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Abstract

Because CBR is an interpretable process, it is a reasoning mechanism
that supports explanation. This can be done explicitly by the system de-
signers incorporating explanation patterns in cases. This can be termed
knowledge-intensive explanation in CBR. However, of more interest here
is case-based explanation that works by allowing users to consider the re-
lation between different cases. The recommendation of a decision support
system can be explained by presenting similar cases that motivate the
recommendation. Users can derive insight from similar cases that have
different outcomes. The differences in outcome are due to the differences
in the un-matching features (provided the effect is not due to noisy data).
This is a more knowledge-light approach to case-based explanation. This
is appropriate for weak-theory domains where the details of the causal in-
teractions in the domain are not well understood; experts would however
be able to express the direction of causal interactions. In this paper we
present such a knowledge-light framework for Case-Based Explanation.

1 Introduction

It is useful to divide work on explanation in CBR into two categories (Cunning-
ham et al., 2003). There is the knowledge intensive approach where explanations
are produced using explanation patterns that have been encoded in cases (Kass
and Leake, 1988; Armengol et al., 2001). And there is the knowledge light ap-
proach where explanation is achieved by revealing the case descriptions to the
user. A useful analysis of CBR from a knowledge perspective is Richters knowl-
edge containers model (Richter, 1998). This model identifies that knowledge in
a CBR system can reside in one of four containers:

e Vocabulary: the attributes and predicates that can be used to describe
the cases.

e Similarity Knowledge: the knowledge that is used during case retrieval
to identify similar cases.

e Adaptation Knowledge: the knowledge that is used to transform re-
trieved cases (if required) to conform to the problem under investigation.

e Case-Base: the cases themselves that describe examples or episodes.



The fact that CBR systems have this structure is important from an expla-
nation perspective because it allows the user to consider the relation between
cases (Roth-Berghofer, 2004). The CBR idea is based on examples and a means
of assessing the similarity or differences between examples. Thus the recom-
mendation of a decision support system can be explained by presenting similar
cases that motivate the recommendation. In addition, users can derive insight
from similar cases that have different outcomes.

The extent to which a CBR system is useful for insight and knowledge dis-
covery depends to some extent on the approach to case acquisition. There are
two models for case acquisition in CBR:

e Gold standard cases: cases are carefully selected/crafted (often by a
committee) to ensure good coverage of the problem domain; normally a
small number of cases can cover the commonly occurring problems.

e Naturally occurring cases: there is no manual case-selection process;
instead, the addition of cases to the case-base is managed by a case-base
maintenance /learning process without human intervention.

In the first scenario cases are produced through knowledge engineering, in
the second by a data mining process.

The final aspect we wish to emphasise is the type of behaviour a case cap-
tures. The focus may be on capturing an expert decision making process or on
capturing the behaviour of a complex system. On the one hand, a CBR system
may wish to capture underwriting decisions in a bank or therapy decisions in a
hospital. On the other hand it may wish to predict outcomes associated with
underwriting decisions or the prognosis for a set of symptoms. Explanations
with these alternatives would be as follows:

e Capturing expert decision making: The system recommends that
Patient X should be discharged because Patient Y with similar symptoms
was discharged.

e Capturing the behaviour of a complex system: The system recom-
mends that Patient X should be admitted because Patient Y with similar
symptoms to the current case was discharged and required readmission
within 2 days.

Clearly the potential to gain insight is greater with the second rather than
the first. In this second scenario the CBR is discovering knowledge in data and
explaining it. In this paper we discuss CBR systems that are:

e Knowledge-light,
e Built on naturally occurring cases, and

e Capture the behaviour of a complex system.

This is an approach that is appropriate for weak-theory domains where the
details of the causal interactions are not well understood, where all experts can
provide is a sense of the direction of causal interactions. The structure of the
paper is as follows. In the next section we provide an overview of case-based



explanation and outline the advantages. In section 3 we present an explanation-
oriented framework for case-retrieval. In section 4 we show how the details of
these cases can be assessed and selected for highlighting in explanation. This
paper concludes with a summary in section 5.

2 Case-Based Explanation

Machine learning techniques have been successfully used in knowledge discovery
tasks but many of these models fail to present the detected patterns (knowledge)
to the user in an interpretable manner. Although these systems have proved
to be successful in terms of predictive accuracy, the lack of interpretability and
transparency in the way they operate has been a major stumbling block in their
application to real world tasks (Andrews et al., 1995). People are understand-
ably reluctant to accept without question machine derived predictions, partic-
ularly when there is no insight on how the prediction was produced or might
be justified. These systems also fail from a knowledge discovery perspective in
that the knowledge is inaccessible to the end user.

By providing explanatory feedback it is hoped that confidence in the system’s
prediction can be given to the end user. Explanations also provide the user with
an insight into the problem domain since, by their nature, they seek to impart
some form of knowledge to the user (Sormo and Cassens, 2004). However many
state of the art machine learning techniques are inherently un-interpretable and
lack transparency in the way they operate. Ensembles, Support Vector Machines
(SVMs) and Neural Networks are typical examples of such systems and all offer
no prospect of direct transparent user feedback. Rule and tree based systems
are often regarded as being inherently interpretable. The relevant rules or a
tree structure can be presented to the end user as explanatory feedback and
justification of its prediction. However in reality such systems often fail to offer
convincing explanations. When applied to complex problems the complexity
of the rules or tree structure also increases at the cost of their interpretability
leading to complex and unconvincing explanatory feedback. This has been the
experience of the Knowledge-Based Systems community (Majchrzak and Gasser,
1991).

Conversely CBR systems have an inherent transparency that has particular
advantages for explanations as Leake (1996) points out:

“..neural network systems cannot provide explanations of their de-
cisions and rule-based systems must explain their decisions by ref-
erence to their rules, which the user may not fully understand or
accept. On the other hand, the results of CBR systems are based
on actual prior cases that can be presented to the user to provide
compelling support for the system’s conclusions.”

The type of explanations given by knowledge-light CBR systems and the
insight they offer to the end user differ considerably from those found in rule-
based and other approaches in a number of ways:

e Natural Form of Explanation: Research in cognitive science and other
areas suggests that explanation by analogy is a natural form of explanation
in some domains and one people can quickly relate to (Gentner et al., 2003;
Cunningham et al., 2003).



e Use of Real Evidence: In CBR the user is presented with actual cases
that represent past experiences. In most applications these cases are un-
doubtedly true and so their validity isn’t in question, this is the great
strength of case-based explanations. Users who are unfamiliar or suspi-
cious of a system are more likely to be convinced by explanations that
contain factual evidence than by unsupported rules.

e Fixed and Simple form of Explanation: CBR explanations avoid
the interpretability versus fidelity trade off that can plague some other
techniques. The type of explanation presented to the user is independent
of the complexity of the problem.

The major challenge with case-based explanations lies in ensuring the per-
ceived appropriateness of the presented cases to the validity of the prediction.
The task of ensuring that the cases are deemed appropriate and convincing can
be broken down into two distinct stages:

e The selection of cases to present to the user: The major driving
force for the provision of explanations is to offer a justification for a pre-
diction. The goal of providing a convincing argument may not always be
best served by supplying the user with the nearest neighbors. Convinc-
ing explanations are domain and user dependent (Sormo and Cassens,
2004), and this should be reflected in the case retrieval process. Taking
the domain and user details into account, the retrieval process should be
adjusted to select the cases that form the most convincing argument.

e Explaining the details and relevance of retrieved cases: This is an
issue that has recently received a lot of attention in the CBR community.
In CBR explanations, the ability of the user to make meaningful compar-
isons between feature values in the query and the retrieved explanation
cases is of critical importance to the success of the explanation. CBR
systems are not wholly transparent and much domain knowledge can be
contained within the similarity metrics used in the system. It is implicitly
assumed in simple CBR explanations systems that the user has this same
domain knowledge and so the appropriateness of the explanation case is
clear. However, this may not be the case and the relevance of the retrieved
case may be lost on novice users. By providing users with extra explana-
tory feedback further insights into the problem are given in addition to
further reassuring the user.

In the following sections we will discuss each of these tasks in turn focusing
on recent research that has been done in each area.

3 Case Retrieval

The obvious way to provide explanations in CBR is to display the case most
similar to the target case to the user. Some of our recent work has shown that
this type of explanation is considered more convincing than that provided by
rule based systems (Cunningham et al., 2003). More recently we have discovered
that the nearest neighbour may in fact not be the most convincing case to use
as an explanation for a classification (Doyle et al., 2004). In this section we will



look at the idea of a fortiori arguments and consider how this principle might
help select more convincing cases to use in explanation. We will then look at
how we can use explanation utility measures based on this principle to produce
more convincing explanations.

3.1 A Fortiori Arguments

Most parents are familiar with the use of a fortiori arguments by children'. A
fortiori arguments are used to argue a case beyond reasonable doubt. Let us
consider an example of a child using an a fortiori argument to plead their case
to see the latest Harry Potter movie.

Figure 1 shows an example of a child called Mark (the triangle) who wants
to see the latest Harry Potter movie. The circles represent the children who
have seen the movie and the squares the children who have not. Mark knows
that Kate is the closest in age to him and she has seen the movie. But Mark
knows that the older you are the more likely you are to be allowed to see the
movie. If Mark were to use Kate as an argument to convince his parents to let
him go to the movie, there is a possibility that Mark’s parents can argue that
Mark is still a little too young to go. However Mark knows that if he uses John
who is younger than him as his argument to see the movie, he has a stronger
case.

Mot allowed to Allowed to see
see Harry Potter Harry Potter
John Kt
s m H ® ate .
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>
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Figure 1: Using a fortiori arguments

The above example shows that the most similar situation is not always the
most convincing situation to support an argument. In the above situation,
picking a child between himself and the perceived decision boundary (Mark
doesn’t know the exact cutoff age, but knows the younger you are the less likely
you will not be allowed go) Mark was able to strengthen his case. Similar to
the above example, we believe that when supporting a classification in CBR,
the most similar neighbour to a target problem case is not necessarily the most
convincing case to support the classification. For instance, if a decision is being

L«q fortiori - adv. for similar but more convincing reasons: if Britain cannot afford a space

program, then, a fortiori, neither can India.” - Collins English Dictionary



made on whether to discharge a sick 12 week old baby from hospital, a similar
example with a 9 week old baby that was discharged is more compelling than
one with an 13 week old baby (based on the notion that younger babies are
more likely to be kept in).

3.2 Explanation Oriented Retrieval

We have developed a system that attempts to select a more convincing case than
the most similar neighbour. A major step in this process is to use explanation
utility measures (Doyle et al., 2004). These measures are dependent on the
classification of the case being explained. Figure 2 shows the explanation utility
measure for the feature Age when the classification is Allowed to See Harry
Potter. When calculating the utility between a case z and a query case g, if
the age of x is older than ¢, the utility measure for age is in the range of 0-1.
However if ¢ is older than x the utility is 1. Therefore the utility for the ’Allow’
argument works by favouring younger cases than the query case. Alternatively
when trying to argue that someone should not be allowed to the cinema an
alternative graph that favours older cases would be used.
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Figure 2: Explanation Utility graph for the Age feature and the ’Allowed’.

Once the utility measures for each feature and classification combination has
been defined, the most convincing case to support a particular classification is
selected using the following process:

1. Get Nearest Neighbours
2. Perform Classification using Nearest Neighbours
3. Select explanation utility measures to use based on classification

4. Reorder Nearest Neighbours of the same class using selected explanation
utility measures

It should be noted, that different sets of explanation utility measures can be
defined for different people. It may be that some people may prefer a case that
is close to the Nearest Neighbour, while others may prefer a case that is closer to



the perceived decision bounday. More information on using utility neighbours
can be found in (Doyle et al., 2004).

3.3 Nearest Unlike Neighbour

An important issue in decision support systems is the idea of providing some
measure of confidence in the prediction of the system (Cheetham and Price,
2004). This can help in promoting user-acceptance of the system and it can
also alert the user to situations when the prediction may be wrong. An idea
we are currently looking at is to display the nearest unlike neighbour(NUN) to
help in this direction. If the NUN is quite different to the query case it should
give confidence that the prediction is robust. If the NUN is very similar to
the query case, that should alert the user to the fact that the query case is
close to the border. In addition, since the decision surface is between the NUN
and the explanation case, it offers some insight into the features that influence
classification in that part of the problem space.

3.4 Example

We have done some research on using case-based techniques to predict blood-
alcohol levels (Cunningham et al., 2003). This task has many of the character-
istics of typical medical decision support problems and it is possible to gather
a significant number of cases using our own resources. In this domain there are
two tasks, there is the regression task of predicting the blood-alcohol level and
the classification problem of predicting if a person is under or over the legal
drink driving limit. Table 1 shows an example from this domain.

Table 1: Example from the Breathalyser Domain

Features Target Nearest Explanation | NUN
Case Neighbour Neighbour

Weight 76 76 73 63
Duration 60 60 60 120
Gender Male Male Male Male
Meal Full Full Full Full
Units 2.9 2.6 5.2 7.2
BAC Under Under Under Over

In this situation the Nearest Neighbour is very similar to the query case.
However as the Nearest Neighbour has consumed less alcohol than the query
case, there is the possibility that the query case could be over the limit, i.e. that
the decision surface is between the Nearest Neighbour and the query case.

However the case selected using the Explanation Utility measures, the Ex-
planation Case in the table, has consumed more alcohol than the query case and
is still under the limit. This adds support to the prediction that the query case
is under the limit. In this situation the Weight of the Explanation Case is also
less than the query case. This also supports the argument given that the lighter
a person is(all other factors being constant) the higher their alcohol level.
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Figure 3: Explanation Utility Graph for Age Feature

In this example the cases only differ in two dimensions, Units Consumed
and Weight. This allows us to represent the situation graphically as shown in
figure 3. From our understanding of the way in which features influence blood-
alcohol level we expect that the decision boundary is somewhere 'north west’
of the NUN. Without knowing about the Explanation Case it is just possible
that it could lie between the query case and the Nearest Neighbour. Knowing of
the existence of the Explanation Case gives use the assurance that the decision
boundary must be on the far side of it (from the query case).

This is a knowledge-light approach to explanation that works in weak theory
domains. The knowledge engineering required involves expressing the direction
of causal interaction as utility measures as shown in figure 2. The return on
this is that the system can show Explanation Cases and NUN to the user as
described in table 1.

4 Explaining Cases

As has been made clear in section 1 much of the knowledge in a CBR system
is contained within the vocabulary that descibes the cases and the similarity
measures. However it is also clear from section 2 that the knowledge captured
in each of these containers isn’t always transparent to the user. Recently much
work has been done in overcoming these problems. In this section we discuss two
different approaches to tackling this problem. We begin in section 4.1 with some
fundamental work done in the area, we then focus on a more general approach
in section 4.2.

4.1 Explaining Feature-value Effects

The issue of transparency is one that McSherry has addressed in his ProCon
System (McSherry, 2003). McSherry has focused on making the relationship
between the feature values within a case and its predicted value explicit. He
argues that simply presenting the feature values in the most similar cases may
be misleading. The relationship between feature values and the predicted value



may not always be a positive one; the presence of some feature values may in
fact be evidence against the prediction. Simply supplying the user with a case
may lead them to incorrectly infer the relationship between feature-values and
the prediction. To combat this McSherry provides the user with extra relational
information about the case feature-values and the predicted class-value. To infer
the feature-values to class-value relationships a Nalve Bayes model is built on the
entire training set and from this the relational information is derived. Using the
Naive Bayes model it is possible to infer the effect of different feature-values and
so inform the user whether a particular feature-value is a supporter or opposer of
a given prediction. In table 2 we can see an example of the ProCon-2 system’s
output as seen in (McSherry, 2003).

It is clear that this approach is very effective in informing the end user on the
relationships between feature-values and the predicted outcome. However the
Naive Bayes approach induces a global model of interactions and this may not
always be appropriate as the influence of features may vary over the problem
space. Indeed, it might be argued that global models are not in the spirit of
CBR which is a local approach to learning.

4.2 Explanations for Complex Problems

We can see in McSherry’s work that the provision of additional information
describing the relationship between feature-values and outcome has the potential
to greatly enhance the information conveyed in CBR explanations. However,
CBR systems provide localised solutions derived from cases retrieved specific
to the query case. This means that the use of a global model may not always
be suitable. The local approach taken in CBR makes it applicable to problems
that are non-linear in nature. In non-linear problems the relationship between
features and outcome may vary across the feature space. The use of global
model to describe the interactions of features may well fail to capture this non-
linear behaviour and so may not reveal what is actually going on. Some features
may be important in some areas of the feature space and not at all relevant in
other areas.

We have developed a general framework for producing explanations that are
built upon feature-value relationships derived locally and specific to each query
case. The framework was developed to provide case-based explanations for
black-box systems because of the strengths of this form of explanation (Nugent
and Cunningham, 2004). However the framework is equally applicable to CBR
systems and demonstrates the strength of CBR for Knowledge Discovery tasks.

In providing an explanation for a user we would like to provide the user
with a sense of the role the feature-values had in producing a prediction. It
would also be useful to explain the effects of any differences in the explanation
and query that there might be. This would provide the user with a sense of
the relationship of the feature-values to the prediction for the presented case
that they can then critically assess. This information will also focus the users
attention on the more important features of a case. However, as stated earlier
and specifically in the domains that we have considered (Blood Alcohol Content
(Cunningham et al., 2003) and Bronchiolitis (Walsh et al., 2004)), it seems that
simple global models are not suitable for such tasks. To overcome this problem
we have designed a two stage explanation system that takes advantage of our
ability to use the black-box, or in this case the CBR system, as an oracle from



Table 2: Sample ProCon-2 Output from (McSherry, 2003)

ProCon-2: Please describe the target problem.
User: weight=79, duration=90, sex=male, meal=full, units=10.1
ProCon-2: The 3 most similar cases are:

Case 13: 79, 240, male, full, 9.6, over-limit(0.97)
Case 26: 73, 120, male, full, 9, not-over-limit(0.96)
Case 56: 79, 120, male, full, 7.2, not-over-limit(0.96)

The predicted outcome is: over-limit.

User: why
ProCon-2: Features of the target problem that SUPPORT the prediction:

units=10.1
Features of the target problem that OPPOSE the prediction:

weight=T79
duration=90
sex=male
meal=full

The most similar case is:
Case 13:79, 240, male, full, 9.6, over-limit

The outcome in this case was over-limit in spite of the oposing
evidence that:

weight=T79
sex=male
meal=full

10



which we can extract information about its behaviour in particular regions of
the feature space. This information is then used to inform the user of the role
of the various features and also to drive the retrieval process. We will now talk
about each of the two stages in turn.

4.3 Derive Local Feature Information

The provision of feature role information provides the user with a sense of how
each of the feature-values contributed to the particular prediction. It is impor-
tant too that these rankings should reflect the locality of the presented case on
which the prediction is made. In order to provide such feature rankings, two
distinct steps are taken. First, the CBR system is treated as an oracle and
an artificial data set is constructed around the point of inquiry, then a model
is built on this data. The model is then used to transform the information
captured in the locally derived case-base into a useful form.

Treating the CBR system in this way allows us to get a prediction for any
set of feature-values we care to imagine. We can present the CBR system with
feature-value sets similar to those of the query case and so we can build up a
local case-base around the original query point. This is done by perturbing, in a
controlled manner, the feature values of the case we are providing an explanation
for and using the CBR system to attach a prediction to the artificial case. In
this way we can implicitly garner some of the knowledge that is encapsulated
in the similarity measures.

The choice of model used to capture the local behaviour is primarily driven
by the need for a model that can provide us with information about each feature-
value’s role. We would also like to be able to describe what effect any differences
between the query case and the explanation case might have.

4.4 Case Retrieval Mechanism

The objective is to present the user with cases that reinforce the prediction
from the system. However, as we have already discussed in section 3 the nearest
neighbour may not always make the most convincing argument. The informa-
tion captured in the localised model can be used to find cases that are more
convincing to the user.

4.5 Flow Diagram of the Framework

The flow of execution and the relationships and dependencies between individual
processes in the framework outlined above is described in Figure 4. In our
explanation framework each explanation is tailored to the particular set of inputs
and the prediction made. First, the query case is used to seed the generation
of an artificial case-base. Once we have this data we then describe it using
some model as discussed in Section 4.3. We now have a description of the
behaviour of the CBR system in the region of interest and this information is
then used in two further stages of the explanation process; case retrieval and
the explanation stage as can be seen below. In the case retrieval process the
feature-value information is used to select the best case from the original case-
base to use in the explanation. This is then passed on to the final explanation
stage where it, along with the feature-value information, is used to generate

11



the final explanation presented to the user. The exact form of the explanation
and what information is presented to the user is very much both task and
domain dependent (Sormo and Cassens, 2004; Cassens, 2004). In Section 4.7
we present one possibility in which a localised logistic regression system is used
in a classification task.

:Query oase : 47

Feature Salience Explanation Case/Cases
Information

4

Local Casebase Retrieval
Builder Process

A,

Local Case-base
v v

Feature Salience Original Case-
Model base

Figure 4: A Flow Diagram of the Explanation Process

4.6 Sample Implementation

As an example of how the framework outlined above can be used to provide
convincing explanations, we applied it to the task of explaining the predictions
of Nearest Neighbour Classifier (NN) with & = 3. The NN was built on the
Blood Alcohol Content (BAC) case-base. The task involves using information
about peoples’ weight, gender, number of units of alcohol consumed, etc. to
predict whether the concentration of alcohol in their blood stream has reached
a level where they would be over the drink-driving limit. The training data was
taken from the data that had previously been collected and used by Cunningham
et al. (2003). The local model used was a logistic regression model. The Logistic
Regression model has a number of characteristics that make it an ideal candidate
for our purposes. First we will briefly discuss logistic regression models, in
particular focusing on how they can be used to derive feature-value information.
We then present some sample explanations produced using the logistic regression
in conjunction within the explanation framework.

4.6.1 Logisitic Regression Models

Hosmer and Lemeshaw have written an excellent and comprehensive book on
the subject of Logistic Regression (Hosmer and Lemeshow (2000)). In the pref-
ace to the second edition they point out the huge increase in the use of the
modelling technique from its original use within epidemiologic research to use
within fields as diverse as “biomedical research, business and fiance, criminol-
oqy, ecology, engineering, health policy, linguistics and wildlife biology”. Logistic
regression is a data analysis technique that offers an insight into the relation-
ship between input variables and a target, or class variable. It is specifically
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designed for binary classification problems and the increase in popularity of
the modelling technique is understandable as it offers powerful insights while
maintaining model simplicity.

Logistic regression, like linear regression, produces a set of coefficients from
which the relationship of an input variable to the target class variable can be
deduced. However unlike linear regression, logistic regression coeflficients don’t
directly correspond to slope values in the same way. In logistic regression tasks,
the two possible class values are coded as being either 0 or 1. Because the
value predicted by the model, the conditional mean, is no longer an unbounded
value as in linear regression but a value between 0 and 1, the data is fitted
to a distribution that ensures the outputted value always meets this bounding
criteria. To do this the logistic distribution is applied as can be seen below (1).

ePotpPiz

Y(z) = 1+ ePothiz (1)

Here Y (z) is the conditional mean for a particular value of x while 8y and
(1 are the model parameters. The distribution produces the conditional mean,
a value between 0 and 1, for any given inputted value of z. Importantly, for
binary problems the conditional mean is in fact the probability of class 1 given
T.

At first glance this model looks quite intimidating and seems to offer no hope
of offering an insight into the relationship between x and our class variable. How-
ever, the logistic distribution is chosen because it can be easily transformed into
another form which has many of the desirable properties of a linear regression
model. By applying the logit transform, equation 2, we end up with a simple
and interpretable model, the logit (3).

o) =l 2 2

g(x) = fo + frx (3)

The parameters of the logit model can easily be converted into odds ratios.
The odds ratio of an event is the odds of that event occurring over the odds
of it not happening. For instance if someone were to state the odds ratio of
smokers to non-smokers getting cancer is 2 then this would mean smokers are
twice as likely to develop cancer as non-smokers. Alternatively, if we looked at
the relationship the other way round, non-smokers to smokers, we would get a
odds ratio of 0.5. This means that non-smokers are half as likely to get cancer.
In general an odds ratio greater then one for possibility A over possibility B
means A makes the event more likely than the alternative while and odds ratio
of less then one means it makes it less likely. The logistic regression model
makes the calculation of odds ratios quite easy and this is extremely useful and
informative. It is this simple relationship between the model coefficients and
the odds ratio and their natural interpretation that has made logistic regression
such a popular tool. We will first discuss in a very general sense how this is
done as it will be of use in section 4.6.2 and then focus on a particular example
that highlights why logistic regression has proved so popular.

In order to extract the odds ratio, two steps are taken. First the logit
difference is found. Imagine we are interested in the odds ratio of two different
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events, x = ¢ and = = d. the logit difference can be calculated as in equation 4.
The logit difference, Id, is simply the difference in the logit function for the two
values of x we are interested in. Once this value has been obtained it can then
be converted into odds ratio, see equation 5.

LogitDif ference(x = c,x = d) = g(c) — g(d) = Id (4)

OddsRatio(x = ¢,z = d) = €@ (5)

The trick with the logistic regression model is that in many cases it isn’t
necessary to calculate the logit difference. If the model variables have been
properly coded then the desired information usually can be got by simply looking
at the model coefficients. As an example consider a hypothetical situation where
we have developed a model that relates smoking to the development of cancer.
Our hypothetical model might look something like that shown in equation 6.

g(Smoker) = 0.3 4+ 0.69Smoker (6)

If we code our smoking variable as being equal to 1 if someone smokes and
0 if they don’t then the calculation of the logit difference is simply equal to the
Smoker coefficient (7).

g(Smoker = 1) — g(Smoker =0) = 0.3+ 0.69(1) — (0.3 4 0.69(0)) (7)
= 0.69
OddsRatio(Smoker) = %%
OddsRatio(Smoker) = 2

(8)

As can be seen above in 6 we need not have bothered calculating the logit
difference and instead just used the model coefficient. This is also true for con-
tinuous and multi-value nominal variables if they are coded correctly ( chapter
4, Hosmer and Lemeshow (2000)). Once we have the odds ratio the relationship
between input variable and the class variable is clear. We have focused most of
our discussion on examples with only a single input variable for simplicity sake
but the above observations are also true in multi-variable problems. In the next
section we discus how exactly information derived from the logistic regression
model can be used to provide convincing explanations.

4.6.2 Using Logistic Regression in the Framework

Information from the local model is used in two different sections of the frame-
work; in the retrieval of the explanation case and in giving feature-value infor-
mation. The logistic regression model can be used very effectively to generate
feature-value information as it allows us to calculate the effects of differences
between the query case and the explanation case (equations 4 and 5). With this
information we can then generate a dialog and explain these effects to the end
user.

The logistic regression model can also be used to generate pseudo-a fortiori
arguments as discussed in section 3. Logistic regression models allow us to
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generate a probability for a given set of inputs. In the explanation case retrieval
process we can then use this to find an explanation case that is nearer the
decision boundary and so a more convincing argument. By passing each of our
candidate explanation cases through our local logistic model we can generate a
probability for each. A case that is nearer the decision boundary will have a
more marginal probability and so this should be the case we select.

The logistic regression model is also useful in one further aspect as it allows
us generate a confidence measure of the prediction from the CBR system. If
we pass the query case through the locally derived logistic model we will then
get a probability measure of it being of a certain class. This can then be used
to calculate our confidence in that prediction. Generating confidence measures
in system predictions is an important issue in their application to real world
problems (Cheetham and Price, 2004). If we can alert the user to when we are
not confident of a prediction it is more likely the system will be trusted in the
long term. To make each of these processes clearer we will first step through
how one particular explanation was generated.

After the Query Case has been classified we can then build our logistic
model on our local data. In table 3 we can see the Query Case, its predicted
classification and the three Nearest Neighbours used to classify it. In order
to select a case to use in our explanation we first run each of cases including
the Query Case through our local logistic regression model. This gives us the
set of probabilities that can also be seen in table 3. We can see that Nearest
Neighbour 2 has the lowest probability and so is the case nearest the decision
boundary. This is an alternative to the explanation utility framework described
in section 3.2 for selecting the case to present to the user to make the most
convincing argument. Although Nearest Neighbour 2 had consumed more units
of alcohol and weighed less, they were under the limit so it seems reasonable
that our Query Case should be too.

Table 3: Explanation Case Retrieval Process

Features Query Nearest Nearest Nearest
Case Neighbour 1 | Neighbour 2 | Neighbour 3

Weight 88 82 79 76

Duration 120 120 120 120

Gender Male Male Male Male

Meal Full Full Full Full

Units 5.2 5.0 7.2 4.6

BAC Under Under Under Under

Probability 0.98 0.97 0.89 0.96

We can make this argument more explicit to the end user by explaining
the effects of the feature differences between the Query Case and Explanation
Case using our local logistic regression model and equations 4 and 5. We can
substitute each of the feature differences into the equations individually and get
the odds ratio for each. Using the odds ratio we can then determine the effect of
the change. The kind of dialog that can be produced can be seen in Table 4. In
this sample dialog we can see the advantage of using our local model to classify
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the Query Case as this gives us a measure of confidence in the prediction. In
the next section we discus some further sample dialogs.

4.7 Sample Explanations on the BAC case-base

Two further sample dialogs are shown in Tables 5 and 6. The benefit of the
explanation dialog can be seen in both examples. It is clear that the feature
information is in line with our intuitive understanding of the problem and that
they add value to the overall explanation. The dialog is useful in appreciating
the difference between the explanation and query case as well as offering an
insight into the nature of the problem being studied.

In Table 5 the user is presented with both the Query Case and the Explana-
tion Case. The Explanation Case forms an a fortiori argument as the number
of units is lower but the case is still over the limit. However there is a difference
in the Weight value that means that the Explanation Case is more likely to be
Over the Limit given the same amount of alcohol as the Query Case. Using the
local logistic model this information can be derived without expert knowledge
and presented to the user as can be seen in the generated dialog.

In Table 6 a strong argument in favour of the prediction is made.In the
Explanation Case more Units have been consumed and the subject was lighter
yet they were found to be Under the Limit. Again this information is made
explicit through the generated dialog. In this case the confidence measure is
87% which means we can still be reasonably confident of our prediction. By
providing the confidence measure the user can be alerted to situations where
the prediction might be wrong.

5 Conclusions

We have shown how this knowledge-light approach to explanation can provide
insight into a problem domain by presenting similar matching and un-matching
cases to the user.

The first aspect of this approach is to select explanation cases based on an a
fortiori principle. The argument is of the type, ”if this case from the case-base
is of a particular class, then there is even more reason to believe that the query
case is of the class”. These explanation cases are selected based on knowledge
about the direction of the effect of features on outcomes. This knowledge is
expressed in the explanation utility framework that was described in section 3.

The second aspect of the approach is to highlight case features and indicate
how they influence outcomes as described in section 4. Features are selected
based on a local logistic regression model from the region of the query case.
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Table 4: Sample Dialog

Query Explanation
Case Case
Weight (kgs) 88 79
Duration (mins) 120 120
Gender Male Male
Meal Full Full
Amount (Units) 5.2 7.2
BAC Predicted Under
Under

Explanation:

The differences in the feature Amount and Weight mean that the
Query case is more likely to be under the limit than the Explana-
tion Case.

The estimated probability of this prediction being correct is 98%
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Table 5: Example A

Query Explanation
Case Case
Weight (kgs) 69 66
Duration (mins) 180 180
Gender Male Male
Meal Lunch Lunch
Amount (Units) 15.6 10.2
BAC Predicted Over
Over

Explanation:

The differences in the feature Amount mean that the Query case
is more likely to be over the limit than the Explanation Case.

The differences in the features Weight mean that the Explanation
case is more likely to be over the limit than the Query Case.

The estimated probablilty of this prediction being correct is 94 %

20




Table 6: Example B

Query Explanation
Case Case
Weight (kgs) 76 73
Duration (mins) 120 120
Gender Male Male
Meal Full Full
Amount (Units) 7.2 9.0
BAC Predicted Under
Under

Explanation:

The differences in the feature Weight and Units mean that the
Query case is more likely to be under the limit than the Explana-
tion Case.

The estimated probablilty of this prediction being correct is 87 %
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