Java Decaffeinated:experiencesduilding a
programming languagefr om components

Linda FarragherandSimonDobson

Departmenbf ComputerScience;Trinity College,Dublin, Ireland
simon.dobson@cs.tcd.ie

Abstract. Most modernprogramminganguagesre comple andfeaturerich.
Whilst this is (sometimes)yn advantagefor industrial-strengthapplications,it
complicateshothlanguageeachingandlanguageesearchWe describeour ex-
periencesn the designof a reducedsub-setof the Java languageand its im-
plementatiorusingthe Vanilla languagedevelopmentframevork. We amguethat
Vanilla’s component-baseapproachallows the languages featuresetto be var
ied quickly andsimply comparedvith otherdevelopmentapproaches.

Intr oduction

Modernprogrammindanguagedesignarecomplex andfeaturerich. Theextrafeatures
often provide importantabstractionshich facilitate the developmentof complex in-
dustrialsystemsThisrichnessloesmean however, thatfeaturesetshecomesntangled.
This posegroblemsor two distinctcommunitieof users.

Languageresearchersften want to study the impact of new featureson languages.
Experimentatiorwith industrial-strengthanguagegrovidesa realisticframework for
suchexperimentsallowing the new featureto be studiedwithin a well-tried language
andavoiding mary of the criticismslevelled at researctusing purpose-designeldn-
guagesHowever, featureentanglementan make it difficult to study the exact be-
haviour and ramificationsof the featureundertest. Moreover industrial-strengtian-
guagegyenerallyhave industrial-strengtlcompilerswhoseinternal organisationsaand
optimisationstratgjiesareoftennotamenabldo incrementakxperimentation.

Programmerdearninga language and especiallythoselearninga first language are
alsodisadwantagedy thiscomplexity. Many universitieshave abandonetkachingpro-
grammingthroughPascalandScheme- simplesystemswith mary pedagogicahdvan-
tages- in favour of the industrialrelevanceof C++ andJava. Whaterer we may think
of this strat@y from aneducationaperspectie, it is undoubtedlythe casethatthelatter
languageave steepetearningcurvesdueto their enhancedeaturesets.Onecannot,
for example learnJava’s basicstatementsvithout wrappingthemin anobject-oriented
harnessThis canbea significantbarrierto learning.

In both casesthe problemsof feature-richnessind -entanglemeninay be addressed
by usinga compositionalanguagedesignsystem.in which languagedeaturesmay be
addedandchangeckasily

In this paperwe describeour experiencesn constructinga small, “decafeinated”ver-
sionof Java usingthe Vanillalanguageconstructiorsystem We hadtwo maingoals:

— to developasmall“kernel” Java suitablefor languageresearchand
— to investigatethe characteristicef component-baseldnguageconstructiorby de-
velopingsomesmallvariationson this basdanguage.

As asideeffectwe aimedto developa family of Java sub-setsuitablefor teachingthe
languaggand programmingn general) which would allow featuregto be introduced
only whenappropriate.

We begin with anoverview of ourdevelopmenframenork. We thendescribehedesign
processandfeaturesetsof our languageanddiscusstheir implementationWe evalu-

ate the resultsin termsof the performanceof the resultinglanguagestheir speedof

developmentandtheir easeof modification— the lastinvolving the developmentand

integrationof two variationsto the standardeatureset.We alsocomparethe language
againsibtherreducedlava sub-setdrom the literature ,beforesummarisingur experi-

ences

An overview of Vanilla

Programmindganguagedevelopmenthastraditionally involved a large amountof ini-
tial effort to develop simple parserstype checlersandinterpretersor codegenerators
for thelanguageThe Vanillalanguagdramework[2] (hnt t p: / / www. vani I 1 a. i e)
begins from two obsenations:that the corpusof programminganguages$asa setof
featureswhich at the abstracttype and semantidevels show little variation;andthat
thesefeaturesarein mary casesndependenbf oneanothey so thata compositional
approacthis justified asa way of reducingdevelopmentostsandcomplexity.

Vanilla providesa component-baseflamenork to the developmentandintegration of
languagefeaturesinto interpreterqfigure 1). If we considertype checkingasan ex-
ample,the framework definesthe key properties,operationsand algorithmsof type
checking(free variables,substitution,sub-typingetc) while the componentgprovide
therealisation®f (partsof) theseoperationsEssentiallythe frameawork defineswhatis
thesamefor all typecheclerswhile thecomponentslefinewhatis differentbetweerin-
dividual languagesComponente-useoccurswhenlanguage®xhibit substantiatom-
monality in their typing. The samecommentsapply to interpretationand (to a lesser
extent)parsing A programmindanguages constructedy populatingthe sub-systems
with the appropriatesetsof components.

Eachlanguagefeatureis implementedas a setof components- collectively referred
to asa pod — which collectstogetherthe abstractsyntax,types,values type rules,in-
terpretive semanticsand (optionally) conmcretesyntaxfor the feature.Any of these
componentsnay be varied, so providing (for example)lazily-evaluatedfunctionsin-
volvereplacingtheinterpreteiin thefunctionspod,withoutaffectingits typing rules.A

object(selt : X = A)
total =0,
< add = fun(n: Int)
total :=total +n
Parser end
Large number of components

end
provide abstractions common 1

across several languages Parser converts concrete

Small number of syntax to the abstract
O language-specific representation

O O components

Q O O Abstract syntax tree
2 o\
0o

Sub-typing .-~
Interpreter uses type
Sub-typing is handled Q% P P
separately to allow different (O O
sub-type regimes to be
explored <

attributes to store

O >)
type-derived information
until run-time

—

Interpreter

Type attributes

Fig. 1. Vanilla constructdanguagesy combiningcomponenfragments

simplesystemof parsercombinatorgpermitsthe constructiorof full parserdrom pars-
erfragmentsalternatvely a traditional“all in one” parsemaybe used.A languagds
built by composinghe desiredfeaturepodswith anappropriatearser

Vanilla interpretersare completelyun-optimisedn favour of semanticandimplemen-
tational clarity, allowing the internal structuresof languagefeaturesto be expressed
cleanly Thefull Vanillasystemprovidesa setof componentémplementinga wide va-
riety of featurescommonlyencountereéh experimentalkndmainstreanprogramming
languages.

Java from components

Few modernlanguagesiredefinedfrom wholecloth: it is generallypossibleto identify
asetof orthogonafeaturesvhich maybedefinedandimplementedndependentlyThe
processof language designthencollapsedo a processof feature designand compo-
sition, with the benefitsthat featuresmay be added removed andvariedlargely inde-
pendentlyAlthough perfectorthogonalityis rare,this perspectie radicallyreduceghe
overheadsndallows simplevariation.

Examining Java

Thedesignof Java Decafeinatedentailedthreestages:

1. decidingonthecomponentsve wishedfor thelanguage;

2. identifyingthosecomponentslreadycontainedvithin theVanillastandardet;and
3. implementingarny omissions.

The criteriafor decidingwhich componentdo includein the languagewerethatonly
constructswith simple, obvious and significantcontributionswould be included.The
resultshouldbe a strict sub-sebf the Java languagewith “awkward” featuregfor im-
plementorsor usersyemoved.

|Feature |Source |

Arithmetic Corepod
SimpleconditionalgCorepod,conditionalspod

Comple condition{New podneededo provide switchstate
als ments

Top-testedoops |Loopspod

Bottom-testedbopgNew pod moving thetestdowvn
Boundedoops Loopspod
Classesndobjects|Recordpodplusanen objectmodel
Staticvariables Built into the objectmodel

Functions Functionspod

Input/output Simplel/O pod (seebelaw)

Table 1. Java hasa setof orthogonakcomponentsmary re-usedrom othersystems

Somefeaturesot necessarjor Java Decafeinatedpresentedhemselesimmediately
Exceptionsfor examplewere seenasunnecessanandvery unsuitablefor a beginner
Nestedclassesandinterfaceswere seensimilarly, asthey provide only minimal extra
functionalityfor small-scaleapplications.

Somefeaturesverelessobvious. Protectionof variablesandmethodss neededhow-
ever for the beginner studentshouldit be necessaryo enforceexplicitly statingthe
protectionat every declarationPedgogacallyit seemscorrectto enforcethe explicit
declarationof protectionat every declarationalthoughthis could becometediousfor
the studentafterthelessorhasbeenlearned.

Thestructureof filesin thelanguagéehasto be consideredlso.Languagesvhich have
beengeneratedisingVanillatypically havethe“mainline” (in thestyleof Pascal)which
is the top-level unit of execution.This hasthe advantagethat (for researchersll ini-

tialisationcanbe centralisedand (for learners}hereis no needto understandbjects
andmai n() routinesbeforebeginningprogramming.

Theresultinglanguag€gtable 1) is not semanticallyery differentfrom Java, differing
only in whatit omits. Classesmay be declaredin the sameway asin Ja/a, as can
methodsandvariables Recusie functionsmay be declaredascanrecursve objects.
It is possibleto cornverta programwritten in Java to Java Decafeinatedfairly simply
(aslong asit doesnotimportarny packages).

The lack of packagemportsof coursemakesthe entire standardibrary inaccessible
—including ary input/outputfunctions. This was addressedby explicitly recognising

somesimpleactions(for exampleSyst em out . pri nt | n())intheparsemandcon-
vertingthemto simplifiedinternalforms(in this caseacall to Vanilla’s simplel/O pod).
This shavs thata singlefeature(in this casel/O) canbe presentedn thelanguagen a
numberof ways.

Development

The developmentof the languageproceededas a simple implementationwithin the

usual Vanilla style. Existing features— the majority of the language- were re-used
directly, omitting only their concretesyntaxcomponentsNew featuresveredeveloped
in isolationor by building on existing functionality. For the objectmodel— the only

majordevelopmentn the project—the stepswere:

1. Define the abstractsyntaxof classesand objectsincluding classesjnheritance,
methodsjnstancevariableshew() expressiongtc. Methoddefinitionsre-usedhe
functionsdefinedin thefunctionpodunderthe usualencodingof methodgwithout
selftypes)asclosures.

2. Define the typesand values.Objectswere definedfor classtypes,the resulting
objecttypes,andobjectinstancevalues.

3. Definethetype andsub-typerules. This wassimply a matterof re-writing the ex-
isting Java type rulesinto Java syntaxwithin Vanilla. Sincethe rulesareavailable
from theliterature thisis largely a transcriptionexercise.

4. Similarly definetheinterpretatiorrules.

Onesimplificationwasto representecursve objecttypes— for examplea classA con-
tainingamethodpubl i ¢ A oneOf Me() —usingexplicit manipulation®f thetype
ervironmentsThe“correct” way, usingu-recursve types,is simplerfor atypetheorist
but perhapdessthanintuitive for mary practicallanguagesxperimenters.

The completelanguagewas provided with a single overall parsercornverting concrete
into abstracsyntax.While this makesvariationmore complex (seebelow), it is again
moreintuitive for thefirst-time designer

Additions and variations

Java Decafeinatedcan, becausef its componenbrientedstructuregrow andshrink
asalanguagewith very little effort. The actuallanguagés constructedy specifying
its componentpods,with the addition or removal of a particularpod beingachieved

by addingor deletingan entry. Although the languages concretesyntaxmay needto

be changedthis is a relatively simple operation,especiallyin the presenceof parser
combinators.

As an experimentwe explored a numberof variationsto Java, including a Python-
stylef or al | loop written in an afternoonandusedasa drop-in replacemenfor (or

indeedaddition to) the standardf or construct.This is a radical simplification over
more monolithic languageconstructioninvolving no changeto ary othercodein the
system(otherthanthe parser).

A furthergeneralisationwasto allow methodson a classto be extractedinto variables
andcalledwithout losing their self bindings— the first-classmethodsfound in object
calculit.

For languagegeachersperhapsa moreimportantcapabilityis removing featuresuntil

they have beentaught.We defineda family of Java sub-setgarithmeticonly, arithmetic
plus assignmentsimple looping, simple objects,objectswith inheritance,etg) each
introducingnew conceptsn a controlledway.

Oneusefulfeatureof the systemis thatwe may eliminatea featurefrom the userwhile
retainingit for the languagétself. Onemay; for example,hide functionsby removing
the concretesyntaxwhich allows themto be introduced while retainingthe ability to
usefunctionsin theimplementatiorof otherconstructsf desired.

Evaluation

Component-basedanguagedevelopment

During the courseof the developmentthe advantage®f a component-baseldnguage
quickly becameapparentThereuseof Vanilla podsgreatlyspeeds-uplevelopmentof
alanguageTo the “beginning” languagedeveloperit is a greatadvantageto be ableto
seeandmodify predefineccomponentsaswell asseeinga languagesvolve gradually
A monolithicparsertypechecleror interpreterfor alanguagecouldnever seriouslybe
consideredaccessibleo a beginner However with the codeoccurringin small partsit
is easyto seehow eachparticularcomponentvorks.

A languagebuilt from componentslsohasthe obviousadvantageof codereadablility
andreuse This allows for rapiddevelopmenbf testlanguagesndtheir easymodifica-
tion. Having morethanoneversionof alanguages simpleto achieve, with aminimum
of wasteof spacesinceonly someof the componentswvill have changedandthein-
clusionof a newer componenis simply a matterof changingthre languagedefinition
file.

Performance— of programsand developers

Java Decafeinatedis interpretedusing an interpreterwritten in Java, which runson
top of the Java Virtual Machine— itself a notoriouslyinefficient interpreter It might
be expectedthat this cascadeof inefficiencieswould renderthe systemunusableln
practicethis turnedout not to be the case:performancewhile lessthan Java by an
orderof magnitudeor more,is perfectly acceptabldor small studiesor exercisesIn
ary caseasEvery[4] hassuccinctlyputit,

! This variation— andwhy it is omittedfrom the Java languagedefinition— is discussedn [6].

10 or 20 yearsago,whencomputerswereliterally hunderdsor thousandof
timesslower thantoday we could not sacrificeperformancdor corvenience-
but the reality of todaymay have changedhings.Don’t forgetthatcomputers
are doubling performanceavery 18 months,and programmingcostsare still
increasinglnterpretedorogrammingwill slowly take overin development.

...towhich we would only add“and in experimentallanguagedevelopmentoo”. The
speedof developmentis (andwill remain)the dominantfactorin languageresearch,
and a component-basedpproachboth radically reducesthis developmenttime and
appliesthattime more productively. Using componentalsofacilitatesthe generation
of alanguagéby morethanonepersonagainreducingdevelopmentimes.

Java sub-sets

The existenceof a setof Java sub-sets- recognisablyJava but simplerand easierto
experimentwith — is obviously a major boonfor researchersvantingto explore the
integrationof new featuresinto a mainstreamtanguagewithout the pain of adaptinga
full compilet

A hugenumberof Java sub-setsand extensionshave beendescribedn the literature
—indeed recentconferenceoroceedingsvould suggesthat exploring the definition of
new conceptsnto Javais becomingderigeur for alanguageaesearctpaper!The vari-
ationsrangefrom theoreticalminimal sub-setssuchaslgarashi,Pierceand Wadler's
“Featherweighfiava’[5], to theadditionof new featuresuchasgenerictypesandmix-
ins[1]. Betweertheseextremesarelanguagesntendedor useasteachingandresearch
platformssuchasJJ[3],which sharesnary characteristicsvith our own work.

JJwasdesignedasa languagenhich would be usedto teachstudentslava. The syntax
of JJis quitedifferentto standardlava, with muchemphasigplacedon meaningfulerror
messagessayingwhat the compilerthinks wentwrong ratherthanwhatthe compiler
expected.JJ also supportsdesignby contractand enforcesfunctionshaving no side
effects.

JJ hasnot beenformally tested,but it is easyto seeit is very suitablefor a person
wishingto learnprogrammingroperlythefirsttime. Thesupportor designby contract
is anexcellentfeature previouslyonly fully implementedn Eiffel. Its premisds similar

to JavaDecafeinated howevertheresultshave beenquitedifferent.Java Decafeinated
hassyntaxidenticalto Java; JJ5s is moresimilar to Eiffel. Java Decafeinateddiffers

from Java only in whatit doesnot contain;JJdiffersfrom Javain avery mary respects.
We alsobelieve thatdesignby contractcould beadded- asa stand-along@od—to Java

Decafeinatedwith minimal effort.

Vanilla

The Vanilla systemcontainsa sizeablefraction of the commonlanguageeaturespre-
defined.The creationof Java Decafeinatedentailedsimply decidingwhich podsto

reuseand then writing podsfor whatever was not definedalreadyin Vanilla. After
decidingwhich partsof Jasa to useit was notedthat the only partsof the language
which neededo be definedwerethe bottom-testeddo...whi | e) loop, theswi t ch
statemenandthe classandobjectstructuresDecidingon which partsof the language
would be placedin which pod was simply an exercisein seeingwhich partsof the
languagecould be consideredogether The do-whi | e loop could be integratedinto
theloopspod,andtheswi t ch statementouldbeintegratedwith theconditionalspod,
or have its own pod. Vanilla's standard- andfor our purposesverly complex — object
modelseparateslassesindobjectsinto their own pods,while for Java Decafeinatedit
wasfelt moreappropriatdo developa singleunified Java-styleobjectmodelpod.

Theuseof componentsiotonly speedsip developmeniin thatdevelopersusingVanil-
la do not needto write commoncomponents)ut alsomakesthefull codeof examples
of componentaccessibléo thedeveloper Our experiencesuggestshatVanilla’'s over-
all effectis to bring languagedevelopmentwithin reachof non-specialistisersandre-
searchers-includingfinal-yearundegraduatesvith little or no experiencdn language
technology By loweringthe learningcurve, exposingthe individual constructionsand
separatingoncernsit seemdo provide agoodtest-bedor bothlearningandpracticing
thecraftsof languagedesignandresearch.

Conclusion

We have describedisinglanguagecomponentso implementa family of Java sub-sets.
Thecomponent-baseabproactallowedusto vary thefeaturesetsof theresultinglan-
guagesvery easily andfacilitatedthe introductionof new or variantfeaturesinto the
languagedor exploratory purposesWe illustratedthis through (with a researctper
spectve) the developmentof new looping constructsand objectmodels,and (with a
teachingperspectie) the deploymentof featuresncrementallyinto a simplifiedteach-
ing language.

We believe thatthis work hastwo maincontributions.

Firstly, the resultsof our work showv thatthe component-basedpproacho language
developmentprovidedby Vanilla hassignificantadvantagedo the languagedeveloper
While the implementationsarein no way optimised,their performances acceptable
for small-scaleexperiments.Furthermorethey are almosttrivial to vary and extend,
makingit extremely easyto experimentwith new featuresor to remove featuresfor
teachingpurposes.

Secondlythe languagesievelopedhave exposedthe independenteatureswithin Java
that may profitably be variedfor researchor teachingpurposesThis hasshawvn that
Vanilla's premisethatmostlanguagdeaturesareorthogonaholdsfor Java atleast.

Acknowledgements

This work was conductedas part of the first authors undegraduatedegreeprojectat
Trinity College.

References

1. Davide Ancona,GiovanniLagorio,andElenaZucca.Jam— a smoothextensionof Java with
mixins. In ElisaBertino,editor, ECOOP2000- object-orientecprogramming volume1850
of LNCS SpringetVerlag,2000.

2. SimonDobson,Paddy Nixon, VincentWade, Sotirios Terzis,and JohnFuller. Vanilla: an
openlanguagdramawork. In KrzysztofCzarneckandUIrich Eiseneckr, editors,Geneative
andcomponent-basesbftwae engineeringLNCS. SpringerVerlag,1999.

3. David Epstein JoseptKiniry, andJohnMotil. Whatis JJ?,2000.

4. David Every. Whatis Java? http://www.mackido.com/Dojo/3da/html.

5. Atsushilgarashi,BenjaminPierce andPhilip Wadler FeatharweightJava: a minimal core
calculusfor GJ.

6. Sun Microsystems. About Microsoft’s "delegates".
http://java.sun.com/docs/white/dglates.html.

