribute name="Region">Egypt</attributes>
<attribute name="Transportation">Plane</attributex>
<attribute name="Duration">l4</attributes>
<attribute name="Season">April</attributes>
<attribute name="Accommodation"s>TwoStars</attributes>

</attributess>

<solution>Hotel White House, Egypt</solutions>

</casedef>

;)éases>
5. Advantages of CBML

The advantages of using CBML as a standard are rooted in the strengths afforded XML. XML is an
extensible mark up language that has been designed to facilitate the traffic of complex hierarchical data
structures over network protocols. Several XML applications have already been produced for the
exchange of data particular to specific disciplines and industries.® For instance, The Open Trading
Protocol (OTP) has been developed for retail trade over the web by the OTP Consortium, an interest
group for internet commerce (OTP Consortium 1998).

Once an XML document has been parsed with its DTD, any XML compliant application can
"understand” the semantics of the data contained within. Thus data can be represented and exchanged
independent of the software at either end of transmission. Jon Bosak, Sun's Online Information
Technology Architect and Chair of the W3C XML Working Group views XML as a technology
complementary to the platform independent philosophy of the Java language, extending the computing
potential of the latter particularly in the scenario of distributed client side processing and web agents
(Bosak 1997).

Asan XML application, CBML will provide an SGML compliant standard for storing and exchanging
case bases. A case base will simply be just another form of data representation, with its own particular
DTD. Thus it will be available for processing to other XML compliant applications, whether CBR
based or not. This hopes to avoid the current scenario where case representation is application
dependent. For instance, case data delivered to the desktop will be available for local computation by a
variety of applications. The data can be read by the browser, then delivered to a local application for
further viewing or processing, or the data can be manipulated through script or other programming
languages using the XML Document Object Model. In the distributed model outlined earlier, cases are
delivered to the client end for further processing. Once a successful match is found the case solution
can be delivered to alocal application for testing.

Data represented in the form of structured cases can be viewed in multiple ways. A local case base can
be presented in a variety of ways through the employment of style sheets. This allows for multiple
visual representations of hierarchical case structures. Such views would prove important for case
editing toals.

XML enables granular updating. Thus, in a distributed CBR environment, servers do not have to
dispatch an entire subsection of the case base to the client every time there is a change. The server
holds a profile of what has already been sent to the client and only resends the changed element of that

® Summer Institute of Linguistics web page. XML: Proposed Applications and Industry Initiatives.
http://www.sil.org/sgml/xml.html#applications

dispatch. Furthermore XML facilitates late binding of presentation: Using a CBML format, would
alow centralized case data to be quickly updated.

6. Conclusion

We have presented a distributed architecture for CBR motivated by a need to move processing to the
client side in order to improve interactive response times. We have introduced CBML, an XML
application, as a protocol for enabling distributed CBR.

Implementing a Case Based Markup Language opens the door to distributed CBR computing over any
network. The web-based format of XML would allow local case-bases to be updated in a granular
fashion, only sending changed elements from the server to the client. Since data delivered to the user's
desktop can be viewed in multiple ways, a client GUI receiving CBML data could offer the human
reasoner, a visual representation of the local case base, with the possibility of simple editing.
Furthermore, a client CBML application could possibly process any case base it downloads, once it is
deemed valid by its parser. Such a scenario is the ideal outcome of the philosophy of open standards
informing the development of XML. To look further into the future, the use of such open standards
would be a key to inter-application communication of the web, paving the way for distributed hybrid
tools over the Internet. Indeed, the lack of an open standard for representing semantic data up to this
point has been a stumbling block for Agent Engineering on the Web (Petrie 1996).

Using cases based on the proposed CBML standard poses the possibility of allowing mobile agents
access to large repositories of case storage. Within this view of web based agent engineering, a
networked CBR application, though self sufficient within its task domain, is in fact one node in a
potentially broader application network.

7. References

1. Bosak, Jon. (1997) XML, Java, and the future of the Web, Sun Microsystems, available at
http://sunsite.unc.edu/pub/sun-info/standards/xml/why/xmlapps.htm . Published in W3 Journal,
No.4: Fall 1997: XML: Principles, Tools, and Techniques

2. Bray, T,. Padli, J., Sperberg-McQueen, C. M. Eds. Extensible Mark-up Langauge, W3 Consortium
recommendation paper . Feb. 1998, http://www.w3.0rg/TR/1998/REC-xml-19980210

3. Cunningham P., Smyth B., Bonzano A., (1998) An Incremental Retrieval Mechanism for Case-
Based Electronic Fault Diagnosis, to appear in Knowledge Based Systems.

4. INRECA consortium.(1994). Casuel: A Common Case Representation Language, available at
http://mwwagr.informatik.uni-kl.de/~bergmann/casuel/CASUEL _toc2.04.fm.html

5. Kriegsmann M, and Barletta R, (1993) Building A Case-Based Help Desk Application, IEEE
Expert, 8 18-26.

6. Microsoft, Frequently Asked Questions About Extensible Mark-up Language (XML). The URL is
http://mwww.microsoft.com/xml/xmlfag.html

7. Petrie, Charles J.,(1996) Agent-Based Engineering, The Web and Intelligence. IEEE Expert Vol.
11, No. 6. December 1996. Available at http://cdr.stanford.edu/NextLink/Expert.html

8. Smyth B and Cunningham P, (1995) A Comparison of Incremental Case-Based Reasoning and
Inductive Learning in Advances in Case-Based Reasoning, Lecture Notes in Artificial Intelligence,
Haton J-P, Keane M, and Manago M, eds., Springer Verlag, 151-164.

9. Summer Ingtitute of Linguistics web page. XML: Proposed Applications and Industry Initiatives.
http://www.sil.org/sgml/xml.html#applications

10. The Open Trading Protocol Consortium Internet (1998) Internet Open Trading Protocol
Soecification, parts 1& 2. Available for download at http://www.otp.org:8080/

11. W3C Working Draft 09-Dec 1997. Document Object Model Specification.

URL.: http://www.w3.0rg/TR/WD-DOM-971209/

12. Wilcox, Steve, (1997) Designing Thin Java Client Applications for Network Computers. Aviteck,

LLC 1997. http://java.sun.com:8L/javareel/isv/Aviteck/ThinClientWP.html

