
Java Decaffeinated:experiencesbuilding a
programming languagefr om components

Linda FarragherandSimonDobson

Departmentof ComputerScience,Trinity College,Dublin, Ireland
simon.dobson@cs.tcd.ie

Abstract. Most modernprogramminglanguagesarecomplex andfeaturerich.
Whilst this is (sometimes)an advantagefor industrial-strengthapplications,it
complicatesboth languageteachingandlanguageresearch.We describeour ex-
periencesin the designof a reducedsub-setof the Java languageand its im-
plementationusingtheVanilla languagedevelopmentframework. We arguethat
Vanilla’s component-basedapproachallows thelanguage’s featuresetto bevar-
iedquickly andsimplycomparedwith otherdevelopmentapproaches.

Intr oduction

Modernprogramminglanguagedesignarecomplex andfeaturerich. Theextrafeatures
often provide importantabstractionswhich facilitatethe developmentof complex in-
dustrialsystems.Thisrichnessdoesmean,however, thatfeaturesetsbecomeentangled.
Thisposesproblemsfor two distinctcommunitiesof users.

Languageresearchersoften want to study the impact of new featureson languages.
Experimentationwith industrial-strengthlanguagesprovidesa realisticframework for
suchexperiments,allowing thenew featureto bestudiedwithin a well-tried language
andavoiding many of the criticisms levelled at researchusingpurpose-designedlan-
guages.However, featureentanglementcan make it difficult to study the exact be-
haviour andramificationsof the featureundertest.Moreover industrial-strengthlan-
guagesgenerallyhave industrial-strengthcompilerswhoseinternalorganisationsand
optimisationstrategiesareoftennotamenableto incrementalexperimentation.

Programmerslearninga language,andespeciallythoselearninga first language,are
alsodisadvantagedby thiscomplexity. Many universitieshaveabandonedteachingpro-
grammingthroughPascalandScheme– simplesystemswith many pedagogicaladvan-
tages– in favour of the industrialrelevanceof C++ andJava. Whatever we maythink
of thisstrategy from aneducationalperspective,it is undoubtedlythecasethatthelatter
languageshave steeperlearningcurvesdueto their enhancedfeaturesets.Onecannot,
for example,learnJava’sbasicstatementswithoutwrappingthemin anobject-oriented
harness.Thiscanbea significantbarrierto learning.

In both casesthe problemsof feature-richnessand -entanglementmay be addressed
by usinga compositionallanguagedesignsystem,in which languagefeaturesmaybe
addedandchangedeasily.

In this paperwe describeour experiencesin constructinga small,“decaffeinated”ver-
sionof Java usingtheVanilla languageconstructionsystem.We hadtwo maingoals:

– to developasmall“kernel” Java suitablefor languageresearch;and
– to investigatethecharacteristicsof component-basedlanguageconstructionby de-

velopingsomesmallvariationson this baselanguage.

As a sideeffectwe aimedto developa family of Java sub-setssuitablefor teachingthe
language(andprogrammingin general),which would allow featuresto be introduced
only whenappropriate.

Webegin with anoverview of ourdevelopmentframework.Wethendescribethedesign
processandfeaturesetsof our languageanddiscusstheir implementation.We evalu-
ate the resultsin termsof the performanceof the resultinglanguages,their speedof
developmentandtheir easeof modification– the last involving the developmentand
integrationof two variationsto thestandardfeatureset.We alsocomparethelanguage
againstotherreducedJava sub-setsfrom theliterature,beforesummarisingour experi-
ences

An overview of Vanilla

Programminglanguagedevelopmenthastraditionally involveda large amountof ini-
tial effort to developsimpleparsers,typecheckersandinterpretersor codegenerators
for thelanguage.TheVanilla languageframework[2] (http://www.vanilla.ie)
begins from two observations:that the corpusof programminglanguageshasa setof
featureswhich at the abstracttype andsemanticlevels show little variation;andthat
thesefeaturesare in many casesindependentof oneanother, so that a compositional
approachis justifiedasa wayof reducingdevelopmentcostsandcomplexity.

Vanilla providesa component-basedframework to thedevelopmentandintegrationof
languagefeaturesinto interpreters(figure 1). If we considertype checkingasan ex-
ample,the framework definesthe key properties,operationsand algorithmsof type
checking(free variables,substitution,sub-typingetc) while the componentsprovide
therealisationsof (partsof) theseoperations.Essentiallytheframework defineswhatis
thesamefor all typecheckerswhile thecomponentsdefinewhatis differentbetweenin-
dividual languages.Componentre-useoccurswhenlanguagesexhibit substantialcom-
monality in their typing. The samecommentsapply to interpretationand(to a lesser
extent)parsing.A programminglanguageis constructedby populatingthesub-systems
with theappropriatesetsof components.

Eachlanguagefeatureis implementedasa setof components– collectively referred
to asa pod – which collectstogetherthe abstractsyntax,types,values,type rules,in-
terpretive semanticsand (optionally) conmcretesyntaxfor the feature.Any of these
componentsmay be varied,so providing (for example)lazily-evaluatedfunctionsin-
volvereplacingtheinterpreterin thefunctionspod,withoutaffectingits typingrules.A

object(self : X = A)

 end
end

 total = 0,
 add = fun(n : Int)
 total := total + n

Parser converts concrete
syntax to the abstract
representation

Small number of
language-specific
components

Large number of components
provide abstractions common
across several languages

Sub-typing is handled
separately to allow different
sub-type regimes to be
explored

Interpreter uses type
attributes to store
type-derived information
until run-time

Sub-typing

Type attributes
Interpreter

Parser

Type checker

Abstract syntax tree

Fig.1. Vanillaconstructslanguagesby combiningcomponentfragments

simplesystemof parsercombinatorspermitstheconstructionof full parsersfrom pars-
er fragments;alternatively a traditional“all in one” parsermaybeused.A languageis
built by composingthedesiredfeaturepodswith anappropriateparser.

Vanilla interpretersarecompletelyun-optimisedin favour of semanticandimplemen-
tational clarity, allowing the internal structuresof languagefeaturesto be expressed
cleanly. Thefull Vanillasystemprovidesa setof componentsimplementinga wideva-
riety of featurescommonlyencounteredin experimentalandmainstreamprogramming
languages.

Java fr om components

Few modernlanguagesaredefinedfrom wholecloth: it is generallypossibleto identify
asetof orthogonalfeatureswhichmaybedefinedandimplementedindependently. The
processof language designthencollapsesto a processof feature designand compo-
sition, with thebenefitsthat featuresmaybe added,removedandvariedlargely inde-
pendently. Althoughperfectorthogonalityis rare,thisperspectiveradicallyreducesthe
overheadsandallowssimplevariation.

Examining Java

Thedesignof Java Decaffeinatedentailedthreestages:

1. decidingon thecomponentswewishedfor thelanguage;

2. identifyingthosecomponentsalreadycontainedwithin theVanillastandardset;and
3. implementingany omissions.

Thecriteria for decidingwhich componentsto includein the languagewerethatonly
constructswith simple,obviousandsignificantcontributionswould be included.The
resultshouldbea strict sub-setof theJava languagewith “awkward” features(for im-
plementorsor users)removed.

Feature Source

Arithmetic Corepod
SimpleconditionalsCorepod,conditionalspod
Complex condition-
als

New podneededto provideswitchstate-
ments

Top-testedloops Loopspod
Bottom-testedloopsNew podmoving thetestdown
Boundedloops Loopspod
Classesandobjects Recordspodplusa new objectmodel
Staticvariables Built into theobjectmodel
Functions Functionspod
Input/output SimpleI/O pod(seebelow)

Table 1. Java hasasetof orthogonalcomponents,many re-usedfrom othersystems

Somefeaturesnotnecessaryfor JavaDecaffeinatedpresentedthemselvesimmediately.
Exceptionsfor examplewereseenasunnecessary, andvery unsuitablefor a beginner.
Nestedclassesandinterfaceswereseensimilarly, asthey provide only minimal extra
functionalityfor small-scaleapplications.

Somefeatureswerelessobvious.Protectionof variablesandmethodsis needed,how-
ever for the beginnerstudentshouldit be necessaryto enforceexplicitly statingthe
protectionat every declaration?Pedegogacallyit seemscorrectto enforcetheexplicit
declarationof protectionat every declaration,althoughthis could becometediousfor
thestudentafterthelessonhasbeenlearned.

Thestructureof files in thelanguagehasto beconsideredalso.Languageswhich have
beengeneratedusingVanillatypically havethe“mainline” (in thestyleof Pascal)which
is the top-level unit of execution.This hasthe advantagethat (for researchers)all ini-
tialisationcanbe centralisedand(for learners)thereis no needto understandobjects
andmain() routinesbeforebeginningprogramming.

Theresultinglanguage(table1) is not semanticallyvery differentfrom Java, differing
only in what it omits. Classesmay be declaredin the sameway as in Java, as can
methods,andvariables.Recusive functionsmaybedeclared,ascanrecursive objects.
It is possibleto convert a programwritten in Java to Java Decaffeinatedfairly simply
(aslongasit doesnot importany packages).

The lack of packageimportsof coursemakesthe entirestandardlibrary inaccessible
– including any input/outputfunctions.This wasaddressedby explicitly recognising

somesimpleactions(for exampleSystem.out.println()) in theparserandcon-
vertingthemto simplifiedinternalforms(in thiscaseacall to Vanilla’ssimpleI/O pod).
This shows thata singlefeature(in this caseI/O) canbepresentedin thelanguagein a
numberof ways.

Development

The developmentof the languageproceededas a simple implementationwithin the
usualVanilla style. Existing features– the majority of the language– were re-used
directly, omittingonly theirconcretesyntaxcomponents.New featuresweredeveloped
in isolationor by building on existing functionality. For the objectmodel– the only
majordevelopmentin theproject– thestepswere:

1. Define the abstractsyntaxof classesand objectsincluding classes,inheritance,
methods,instancevariables,new() expressionsetc.Methoddefinitionsre-usedthe
functionsdefinedin thefunctionpodundertheusualencodingof methods(without
self types)asclosures.

2. Define the typesand values.Objectswere definedfor classtypes,the resulting
objecttypes,andobjectinstancevalues.

3. Definethetypeandsub-typerules.This wassimply a matterof re-writing theex-
isting Java typerulesinto Java syntaxwithin Vanilla.Sincetherulesareavailable
from theliterature,this is largelya transcriptionexercise.

4. Similarly definetheinterpretationrules.

Onesimplificationwasto representrecursiveobjecttypes– for exampleaclassA con-
taininga methodpublic A oneOfMe() – usingexplicit manipulationsof thetype
environments.The“correct” way, using � -recursivetypes,is simplerfor a typetheorist
but perhapslessthanintuitive for many practicallanguageexperimenters.

The completelanguagewasprovidedwith a singleoverall parserconvertingconcrete
into abstractsyntax.While this makesvariationmorecomplex (seebelow), it is again
moreintuitive for thefirst-timedesigner.

Additions and variations

Java Decaffeinatedcan,becauseof its componentorientedstructuregrow andshrink
asa languagewith very little effort. The actuallanguageis constructedby specifying
its componentpods,with the additionor removal of a particularpod beingachieved
by addingor deletingan entry. Although the language’s concretesyntaxmay needto
be changedthis is a relatively simpleoperation,especiallyin the presenceof parser
combinators.

As an experimentwe explored a numberof variationsto Java, including a Python-
styleforall loop written in an afternoonandusedasa drop-in replacementfor (or

indeedaddition to) the standardfor construct.This is a radical simplification over
moremonolithic languageconstructioninvolving no changeto any othercodein the
system(otherthantheparser).

A furthergeneralisationwasto allow methodson a classto beextractedinto variables
andcalledwithout losing their self bindings– the first-classmethodsfound in object
calculi1.

For languageteachers,perhapsa moreimportantcapabilityis removing featuresuntil
they havebeentaught.Wedefinedafamily of Javasub-sets(arithmeticonly, arithmetic
plus assignment,simple looping, simple objects,objectswith inheritance,etc) each
introducingnew conceptsin a controlledway.

Oneusefulfeatureof thesystemis thatwemayeliminatea featurefrom theuserwhile
retainingit for the languageitself. Onemay, for example,hidefunctionsby removing
theconcretesyntaxwhich allows themto be introduced,while retainingtheability to
usefunctionsin theimplementationof otherconstructsif desired.

Evaluation

Component-basedlanguagedevelopment

During thecourseof thedevelopmentthe advantagesof a component-basedlanguage
quickly becameapparent.Thereuseof Vanilla podsgreatlyspeeds-updevelopmentof
a language.To the“beginning” languagedeveloperit is a greatadvantageto beableto
seeandmodify predefinedcomponents,aswell asseeinga languageevolve gradually.
A monolithicparser, typecheckeror interpreterfor a languagecouldneverseriouslybe
consideredaccessibleto a beginner. However with thecodeoccurringin smallpartsit
is easyto seehow eachparticularcomponentworks.

A languagebuilt from componentsalsohastheobviousadvantageof codereadablility
andreuse.Thisallowsfor rapiddevelopmentof testlanguagesandtheireasymodifica-
tion. Having morethanoneversionof a languageis simpleto achieve,with aminimum
of wasteof space,sinceonly someof the componentswill have changed,andthe in-
clusionof a newer componentis simply a matterof changingthre languagedefinition
file.

Performance– of programsand developers

Java Decaffeinatedis interpretedusingan interpreterwritten in Java, which runson
top of the Java Virtual Machine– itself a notoriouslyinefficient interpreter. It might
be expectedthat this cascadeof inefficiencieswould renderthe systemunusable.In
practicethis turnedout not to be the case:performance,while lessthan Java by an
orderof magnitudeor more,is perfectlyacceptablefor small studiesor exercises.In
any case,asEvery[4] hassuccinctlyput it,

1 This variation– andwhy it is omittedfrom theJava languagedefinition– is discussedin [6].

10 or 20 yearsago,whencomputerswereliterally hunderdsor thousandsof
timesslower thantoday, wecouldnot sacrificeperformancefor convenience–
but thereality of todaymayhave changedthings.Don’t forgetthatcomputers
aredoublingperformanceevery 18 months,andprogrammingcostsarestill
increasing.Interpretedprogrammingwill slowly takeover in development.

...to which we would only add“and in experimentallanguagedevelopmenttoo”. The
speedof developmentis (andwill remain)the dominantfactor in languageresearch,
and a component-basedapproachboth radically reducesthis developmenttime and
appliesthat time moreproductively. Using componentsalsofacilitatesthe generation
of a languageby morethanoneperson,againreducingdevelopmenttimes.

Java sub-sets

The existenceof a setof Java sub-sets– recognisablyJava but simplerandeasierto
experimentwith – is obviously a major boon for researcherswanting to explore the
integrationof new featuresinto a mainstreamlanguagewithout thepainof adaptinga
full compiler.

A hugenumberof Java sub-setsandextensionshave beendescribedin the literature
– indeed,recentconferenceproceedingswould suggestthatexploring thedefinitionof
new conceptsinto Java is becomingderigeur for a languageresearchpaper!Thevari-
ationsrangefrom theoreticalminimal sub-setssuchasIgarashi,PierceandWadler’s
“FeatherweightJava”[5], to theadditionof new featuressuchasgenerictypesandmix-
ins[1]. Betweentheseextremesarelanguagesintendedfor useasteachingandresearch
platformssuchasJJ[3],whichsharesmany characteristicswith ourown work.

JJwasdesignedasa languagewhich would beusedto teachstudentsJava.Thesyntax
of JJis quitedifferentto standardJava,with muchemphasisplacedonmeaningfulerror
messages,sayingwhat the compilerthinkswent wrongratherthanwhat the compiler
expected.JJ also supportsdesignby contractand enforcesfunctionshaving no side
effects.

JJ hasnot beenformally tested,but it is easyto seeit is very suitablefor a person
wishingto learnprogrammingproperlythefirst time.Thesupportfor designby contract
isanexcellentfeature,previouslyonly fully implementedin Eiffel. Itspremiseissimilar
to JavaDecaffeinated- howevertheresultshavebeenquitedifferent.JavaDecaffeinated
hassyntaxidentical to Java; JJ’s is moresimilar to Eiffel. Java Decaffeinateddiffers
from Javaonly in whatit doesnotcontain;JJdiffersfrom Java in averymany respects.
We alsobelieve thatdesignby contractcouldbeadded– asastand-alonepod– to Java
Decaffeinatedwith minimaleffort.

Vanilla

TheVanilla systemcontainsa sizeablefractionof thecommonlanguagefeaturespre-
defined.The creationof Java Decaffeinatedentailedsimply decidingwhich podsto

reuseand then writing podsfor whatever was not definedalreadyin Vanilla. After
decidingwhich partsof Java to useit wasnotedthat the only partsof the language
which neededto be definedwerethe bottom-tested(do...while) loop, theswitch
statementandtheclassandobjectstructures.Decidingon which partsof thelanguage
would be placedin which pod was simply an exercisein seeingwhich partsof the
languagecould be consideredtogether. Thedo-while loop could be integratedinto
theloopspod,andtheswitch statementcouldbeintegratedwith theconditionalspod,
or have its own pod.Vanilla’s standard– andfor our purposesoverly complex – object
modelseparatesclassesandobjectsinto theirown pods,while for JavaDecaffeinatedit
wasfelt moreappropriateto developa singleunifiedJava-styleobjectmodelpod.

Theuseof componentsnotonly speedsupdevelopment(in thatdevelopersusingVanil-
la donotneedto write commoncomponents),but alsomakesthefull codeof examples
of componentsaccessibleto thedeveloper. OurexperiencesuggeststhatVanilla’sover-
all effect is to bring languagedevelopmentwithin reachof non-specialistusersandre-
searchers– includingfinal-yearundergraduateswith little or noexperiencein language
technology. By loweringthe learningcurve,exposingthe individual constructionsand
separatingconcerns,it seemsto provideagoodtest-bedfor bothlearningandpracticing
thecraftsof languagedesignandresearch.

Conclusion

We havedescribedusinglanguagecomponentsto implementa family of Java sub-sets.
Thecomponent-basedapproachallowedusto vary thefeaturesetsof theresultinglan-
guagesvery easily, andfacilitatedthe introductionof new or variantfeaturesinto the
languagesfor exploratorypurposes.We illustratedthis through(with a researchper-
spective) the developmentof new looping constructsandobjectmodels,and(with a
teachingperspective) thedeploymentof featuresincrementallyinto a simplifiedteach-
ing language.

We believe thatthis work hastwo maincontributions.

Firstly, the resultsof our work show that the component-basedapproachto language
developmentprovidedby Vanilla hassignificantadvantagesto thelanguagedeveloper.
While the implementationsare in no way optimised,their performanceis acceptable
for small-scaleexperiments.Furthermorethey are almosttrivial to vary and extend,
making it extremelyeasyto experimentwith new featuresor to remove featuresfor
teachingpurposes.

Secondly, the languagesdevelopedhave exposedthe independentfeatureswithin Java
that may profitably be variedfor researchor teachingpurposes.This hasshown that
Vanilla’spremisethatmostlanguagefeaturesareorthogonalholdsfor Java at least.

Acknowledgements

This work wasconductedaspart of the first author’s undergraduatedegreeprojectat
Trinity College.

References

1. Davide Ancona,GiovanniLagorio,andElenaZucca.Jam– a smoothextensionof Java with
mixins. In ElisaBertino,editor, ECOOP2000– object-orientedprogramming, volume1850
of LNCS. SpringerVerlag,2000.

2. SimonDobson,PaddyNixon, VincentWade,SotiriosTerzis,andJohnFuller. Vanilla: an
openlanguageframework. In KrzysztofCzarneckiandUlrich Eisenecker, editors,Generative
andcomponent-basedsoftware engineering, LNCS.Springer-Verlag,1999.

3. David Epstein,JosephKiniry, andJohnMotil. Whatis JJ?,2000.
4. David Every. Whatis Java? http://www.mackido.com/Dojo/Java/html.
5. AtsushiIgarashi,BenjaminPierce,andPhilip Wadler. FeathewrweightJava: a minimal core

calculusfor GJ.
6. Sun Microsystems. About Microsoft’s "delegates".

http://java.sun.com/docs/white/delegates.html.

