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Abstract. In this paper we adapt the recently proposed Dynamic Integration en-
semble techniques for regression problems and compare their performance to 
the base models and to the popular ensemble technique of Stacked Regression. 
We show that the Dynamic Integration techniques are as effective for regression 
as Stacked Regression when the base models are simple. In addition, we dem-
onstrate an extension to both Stacked Regression and Dynamic Integration to 
reduce the ensemble set in size and assess its effectiveness. 

1   Introduction 

The purpose of ensemble learning is to build a learning model which integrates a 
number of base learning models, so that the model gives better generalization per-
formance on application to a particular data-set than any of the individual base models 
[3]. Ensemble learning consists of two problems; ensemble generation: how does one 
generate appropriate base models? and ensemble integration: how does one integrate 
the base models’ predictions to improve performance? Ensemble generation can be 
characterized as being homogeneous if each base learning model uses the same learn-
ing algorithm or heterogeneous if the base models can be built from a range of learn-
ing algorithms. Ensemble integration can be addressed by either one of two mecha-
nisms, either the predictions of the base models are combined in some fashion during 
the application phase to give an ensemble prediction (combination/fusion approach) 
or the prediction of one base model is selected according to some criteria to form the 
final prediction (selection approach) [9].  

Theoretical and empirical work has shown the ensemble approach to be effective 
with the proviso that the base models are diverse and sufficiently accurate [3]. These 
measures are however not necessarily independent of each other. If the prediction 
error of all base models is very low, then their learning hypothesis must be very simi-
lar to the true function underlying the data, and hence they must of  necessity, be simi-
lar to each other i.e. they are unlikely to be diverse. In essence then there is often a 
trade-off between diversity and accuracy [2]. 

There has been much research work on ensemble learning for regression in the 
context of neural networks, however there has been less research carried out in terms 



 

 

of using homogeneous ensemble techniques to improve the performance of simple 
regression algorithms. In this paper we look at improving the generalization perform-
ance of nearest neighbours (k-NN) and least squares linear regression (LR). These 
methods were chosen as they are simple models with different approaches to learning 
in that linear regression is an eager model which tries to approximate the true function 
by a global linear function and k-nearest neighbours is a lazy model which tries to 
approximate the true function locally. 

2 Ensemble Integration  

The initial approaches to ensemble combination for regression were based on the 
linear combination of the base models according to the function:   
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where iα  is the weight assigned to the base models prediction ( )if x . The simplest 

approach to determining the values of  iα  is to set them to the same value. This is 
known as the Base Ensemble Method (BEM). More advanced approaches try to set 
the weights so as to minimize the mean square error of the training data.  Merz and 
Pazzani  [12] provide an extensive description of these techniques  

Model selection simply chooses the best “base” model to make a prediction. This 
can be either done in a static fashion using cross validation majority [15] where the 
best model is the one that has the lowest training error. Alternatively it can be done in 
a dynamic fashion [4,11,13] where based on finding “close” instances in the training 
data to a test instance, a base model is chosen which according to certain criteria is 
believed will give the best prediction. The advantage of this approach is based on the 
rationale that one model may perform better than other learning models in a localised 
region of the instance space even if, on average over the whole instance space, it per-
forms no better than the others.  

An alternative strategy to model integration is to build a meta-model to se-
lect/combine the outputs from base models. The original and most widely used meta-
technique is referred to Stacking. Stacking was introduced by Wolpert [18] and was 
shown theoretically by LeBlanc and Tibshirani [9] to be a bias reducing technique. In 
Stacked Regression (SR), the base models produce meta-instances consisting of the 
target value and the base models’ predictions, created by running cross validation over 
the training data. The meta-data is used to build a meta-model, based on a regression 
algorithm and the base models are built using the whole training data. Ensemble pre-
diction for a test instance is formed by passing a meta test instance (formed from the 
base models’ predictions) to the meta-model. Typically the generation of the base 
models is heterogeneous or homogeneous but built with different training parameters. 
Breiman [1] investigated the use of Linear Regression to form the meta-model and 



 

 

found that Linear Regression is a suitable meta-model so long as the coefficients of 
regression are constrained to be non-negative.   

More recent meta-approaches for classification are the Dynamic Integration tech-
niques developed by Puuronen and Tsymbal [13,16] Similar to Stacking, these per-
form a cross-validation history  during the training phase. However meta-instances are 
formed consisting of the training instance attribute values and the error for each model 
in predicting its target value. During the test phase a lazy meta-model based on 
weighted nearest neighbours uses the meta-data to either dynamically select or com-
bine models for a test instance in the application phase. In the Methodology section 
we describe in detail the DI techniques and the modifications required to make them 
applicable for regression. In this paper, we compare the accuracy of ensemble tech-
niques of SR and DI over a range of data-sets. It is particularly apposite to compare 
SR to the variants of DI as there strong similarities in their approach in that they ac-
cumulate meta-data based on a cross validation history which is then used to build a 
meta-model. 

2   Methodology 

In this section we describe the DI classification algorithms and their regression vari-
ants. DI consists of 3 techniques Dynamic Selection, Dynamic Voting and Dynamic 
Voting with Selection. We refer to their regression counterparts as Dynamic Selection, 
Dynamic Weighting and Dynamic Weighting with Selection. Dynamic Selection 
makes a localized selection of a model based on which model has the lowest cumula-
tive error for the nearest neighbours to the test instance. The procedure for regression 
remains the same. Dynamic Voting assigns a weight to each base model based on its 
localized performance on the NN set and the final classification is based on weighted 
voting. Dynamic Weighting (DW) is similar to the Dynamic Voting in its calculation 
of weights but the final prediction is made by summing each of the base models pre-
dictions weighted by a normalized weight value. Dynamic Weighting with Selection 
(DWS) is a regression derivative of Dynamic Voting with Selection. The process is 
similar to Dynamic Weighting except that base model with cumulative error in the 
upper half of the error interval, max min( ) / 2iE E E> − , (where maxE is the largest 

cumulative error of any model and minE is the lowest cumulative error of any model ) 
are discarded from adding to the prediction. 

In [16] the ensemble generation is improved upon by a feature selection method 
based on hill climbing. In this paper, we consider a method that tries to reduce the size 
of the ensemble set whilst maintaining its accuracy.  During the training phase, we 
start with a set of N base models, and due to a consideration of their training accu-
racy and diversity determined by the cross-validation process ( intrinsic to both the SR 
and the DI techniques) reduce the size of the set down to M  base models. This proc-
ess of filtering down the number of models is based on the pseudo-code described in 
Figure 1 and adds little algorithmic overhead to the techniques. Its goal is to remove 



 

 

members from the ensemble that are considered too inaccurate to be effective and then 
to consider the remaining members based on both their accuracy and diversity. 
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for (i=1 to N)
if (accuracyi > accuracy_threshold) then

discard model i
endif

endfor
n = the number of models remaining in the ensemble
//models are re-indexed from 1..n
if n>M then
// determine diversity

for ( i = 1 to n)
count = 0
for (j=1 to n)

if ( i<>j AND ( , )
i j

correl E E > 0.6) then

count = count + 1;
endif

endfor
diversityi= (n–count)/n
acc+divi = accuracyi+diversityi  

endfor
// take the top M base models based on those having highest acc+divi

// measure

Figure 1 Ensemble size reduction technique 

3 Experimental Setup 

The base models and ensemble techniques were assessed using 10 fold cross valida-
tion and the mean absolute error (MAE) was recorded for each technique. 15 data-sets 
were chosen from the WEKA repository [18]. The data-sets were chosen as they rep-
resent real world data and not artificial regression examples. The data-sets were pre-
processed to remove missing values using a mean or modal technique. The two base 
models used were 5-NN and Linear Regression. We assessed the improvement in 
accuracy or otherwise of the ensemble in comparison to the base model by using a two 
tailed paired t-test (p=0.05). For each technique, the ensemble set was generated using 
the Random sub-space method (RSM) first proposed by Ho [5,6] for classification 
problems and is a derivative of Stochastic Discrimination [7]. Random sub-space 
method is a generation method where each base model is built from the training data 



 

 

which has been transformed to contain different random subsets of the variables. We 
chose the model tree technique M5, which combines instance based learning with 
regression trees [14] as the meta-model for SR. We chose this as it has a larger hy-
pothesis space than simple linear regression. In the experiments where the ensemble 
size was reduced the initial ensemble set had size N =  25 and was reduced to 

10M =  with an accuracy_threshold of 0.66. Each of the DI techniques used dis-
tance weighted 5-NN as their meta-model. 

4 Experimental Results 

This section is divided into two sections where each section consists of two experi-
ments; the first is related to the accuracy of the ensembles for the whole ensemble set; 
the second assesses the accuracy of the ensemble to the experiments when the ensem-
bles are reduced in size. Each section consists of the results of the comparison with the 
base model of LR and 5-NN respectively. The results of each experiment over the 15 
data-sets is presented in the form of a table where the first column gives the name of 
the data-set, the second column the base models’ MAE ± standard deviation for each 
data-set, and column 3-6 gives the MAE for each ensemble technique. The remaining 
column records the technique with the least MAE, if any of the techniques were able 
to significantly improve upon the performance of the base model, otherwise the entry 
is left blank. An ensemble MAE result which is significantly better than the base 
model is shown in bold, if it is significantly worse it is shown underlined. An adjunct 
table summarizes the results of the significance comparison in the form of wins/ 
draws/losses where wins is the number of data-sets where the ensemble outperformed 
the base model, draws is the number of data-sets for which the base model showed no 
significant difference in accuracy to the base model, and losses is the number of data-
sets where the ensemble accuracy was worse than the base model. 

4.1 Whole Ensemble set 

This section refers to experimental results involving the whole ensemble set. Table 1 
shows the results of the comparison when the base model was Linear Regression. DS 
and DWS reduced the error significantly for the greatest number of data-sets whereas 
DW reduced the error for the least number. However both SR and DS increased MAE 
significantly for two data-sets. Only DWS never increased the MAE significantly for 
any of the 15-data-sets. If one considers the “least MAE” column it is clear than for 7 
data-sets none of the techniques were effective. For the other 8 data-sets, if we rank 
the order in which the ensemble technique gave the least error most frequently, DS 
came first with SR second.  
 
 
 



 

 

 
Data-set LR 

 
SR 
 

DS 
 

DW 
 

DWS 
 

Least 
MAE 

abalone 1.58±0.08 1.61±0.28 1.58±0.09 1.62±0.11 1.58±0.10 - 
autohorse 7.99±4.17 6.54±4.11 7.18±5.16 6.84±4.13 6.65±4.23 SR 
autoMpg 2.23±0.21 2.11±0.48 2.05±0.26 2.16±0.21 2.05±0.25 DS/DWS 
autoPrice 1974.23± 

326.81 
1659.33± 
290.68 

1518.58± 
339.96 

1660.29± 
367.28 

1532.65± 
357.1 

DS 

auto93 3.79±1.3 4.11±1.6 4.02±1.17 3.20±1.23 3.25±1.28 - 
bodyfat 0.53±0.23 0.53±0.22 0.43±0.26 0.60±0.21 0.48±0.24 DS 
breastTumor 7.97±1.05 8.1±1.05 8.06±0.99 7.77±0.93 7.84±0.89 - 
cholesterol 39.24±5.88 40.89±5.73 38.92±4.64 38.19±4.62 38.41±4.44 - 
cloud 0.26±0.09 0.26±0.09 0.32±0.08 0.27±0.09 0.26±0.09 - 
cpu 35.02±4.45 14.22±6.75 22.25±7.31 21.24±8.05 19.36±7.13 SR 
housing 3.41±0.33 2.82±0.58 2.68±0.47 3.29±0.56 2.96±0.54 DS 
lowbwt 364.48± 

48.21 
392.01± 
57.4 

397.93± 
51.48 

356.87± 
62.64 

363.03± 
61.44 

- 

sensory 0.61±0.04 0.61±0.04 0.59±0.05 0.61±0.06 0.59±0.06 - 
servo 0.63±0.273 0.38±0.23 0.45±0.28 0.63±0.22 0.44±0.25 SR 
strike 221.43± 

38.47 
209.79± 
41.65 

180.84± 
45.72 

203.64±38.33 189.01± 
42.54 

DS 

 
Method SR DS DW DWS 
Wins/Ties /Losses 6/7/2 8/5/2 4/9/2 8/7/0 

Table 1. The comparison of ensembles using LR as the base model 

Data-set 5-NN 
 

SR 
 

DS 
 

DW 
 

DWS 
 

Least MAE 

Abalone 1.61±0.09 1.54±0.08 1.73±0.07 1.54±0.09 1.54±0.09 SR/DW/DWS 
autohorse 8.7±4.69 7.11±3.71 5.79±4.57 6.44±4.93 6.06±4.92 DS 
autompg 2.31±0.38 2.12±0.34 2.41±0.35 2.04±0.35 2.08±0.35 DW 
autoprice 1531.86± 

404.24 
1478.62± 
460.89 

1382.06± 
336.79 

1438.39± 
460.48 

1397.63± 
454.43 

DWS 

auto93 3.81±1.4 3.76±1.11 4.27±1.32 3.4±1.52 3.39±1.58 DWS 
bodyfat 2.3±0.49 0.94±0.21 1.16±0.28 1.7±0.37 1.407±0.34 SR 
breastTumor 9.39±1.04 8.38±0.64 9.67±1.06 8.01±0.91 8.12±0.97 DW 
cholesterol 43.0±4.13 43.39±4.03 46.17±6.04 39.64±4.63 40.36±4.56 DW 
cloud 0.51±0.19 0.38±0.13 0.39±0.11 0.39±0.17 0.36±0.14 DWS 
Cpu 22.72±13.94 34.16±17.61 23.97±12.97 19.68±13.46 20.72±14.18 DW 
housing 2.59±0.58 2.30±0.41 2.56±0.39 2.39±0.55 2.27±0.5 DWS 
lowbwt 398.3±80.6 397.8±47.17 471.35± 

67.56 
365.88± 
80.53 

369.47± 
74.71 

DWS 

sensory 0.6±0.06 0.55±0.06 0.66±0.07 0.58±0.05 0.58±0.05 SR 
servo 0.56±0.19 0.38±0.30 0.42±0.24 0.62±0.22 0.42±0.22 SR 
strike 194.62± 

53.46 
222.29± 
46.7 

196.71± 
50.16 

182.25± 
50.01 

176.08± 
50.15 

DWS 

 
Method SR DS DW DWS 
Wins/ Draws/losses 9/3/3 4/7/4 13/2/0 13/2/0 

Table 2. The comparison of ensembles using 5-NN as the base model 

Table 2 shows the results of the comparison of ensembles when the base model 
was 5-NN. Clearly the two outstanding ensemble techniques were DW and DWS, 
which both reduced the error signicantly for 13 out of the 15 data-sets. The technique 
which proved least effective was DS. The “least error“ column shows that for every 
data-set  at least one of the ensemble techniques was effective in signifcantly reducing 



 

 

the error.  DWS came first in rank order of the techniques which gave the least error 
most frequently with DW coming second.  

In summary, it can be seen that for either base model, at least one of the DI 
techniques is as effective as SR, if not more so in reducing the error. Also DWS 
seemed to be the most reliable ensemble approach, as it never significantly increased 
the error. The pattern of behaviour of the DI techniques for regression mirrors that of 
classification [16] where the best integration method varied with the data-set and the 
base model. 

4.2 Reduced Ensemble set 

In this section, we repeated the experiments of the previous section, but with the addi-
tion that the ensemble set had been reduced at the end of the training phase using the 
algorithm described in Figure 1 from 25N =  to 10M = . Table 3 shows the results 
of the comparison of the reduced size ensembles for LR. Comparing the 
ties/wins/losses of Table 3 to Table 1 shows that DW and DS improved in perform-
ance, DWS remained the same and SR remained approximately the same. 
 

Data-set LR SR DS DW DWS 
abalone 1.58±0.08 1.52±0.06 1.57±0.09 1.60±0.09 1.58±0.09 
autohorse 7.99±4.17 7.42±3.4 7.00±4.75 6.57±3.69 6.2±3.87 
autompg 2.23±0.21 2.09±0.43 2.09±0.33 2.13±0.2 2.08±0.24 
autoPrice 1974.23± 

326.81 
1687.68± 
233.37 

1550.61± 
343.32 

1723.99± 
324.96 

1567.55± 
356.56 

auto93 3.79±1.3 3.521±1.1 3.91±1.24 3.43±1.33 3.41±1.39 
bodyfat 0.53±0.23 0.48±0.23 0.41±0.27 0.45±0.25 0.42±0.26 
breastTumor 7.97±1.05 8.08±1.09 8.06±0.99 7.92±0.95 7.97±0.89 
cholesterol 39.24±5.88 38.94±5.76 39.01±4.96 39.05±4.63 39.03±4.49 
cloud 0.26±0.09 0.28±0.09 0.28±0.10 0.27±0.10 0.27±0.10 
cpu 35.02±4.45 15.35±6.8 24.27±6.01 25.05±7.2 23.07±7.09 
housing 3.41±0.33 2.76±0.37 2.67±0.45 3.17±0.42 2.79±0.47 
lowbwt 364.48±48.21 365.46±50.86 376.69±42.86 365.19±44.73 361.59±49.06 
sensory 0.61±0.04 0.61±0.04 0.59±0.04 0.60±0.05 0.59±0.05 
Servo 0.63±0.27 0.44±0.2 0.5±0.23 0.53±0.27 0.48±0.27 
Strike 221.43±38.47 218.47±37.39 205.04±36.68 212.62±33.99 205.39±35.35 

  
Method SR DS DW DWS 
Wins/ Ties/losses 5/10/0 8/7/0 7/8/0 8/7/0 

Table 3. Results of comparison of ensembles using LR 

  There is however more variation in the results than the summary in significance 
comparison alone would suggest. If we calculate the percentage change in MAE be-
tween the results in Table 1 and Table 3 and average it over all data-sets, the follow-
ing average percentage changes are shown in Table 4. A positive value is recorded if 
the technique gave on average a percentage reduction in error. 

It is clear that although the average change in MAE is quite small no larger than a 
2% decrease , the standard deviation is relatively large indicating that for some data-
sets there is a large percentage change in the MAE. 

 



 

 

 
 

Technique SR DS DW DWS 
Average percentage change in 
MAE 

-0.45±8.3 -0.72±6.36 0.9±9.89 -1.41±7.41 

Table 4. Percentage change in MAE for ensemble size from N to M 

  However comparing the reduced ensemble set to the whole ensemble results in 
detail shows a general trend that for data-sets where the error increased it did not 
increase to change the level of significance, but where the error decreased then in 
some cases it did change the signifcance comparison. e.g. consider the technique DW , 
for the whole ensemble set, autohorse, autoprice, cpu, strike gave an MAE better than 
the base model whereas  abalone, and bodyfat were significantly worse. For the 
reduced ensemble set, autohorse, autompg, autoprice, bodyfat, cpu, servo, strike gave 
an MAE significantly better than base model even though for some of these data-sets 
there was a relative increase in MAE. 

 
Data-set 5-NN SR DS 

 
DW 
 

DWS 
 

abalone 1.61±0.09 1.56±0.09 1.756±0.07 1.57±0.09 1.589±0.09 
autohorse 8.7±4.69 6.14±3.71 4.88±4.92 4.76±4.39 4.77±4.72 
autoMpg 2.31±0.38 2.13±0.34 2.34±0.39 2.00±0.39 2.06±0.41 
autoPrice 1531.86± 

404.24 
1383.66± 

460.89 
1320.41± 
236.91 

1313.78± 
462.28 

1326.41± 
419.81 

auto93 3.81±1.4 3.61±1.11 4.28±1.29 3.5±1.6 3.56±1.58 
bodyfat 2.3±0.49 0.95±0.21 1.07±0.28 1.03±0.32 1.04±0.28 
breastTumor 9.39±1.04 8.24±0.64 9.71±0.99 7.99±0.91 8.32±1.0 
cholesterol 43.0±4.13 39.81±4.03 46.77±6.89 40.13±4.72 41.21±4.77 
cloud 0.51±0.19 0.37±0.13 0.37±0.10 0.33±0.14 0.34±0.12 
cpu 22.72±13.94 30.97±17.61 21.10±13.33 20.12±12.48 21.33±12.95 
housing 2.59±0.58 2.33±0.41 2.57±0.5 2.33±0.48 2.24±0.41 
lowbwt 398.3±80.6 375.46±47.17 430.79±83.64 359.39±58.65 367.66±64.31 
sensory 0.6±0.06 0.56±0.06 0.64±0.08 0.57±0.05 0.58±0.06 
servo 0.56±0.19 0.38±0.3 0.44±0.28 0.45±0.29 0.39±0.3 
strike 194.62±53.46 208.72±46.7 195.78±61.88 187.14±52.46 185.92±56.27 

 
Method SR DS DW DWS 
Ties/Wins/losses 10/3/2 4/9/3 14/1/0 9/6/0 

Table 5 Comparison of Ensembles with the base model 5-NN 

Table 5 shows the comparison of the reduced ensemble sets when the base model 
was 5-NN. Comparing the results to Table 2 shows that SR, DS, DWS performed 
slightly better with the reduced sets. DWS showed a drop of 4 from 13 to 9 data-sets 
showing a significant improvement in MAE.  The average percentage change in MAE 
for the whole ensemble set and the reduced ensemble set for 5-NN is shown in Table 
6. However for those 4 data-sets which were no longer significantly better with DWS 
than the base model, the percentage change in MAE was at most 5.6%. The same 
pattern of average error change is similar to LR with a low average pecentage change 
but a higher level of variability in percentage change amongst the data-sets, as shown 
in Table 6. The main difference to the results for LR is that for all techniques there 



 

 

was a positive change in the average percentage change in error, with a relatively large 
change for DW. 
 

Technique SR DS DW DWS 
Average percentage change in 
MAE 

3.49±4.69 3.53±5.61 7.42±13.23 3.04+9.12 

Table 6 Percentage change in MAE for ensemble size = N to M 

In summary, the ensemble size reduction strategy maintains the effective-ness both 
of SR and the DI techniques. In the case DW, the results would suggest that in fact 
pruning the ensemble set actually improves accuracy, a likely consequence that it is 
more sensitive to in-accurate or redundant base models, than the DS and DWS 
approaches, which either select the best model or remove inaccurate models from the 
model combination. 

5 Conclusions and Future Work 

In this paper we have demonstrated that the classification ensemble  techniques of 
Dynamic Integration can be adapted to the problem of regression. We have shown that 
for simple base models, these techniques are as effective as Stacked Regression for the 
range of data-sets tested. We have presented a extension to the SR and DI techniques 
which uses the accuracy and diversity measure captured in the training of the base 
models to prune the size of the ensemble thus removing models that are ineffective in 
the model combination. We intend to refine and improve on this simple technique as it 
provides little extra overhead to the algorithms and has shown promising results in 
reducing the ensemble size whilst maintaining its level of accuracy. In particular, we 
intend to investigate in more detail the appropriate choice of accuracy threshold and 
the size of the reduced ensemble set. Also, we shall compare our measure for diversity 
to the more commonly known measures for diversity such as the variance based 
measure developed in [8].  
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