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Abstract.  Ensembles of classifiers will produce lower errors than the member 
classifiers if there is diversity in the ensemble. One means of producing this 
diversity in nearest neighbour classifiers is to base the member classifiers on 
different feature subsets. In this paper we show four examples where this is the 
case. This has implications for the practice of feature subset selection (an 
important issue in CBR and data-mining) because it shows that there is no best 
feature subset to represent a problem. We show that if diversity is emphasised 
in the development of the ensemble that the ensemble members appear to be 
local learners specializing in sub-domains of the problem space. The paper 
concludes with some proposals on how analysis of ensembles of local learners 
might provide insight on problem-space decomposition for hierarchical CBR.  

1. Introduction 

The idea of Case-Based Reasoning (CBR) has strong appeal because it is recognised 
that much of human expertise is experienced based and CBR is considered to capture 
this idea. Practitioners recognise that, while CBR does involve reuse of previous 
problem solving episodes in solving new problems, it is a limited imitation of the 
versatility of reuse that humans exhibit in problem solving. An important aspect of 
this shortcoming is the reliance of CBR on feature-vector representations of cases. 
This approach is firmly based in the symbolic AI paradigm (Newell & Simon, 1976) 
but it is recognised to have shortcomings. In 1997 an ECML workshop entitled 
“Case-Based Learning: Beyond Classification of Feature Vectors” (Wettschereck & 
Aha, 1997) was organised to advance the state of knowledge representation in CBR. 
However, it is fair to state that current CBR practice is still strongly dependent on 
cases represented as feature vectors.  

In this paper we present an example of the shortcomings of a case representation 
based on a single feature-value vector. We present four examples of ensembles of k-
Nearest Neighbour (k-NN) classifiers that outperform a single k-NN classifier based 
on the best single feature subset available. The ensemble incorporates several 
individual k-NN classifiers based on different feature subsets and aggregates their 
results. Based on our analysis of the ensembling process we will propose that its 
power derives from the aggregation of several local specialists. 
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While this illustrates the shortcomings of a solution based on a single global 
representation it is important to point out that approaches exist to address this within 
the CBR paradigm. The obvious solution is to have local weights that vary across the 
solution space and this approach has been explored in the lazy learning literature 
(Wettschereck, Aha, & Mohri, 1997). (Bonzano, Cunningham & Smyth, 1997) The 
difficulty with this approach is the problem of determining appropriate feature 
weights. It is well known that learning feature weights from examples is subject to 
overfitting. Kohavi, Langley & Yun,(1997) show that binary weights (i.e. feature 
selection) are often better that more fine grained weights due to the potential for 
overfitting. This problem is greatly exacerbated in local weighting because of the 
significant increase in the number of weights to be learned.  

Another approach to this global representation problem within the CBR paradigm 
would be a hierarchical CBR approach where the problem space is partitioned with 
different sub-case-bases covering the different partitions. In fact, research on 
hierarchical CBR has focused on problem decomposition rather than problem-space 
decomposition (Smyth & Cunningham, 1992, Smyth et al., 2000). This is perhaps 
because of the difficulty in determining appropriate decompositions of the problem 
space. In the conclusion to this paper we propose that hierarchical CBR and problem-
space decomposition may be the means to bring the performance of CBR systems up 
to that of ensembles. We outline how the analysis of ensemble solutions can provide 
guidance on problem-space decomposition.  

The ensemble technique described in this paper achieves this decomposition 
implicitly with different members of the ensemble acting as specialists in different 
parts of the domain. While this approach is still a lazy learning technique with 
processing deferred to run time, it lacks the interpretability of CBR because of the 
large number of cases retrieved in the solution process. There is not a small number of 
cases that can be used as a starting point for adaptation or in explaining the answer. 

In this paper we describe the operation of ensembles of nearest neighbour 
classifiers based on different feature subsets and show how such ensembles can 
perform better than any single classifier. We discuss the ramifications of this for CBR 
research. In the next section we describe ensembles in general and introduce the idea 
of ensembles based on different feature subsets. In section 3 we show how ensembles 
based on different feature subsets can outperform a classifier based on a single feature 
subset. Then the ramifications of this for CBR are discussed in section 4. 

2. Ensembles 

The key idea in ensemble research is; if a classifier or predictor is unstable then an 
ensemble of such classifiers voting on the outcome will produce better results – better 
in terms of stability and accuracy. While the use of ensembles in Machine Learning 
(ML) research is fairly new, the idea that aggregating the opinions of a committee of 
experts will increase accuracy is not new. The Codorcet Jury Theorem states that: 

If each voter has a probability p of being correct and the probability of a majority 
of voters being correct is M, then p > 0.5 implies M > p. In the limit, M 
approaches 1, for all p > 0.5, as the number of voters approaches infinity. 
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This theorem was proposed by the Marquis of Condorcet in 1784 (Condorcet, 1784) – 
a more accessible reference is (Nitzan & Paroush, 1985). We know now that M will 
be greater that p only if there is diversity in the pool of voters. And we know that the 
probability of the ensemble being correct will only increase as the ensemble grows if 
the diversity in the ensemble continues to grow as well. Typically the diversity of the 
ensemble will plateau as will the accuracy of the ensemble at some size between 10 
and 50 members.  

In ML research it is well known that ensembling will improve the performance of 
unstable learners. Unstable learners are learners where small changes in the training 
data can produce quite different models and thus different predictions. Thus, a ready 
source of diversity is to train models on different subsets of the training data. This 
approach has been applied with great success in eager learning systems such as 
Neural Networks (Hansen & Salamon, 1992) or Decision Trees (Breiman, 1996) This 
research shows that, for difficult classification and regression tasks, ensembling will 
improve the performance of unstable learning techniques such as Neural Networks 
and Decision Trees. Ensembling will also improve the accuracy of lazy learners such 
as k-Nearest Neighbour (k-NN) classifiers, however k-NNs are relatively stable in the 
face of changes in training data so other sources of diversity must be employed 
(Ho,1998a;1998b), (Cunningham & Carney, 2000). 

2.1.  Ensembles and Lazy Learning 

To an extent the strength of the ensemble idea is bad news for lazy learning 
research because, with the ensemble approach, several learners have to be consulted 
at run-time and lazy learners do all their work at run-time. With lazy learners there 
has been little or no offline processing of the training data to build a hypothesis or 
model – this work is deferred to run-time.  

If the ensemble approach poses problems for lazy learning in general then it 
proposes fundamental problems for Case-Based Reasoning (CBR) in particular. The 
key idea in CBR is that a single case or a small number of cases are retrieved during 
problem solving and these cases are reused to produce a solution for the new problem. 
Thus, as a problem solving technique, CBR has the special advantage of 
interpretability. The motivation in ensemble research is quite different; instead of 
there being a single line of reasoning in the problem solving process there are several 
parallel lines of enquiry and the results of these parallel efforts are aggregated to form 
a single solution. Thus it is difficult to explain the output of an ensemble. For this 
reason it appears difficult to bring the advantages of the ensemble idea to CBR 
without losing the interpretability advantages of CBR.  

A further threat to the CBR idea arises from ensembles where the diversity in the 
ensemble is achieved by having different problem representations in the ensemble 
components. Research shows that ensembles of classifiers based on different feature 
subsets can produce better performance than a single classifier with a fixed feature 
set. (Cunningham & Carney, 2000), (van der Vaar & Heskes, 2000), 
(Ho,1998a;1998b) and (Guerra-Salcedo and Whitley,1999a; 1999b). The important 
point here is that this improved performance is not based on a single problem 
representation but on a variety of different representations. The ensemble might be 
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considered to embody a distributed problem representation. Alternatively it might 
better be viewed as a committee of local problem solvers using a variety of local 
representations. This contrasts with the fixed representations that are common in case-
based reasoning. In Richter’s knowledge container terms (Richter, 1998), the 
vocabulary knowledge container is difficult to characterise in these ensembles based 
on different feature subsets. 

2.2.  The Importance of Diversity 

Krogh & Vedelsby (1995) have shown that the reduction in error due to an ensemble 
is directly proportionate to the diversity or ambiguity in the predictions of the 
components of the ensemble as measured by variance. It is difficult to show such a 
direct relationship for classification tasks but it is clear that the uplift due to the 
ensemble depends on the diversity in the ensemble members. Cunningham and 
Carney (2000) propose that this diversity can be quantified using entropy.  

Colloquially, we can say that; if the ensemble members are more likely on average 
to be right, and when they are wrong they are wrong at different points, then their 
decisions by majority voting are more likely to be right than that of individual 
members. But they must be more likely on average to be right and when they are 
wrong they must be wrong in different ways. 

The example in Figure 1, if a little contrived, illustrates these principles in action. 
The test set is shown at the top of the figure and the five component classifiers have 
an average accuracy of 65% on this. The ensemble decision is by simple voting and 
the ensemble has an accuracy of 100% on the test data. If the four voting scenarios are 
examined it is clear that the tendency to be right coupled with the tendency to be 
wrong in different ways accounts for the improvement due to the ensemble.  
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Fig. 1.  An example showing how diversity in the ensemble leads to better classification. 
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Different sources of diversity 
 

Several ways to differentiate members of an ensemble of classifiers have been 
proposed in the literature. The most common source of diversity is by training 
members on different subsets of the data. This can be done systematically of by 
bootstrapping (sampling with replacement) different training sets from the training 
data. However, since this will not produce diversity in a stable (low variance) 
predictor such as k-NN (Breiman, 1996) it is of no use here. 

Another popular technique is to use different feature subsets in the different 
classifiers – this is the approach that we are concerned with here. Other approaches 
such as different output targets and different learning hypothesis have also been 
considered.  

Different measures of diversity 
 
There are a variety of ways to quantify ensemble diversity – usually associated with a 
particular error measure. In a regression problem (continuous output problem) it is 
normal to measure accuracy by the squared error so, as suggested by (Krogh & 
Vedelsby, 1995), a diversity measure can be variance, defined as: 

[ ]2)()()( xVxVxa ii −=  (1) 

where ai  is the ambiguity of the ith classifier on example x, while Vi and V are, 
respectively the ith classifier and the ensemble predictions. 
For a classification problem the most commonly used error measure is a simple 0/1 
loss function, so a measure of ambiguity in this case is:  
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where this time the classifier and ensemble outputs for the case labeled as k are 
classes instead of real numbers. 

Another measure, associated with a conditional-entropy error measure, is based on 
the concept of entropy (Cunningham & Carney, 2000). This entropy measure of 
diversity can be defined as:   
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This quantifies the overall entropy of an ensemble on a test set of M cases where there 
are K possible classes. While this is an useful measure of diversity it does not allow us 
to gauge the contribution of an individual to diversity so we will not use it here; 
instead we will use the 0/1 based approach as described in (2).  
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2.2. Ensembles of different feature subsets 

In this paper we focus on ensembles based on different feature subsets. The feature 
subset selection problem is very well studied in Machine Learning for a single 
classifier: it consists in finding the subset of features FS ⊆F that maximizes 
performance. This is important when some of the features are irrelevant or redundant 
and consequently introduce some noise in the space of the instances. The main 
reasons why it’s useful to perform feature subset selection are: 

i) to build better predictors: better quality classifiers can be built by removing 
irrelevant and redundant features. This is particularly important for lazy 
learning systems; 

ii) to achieve economy of representation and allow problems/phenomena to be 
represented as succinctly as possible; 

iii) for knowledge discovery: to discover what features are and are not 
influential in weak theory domains. 

A few studies have been done on the use of feature selection to create an ensemble of 
classifiers; among them those ones made by Cherkauer (1995), Ho (1998a, 1998b), 
Guerra-Salcedo and Whitney (1999a, 1999b) Tumer and Ghosh (1996) and 
Cunningham and Carney (2000) give the most promising results.  However, if the use 
of ensembles improves the performance from one side, from one another it reduces 
the other benefits of the feature selection strategy. It is quite intuitive that an ensemble 
of feature subsets affects the goal of economy of representation (ii) and also 
dramatically worsens the knowledge discovery (iii), mainly because we cannot say 
anymore that the outcome of a phenomenon depends on a particular subset of 
features.  

Emphasizing Diversity 
A very simple approach to selecting an ensemble of classifiers consists of two 
separate steps: first a group of independently “good” classifiers is selected, then they 
are aggregated to form an ensemble. Such an approach has the advantage of 
simplicity, both conceptually and computationally, but the main disadvantage is that 
the classifiers are selected for the results they obtain singly and not for their 
contribution in the context of the ensemble. Following the work of Krogh and 
Vedlsby (1995), which demonstrated the crucial role played by the disagreement 
(Ambiguity) in the final prediction of an ensemble, other less straightforward 
approaches have been proposed to build an ensemble of good classifiers that have a 
high degree of disagreement. Among them the most relevant results were obtained by 
Liu (1999), who introduced a negative correlation penalty term to train ensembles of 
neural networks, and that by Optiz and Shavlik (1996), who used the notion of 
ambiguity to find a diverse ensemble of neural networks using a genetic algorithm. 

In this paper we provide some results for ensembles that are obtained with an 
algorithm based on a hill-climbing strategy that makes use of the concept of 
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ambiguity (Zenobi & Cunningham, 2001). The results show that this technique 
outperforms the classic two-steps strategy for selecting ensembles via hill-climbing 
search. We give here only a brief description of it; a more detailed one can be found 
in the paper mentioned above.  

In a classic hill climbing strategy that performs feature selection (Cunningham & 
Carney, 2000) a “good” classifier is selected by flipping each bit of the feature mask 
and accepting this flip if the classifier error decreases. (A feature subset is a mask on 
the full feature set.) This process is repeated until no further improvements are 
possible – i.e. a local minimum in the feature set space is reached. The error is 
measured using leave-one-out testing. To produce an ensemble this process is 
repeated for each classifier and at the end all the classifiers are aggregated to form the 
ensemble. This is the approach used to produce the results shown in Table 1.  

The algorithm used to produce the results in Table 2 goes one step further; it 
considers instead every classifier in the context of the ensemble, and at each step 
accepts or rejects the flip depending on two parameters: the classifier error and the 
classifier ambiguity, using a variance measure as shown in equation (2). If the 
improvement of one of the two parameters leads to a “substantial” deterioration of the 
other, then the flip is rejected (see Figure 2). With “substantial” here we mean that a 
threshold is given for the highest acceptable deterioration. This technique allows us to 
avoid the selection of a set of good classifiers that make mistakes over the same 
subspace of the instances 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.   The algorithm for generating ensembles while emphasising diversity in ensemble 
members. 

Here we are not particularly interested in the difference in accuracy resulting from 
these two techniques. What is of interest is that the focus on diversity in the second 
technique appears to produce local learners.  

 
generate a random ensemble of feature subsets; 

 
do  { 

  for every classifier i in the ensemble  { 
        calculate initial error Ei and contribution to ambiguity Ai ; 
        for every bit j of the mask  { 
    flip jth bit of ith  mask; 
    calculate new Ei′ and new Ai′; 
       if  {[( Ei′≤Thresh × Ei )AND (Ai′>Ai )] OR [( Ei′< Ei )AND (Ai′≥Thresh × Ai )]} 
           Ei= Ei′ ; Ai = Ai′;   //flip accepted 
    else  flip back jth bit of ith  mask;  //flip rejected   
        } 
   }   

} while there are changes in the masks AND not  maximum number of iterations; 
 

calculate final ensemble prediction; 
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3. Evaluation 

The objective of this evaluation is to show that ensembles of k-NN classifiers can out-
perform the best single k-NN classifier available.  We also show that if the ensemble 
members are forced to be diverse then very good ensemble accuracy can be achieved 
with ensemble members that have poor overall accuracy. These diverse ensemble 
members also prove to have fewer features that ensemble members selected without 
consideration for diversity.  

We start with two data-sets, an InVitro Fertilisation (IVF) data-set presented in 
(Cunningham & Carney, 2000) and the Hepatitis data from the UCI repository. The 
IVF data has 53 features and Hepatitis has 19 features so it is not practicable to search 
through the full space of feature subsets to find the best mask. In each case 100 good 
masks are found using hill-climbing search as described above; see also (Cunningham 
& Carney, 2000). Six ensembles of size 20 are produced using these masks and the 
error figures are shown in Table 1. The ensembles outperform the best masks found. 

Table 1. An error comparison of ensembles of k-NN classifiers compared with best single k-
NN classifiers found using hill-climbing search. 

Dataset Average 
Mask 

Best Mask 
Found 

Average 
Ensemble 

Best 
Ensemble 

IVF 41.1% 38.3% 35.7% 35.5% 
Hepatitis 20.7% 17.4% 16.8% 15.5% 

 
In the next evaluation two data-sets are chosen with few enough features to perform 
an exhaustive search of the space of feature masks. These are the Pima and Abalone 
data-sets from the UCI repository and each has 8 input features. The Abalone data is 
converted to a classification format by partitioning the outcome variable into two 
classes (age 7&8 Å Class 1; age 11,12&13 Å Class 2). In this case ensembles are 
produced using the algorithm presented in Figure 2 that emphasizes diversity. These 
ensembles are compared using 5-fold cross validation with the best masks that have 
been found by exhaustive search. Using a one tailed paired t-test the ensemble is 
better than the best mask with 80% confidence for the Pima data and 90% confidence 
for the Abalone. In the 5-fold cross validation the data is divided into 5 parts and the 
ensemble is tested on each part in turn having been trained on the other 4 parts. The 
scoring of the masks in determining the best mask is done in the same fashion.  

Table 2. An error comparison of ensembles of k-NN classifiers compared with best single k-
NN classifiers. 

Dataset All  
Features 

Best  
Mask 

 
Ensemble 

Average 
Ens. Mask 

Pima 23.9% 23.8% 22.5% 30.7% 
Abalone 18.1% 16.5% 15.9% 22.5% 

 
The final part of the evaluation compares these ensembles with ensembles built 

considering error only (see Table 3). The overall error figures are slightly better when 
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diversity is considered – however that is not the important point. The increase in 
ambiguity (diversity) comes at the cost of significantly higher errors in the ensemble 
members. It seems to us that the only way to account for this small improvement in 
overall performance in the face of deterioration of the ensemble members is that the 
members are local specialists. This view is reinforced by the fact that the ensemble 
members produced using diversity have fewer features on average than the others (3.4 
v’s 4.6 for Pima and 3.7 v’s 4.7 for Abalone). It seems reasonable that fewer features 
are required to discriminate in these local regions.  

Table 3. A comparison of ensembles of k-NN classifiers trained using error and ambiguity and 
error only.  

 Pima Abalone 
 Average 

Error 
Amb. Ensemble 

Error 
Average 
Error 

Amb. Ensemble 
Error 

Error & Amb.  30.7% 21.5% 22.5% 22.5% 15.0% 15.9% 
Error Only 26.9% 14.0% 23.9% 17.8% 5.6% 16.3% 

 

3.1.  Implications for CBR 

From the results shown above we can make some observations. When we train an 
ensemble of classifiers we are able to obtain a better performance than any possible 
single classifier. This brings into question the practice of feature subset selection and 
illustrates some shortcomings of the feature vector representation of cases.  Searching 
for the predictive feature subsets is questionable because a combination of feature 
subsets, maybe poorly predictive if taken singularly, can give a better prediction when 
aggregated in an ensemble. In other words, in a case-based reasoning system a single 
classifier (in this case, a single feature subset) might have an upper limit to its 
performance that can be raised by the use of an ensemble.  
This result suggests the hypothesis that the search space is “adapted” by a single 
classifier (dropping some of the features) in order to fit better to its intrinsic metric 
(usually the Euclidean one). A single classifier uses a “global adaptation” of the 
space, while in the case of an ensemble we have a number of different “adaptations” 
that can be seen as making errors in different regions of the search space. 

So in terms of the interpretability of the knowledge representation in the ensemble, 
at the extreme, there are two possibilities:  
1. The ensemble embodies a distributed knowledge representation, similar to a neural 

network, and is not readily interpretable.  
2. The ensemble is a set of local specialists and these specialists are locally 

interpretable.  
Clearly, we are inclined to this second view. In our algorithm for generating diverse 
ensembles shown in Figure 2, by forcing the ensemble to be diverse the accuracy of 
the ensemble is increased but the average overall accuracy of the ensemble members 
is decreased. Coupled with this is the curious effect that the average number of 
features in the ensemble members is reduced compared to ensemble members that are 
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optimized for accuracy only ( see (Zenobi & Cunningham, 2001) for more details on 
this. We would suggest that this poor overall accuracy and small “specialized” feature 
set indicates that the ensemble members are local specialists.  
This evaluation shows that an ensemble of lazy learners outperforms the best single 
lazy learner. The advantage of ensembling derives from aggregating diverse models. 
This advantage seems incompatible with CBR because if case-based learners are 
aggregated then the interpretability of CBR is lost. 
In the future work section of this paper we propose a line of research whereby an 
ensemble of lazy learners would be used to discover a problem space decomposition 
that would allow for a hierarchical CBR solution that would have a performance 
comparable to that of the ensemble and better than a single CBR system. 

4. Future Work and Conclusions 

If, as suggested in section 4, the ensemble members are local specialists then the 
ensemble should be locally interpretable – the question is how to access this? 

In this scenario local specialists are combining to ensure that elements in their 
locality are classified correctly. So one way to discover the problem decomposition 
implicit in the ensemble would be to cluster the data elements based on the classifiers 
that correctly classify them. For the problems presented in section 3 the classifiers 
that correctly classify the test data elements become descriptors of those data 
elements. Clustering the data according to these descriptors should produce clusters 
corresponding to the problem decomposition embodied in the ensemble.  

These clusters should represent homogenous regions of the problem space where a 
single problem representation would work well. This suggests that a hierarchical CBR 
system that implements problem decomposition based on the problem decomposition 
implicit in the ensemble should perform better than a single CBR system operating 
over the whole problem domain.  

4.1.  Conclusion 

In this paper we show how an ensemble of lazy learners based on different feature 
subset can perform better than a single lazy learner based on the best feature subset 
available. This brings into question the practice of searching for a single best feature 
subset, an issue that has received a lot of attention in CBR and in data-mining. This 
may indicate a fundamental shortcoming of symbolic representations or, more likely, 
it simply shows that a single representation across the whole problem space is not 
adequate 

We show that if diversity is emphasized in the ensemble that the ensemble 
members act as local learners specializing in sub-regions of the problem space. We 
propose that an analysis of the performance of the ensemble may provide an insight 
into how the problem space should be partitioned to develop a hierarchical CBR 
system that implements problem space decomposition.  
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