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Abstract. In this paper we aim to show how probabilistic prediction of
a continuous variable could be more beneficial to a medical practitioner
than classification or numeric/point prediction of the same variable in
many scenarios. We introduce a probability density forecasting model
that produces accurate estimates and achieves statistically consistent
predicted distributions. An empirical evaluation of this approach on the
problem of warfarin dosage prediction is described and a comparison of
results obtained from our probabilistic models with a number of classifi-
cation techniques on this problem is also shown.

1 Introduction

Optimal decision making can be achieved through perfect information. Unfor-
tunately, in most cases, complete information is not available to the decision
maker. This is often the case in medicine, rational decisions must be made in an
environment with imperfect information and hidden variables. Probability the-
ory allows us to rationalise our decisions in these circumstances and determine
an optimal course of action. Therefore, decision support systems that try to
optimise decisions made by practitioners by determining relationships between
patient’s attributes and empirical evidence should present predictions in terms
of probabilities.

In this paper we introduce a new class of model called the Pareto-Evolutionary
Mixture Density Network or Pareto-EMDN. The Pareto-MDN forecasts the com-
plete probability distribution of likely outcomes. As with simple point predictions
it is important that probability distribution predictions are accurate. In addition
to requiring that the probability distribution predictions are sharp or accurate,
they also need to be well calibrated (Diebold et al., 1999). This means that
the shape of the distribution should correspond to probability for the real phe-
nomenon i.e. events that have a 33% probability should occur 1/3 of the time.
By identifying these goals and optimising our model directly on both of them,
we achieve better results than traditional models that only optimise under one
objective. We demonstrate its usefulness by applying it to a medical decision
problem.



The paper is laid out as follows. In Section 2 we outline the motivation of our
work. Section 3 gives a brief review of probability density function estimation
techniques. Section 4 explains the objectives of density forecasting and introduces
the error functions that can be used to optimise these objectives. In Section 5
we describe the model that we use to achieve our defined objectives. An analysis
of the described model on an artificial data set is shown in Section 6. Our case
study is described in Section 7 and finally Section 8 concludes.

2 Regression Problems in Medical Decision Support

The supervised learning methodology from Machine Learning research is very
useful in medical decision support because it facilitates the development of pre-
diction systems from historic data. The notion of ‘supervision’ evokes the idea
of a learner who associates class labels to training examples. These labeled ex-
amples can be used to train a prediction system that will be able to assign class
labels to unlabeled examples. Such classification systems are common in med-
ical decision support where the class might for instance be a diagnosis for a set
of symptoms. In classification problems the outcome (dependent variable) is a
class label, however there are also prediction problems where the outcome is a
numeric value. These are termed regression problems and examples in medical
decision support include:

– predicting Glycated Haemoglobin (HbA1C) levels for diabetes patients (Braatvedt
et al., 1997).

– predicting life expectancy for children with cystic fibrosis (Aurora et al.,
2000).

– predicting life expectancy for cancer patients (Vigano et al., 1999).
– predicting the life-span of artificial hip-joints (Young et al., 1998).
– predicting International Normalized Ratio (INR) values for patients on an-

ticoagulant therapy (Ginsberg et al., 2001; Byrne, 2002)

A variety of techniques exist for building prediction models for regression
problems such as these. In addition to the classical linear regression models
from statistics (Weisberg, 2005), artificial neural networks are also well suited
to problems of this type.

One problem with numeric predictions in applications such as those listed
above is that precise numeric predictions produce estimates that give the user a
false impression of perfect accuracy. For this reason point predictions are some-
times avoided by discretizing the outcome variable into a series of class labels,
e.g. {< 18months,≥ 18months}. Issues of imprecision can also be addressed by
augmenting the point prediction with a confidence interval or error bars.

A more serious problem exists in the situation where the point prediction
is within some acceptable range but in reality there is a significant likelihood
of a completely unacceptable outcome. Consider a situation where a prosthesis
is predicted to last for 12 years but there is a 15% chance of it failing within 2
years. The solution presented in this paper addresses this problem by predicting a
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complete probability density function for the numeric output value (see example
in Fig. 5). While this ability to describe the complete probability density function
of the outcome offers more comprehensive information for the clinician it also
raises some interesting issues. The first issue is to decide how to present this
extra information to the user - some alternatives are considered in Section 7.2.

The second issue (from a research perspective) is how to evaluate the ac-
curacy of these predictions. Evaluating the accuracy of a system that produces
point predictions is straightforward; the accuracy can be quantified by measuring
the root mean squared error of predictions and a good estimate of generalization
accuracy can be produced using cross-validation. Working with a complete prob-
ability density function introduces another dimension in assessing the quality of
of a prediction. Not only does the accuracy of the prediction need to be assessed
(in Section 4 we propose a sharpness measure to achieve this), but the overall
shape of the distribution must also be assessed. Intuitively, outcomes that are
predicted to have a 10% probability of being over a threshold should be over that
threshold one time in ten. In Section 4 we adopt a measure called calibration
(Diebold et al., 1999) that captures this. So, while these density functions have
great promise in the extra information that they offer the user, the models are
difficult to build as there are two competing criteria that need to be optimised.

3 Review of Density Forecasting Techniques

The standard solution to regression problems is to apply a sum-of-squares error
function to N training data pairs, (x1, t1), ..., (xn, tn), to predict a conditional
mean of a new unseen data vector, 〈tn+1|xn+1〉. This form of point prediction is
often inadequate in practice because there is no indication of the level of uncer-
tainty in the model’s predictions. The most rudimentary method of quantifying
this uncertainty is to report a mean-squared-error (MSE). This is the average
uncertainty in the model over the complete input training set. The combination
of a point prediction with MSE makes the assumption that the uncertainty in
the model is described by a Gaussian conditional density function with constant
variance equal to the MSE.

Quantifying the uncertainty in each individual prediction is our goal. To
model this uncertainty we could use confidence intervals, however, De Finetti
(1974) argues that the only concept needed to express uncertainty is probability,
and so all predictions over a future event should be made in terms of probability
distributions. Consequently, our goal, and the goal when making any prediction
with uncertainty, is to create a model of the process as a sequence of probability
density functions. This means that for any given input value e.g. xn+1, our model
should produce a conditional density function p(tn+1|xn+1).

There exist a number of approaches to obtain estimates of the conditional
density function. Fraser and Dimitriadis (1993) initially developed a Hidden
Filter Hidden Markov Model using the EM algorithm to produce predictions of
conditional density forecasts. Weigend and Nix (1994) suggest a neural network
architecture that predicts the mean value and the local error bars (standard
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deviations) for given inputs, however, this approach assumes the data generating
distribution is a Gaussian.

Neuneier et al. (1994) and Bishop (1995) developed a semi-parametric con-
ditional density estimation network or mixture density network (MDN)3. This
approach removes the need to assume a Gaussian and can model unknown dis-
tributional shapes. Husmeier (1999) developed a two hidden layer universal ap-
proximator called a random vector functional link (RVFL) which also can predict
the whole conditional density function. Husmeier compares his RVFL model with
an MDN and shows that both techniques produce results with equivalent accu-
racy. In this paper we will use an MDN as our base model to produce accurate
calibrated predictions.

4 Density Forecasting Objectives: Sharpness and

Calibration

Most techniques for evaluating predictions are based on the principle that the
closer predictions are to the actual observation the better the predictor. When
making a probabilistic prediction there is an added complexity. Direct compar-
ison between the prediction and the actual observation is hindered because the
prediction is a function representing the probable outcomes and the observed
value is a single value. To resolve this problem we can define our goals and
optimise our models to maximise them.

The density forecasting literature suggests that density forecasts should max-
imise sharpness subject to calibration (Gneiting et al., 2003). Sharpness is the
amount of spread of the predicted probability around the observation. A sharp
prediction is one that has small variance and high density at the observation.
Calibration is the statistical consistency, or the empirical validity, of the models
probability predictions. A well calibrated model will produce probability esti-
mates that are consistent over a set of predictions. For example, a model that
makes 20 predictions with an 80% probability of a particular outcome should
result in 16 occurrences of that outcome.

Maximising sharpness and calibration is not a simple objective. Optimising
sharpness solely can result in a poorly calibrated model and a well calibrated
model does not necessarily produce useful predictions. Therefore a probabilistic
model must trade-off between calibration and sharpness. However, if the pre-
dicted distributions are to be considered useful it is necessary for the predictions
to be calibrated4. Therefore, we should think of calibration as a constraint for
our probability distributions. Furthermore, we want our model to be predictive
so we also want to maximise sharpness subject to our calibration constraint.

3 Neuneier et al. use the name Conditional Density Estimation Network and Bishop
uses the name Mixture Density Network, for consistency we will use only MDN from
now on.

4 A sharp but uncalibrated density forecasting model produces probability distribu-
tions that can not be used, thus it is no more useful than a point prediction model.
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We have now defined our goals, in the next two sub-sections we describe both
sharpness and calibration objective functions that will allow us to optimise our
density forecasting models on these goals.

4.1 Sharpness Cost Function

To determine the level of sharpness in our predictions we use the negative log-
likelihood, also known as the negative log predictive density, or ignorance score
(Good, 1952). This is the measurement of sharpness that is most commonly
used in the density forecasting literature. The negative log-likelihood penalizes
relative to the predicted probability density at the actual observation. In Machine
Learning, it is the mean value of the negative log-likelihood over all predictions
that is used to determine the error in the predicted densities.

NL =
1

N

N
∑

i=1

− log(p(ti|xi)) (1)

Where, p(ti|xi) is the predicted density given the input vector x for the
observation t for case i, and N is the number of observations being evaluated.

The negative natural log is used to make this loss function a minimisation
rather than maximisation score i.e. the error function is negatively oriented.
Although the negative log-likelihood is a correct scoring rule in the sense that
it penalizes both under confident and over confident predictions, its weakness is
that as the error increases the negative log-likelihood error grows quadratically
not linearly 5. However, the datasets being studied here do not have sufficiently
extreme outliers to be affected by this phenomenon.

4.2 Calibration Cost Function

Calibration is a joint property of the observations and the predictions. It has
always been an ex post evaluation and appears never to have been specifically
optimised during the training process until now. The standard means of evalua-
tion requires the visual assessment of the Probability Integral Transform (PIT)
histogram (Diebold et al., 1998). A well calibrated model will have a set of PIT
values z, one for each observation, that are uniform between the interval [0,1],
and independent and identically distributed, i.i.d..

z = −

t
∫

−∞

p(u)du (2)

5 The exponential nature of the loss function is the cause of its sensitivity to outliers.
If extreme events exist in the data then this may affect the ability of this cost
function to optimise. In cases where this happens, (Weigend & Shi., 2000) suggest
using a trimmed mean to get around this issue. We suggest using an alternative
sharpness error measure such as the continuous ranked probability score, (Matheson
& Winkler, 1976).

5



Where, t, is the target variable, and p(·) is the probability density for target
t.

The intuition behind this approach is, that 10% of the cumulative proba-
bilities should be in the range 0-10% another 10% of cumulative probabilities
should be in the range 10%-20%, etc.. A histogram of the z values is the stan-
dard form of presenting this information. A well calibrated model will return a
histogram of equal bin heights6. A correct calibration error function must eval-
uate a model’s z values based on their consistency with a U(0,1) distribution.
Noceti et al. (2003) empirically tested a number of statistical methods for eval-
uating z values in this way and concluded that the most powerful statistic is the
Anderson-Darling test7. Therefore, our calibration error function is,

zA2 = −n −
1

n

n
∑

j=1

(2j − 1)[log(zi) + log(1 − zn−j)] (3)

Where, n, is the number of z values, and the z values are sorted in ascending
order.

This returns the Anderson-Darling test statistic. This is not a strictly proper
scoring rule in the sense that you can not assess the calibration of a single
prediction. Calibration can only be determined for a set of predictions. However,
(Anderson & Darling, 1954) suggest that this statistic produces assessments of
uniformity that are valid for sample sizes larger than 40. Therefore, this loss
function should only be used when the dataset size is greater than 40.

5 Multi-objective Optimisation of Mixture Density

Networks

Mixture Density Networks (MDN) refer to a special type of artificial neural
network in which the target is represented as a probability distribution, or,
more specifically, a conditional probability density function. MDNs were first
introduced by Bishop (1995) and shown to successfully describe the conditional
distribution for the multimodal inverse problem and Brownian process. Since
then they have been successfully applied to both financial (?) and meteorological
data sets (Cornford et al., 1999).

MDNs represent the conditional density function by a weighted mixture of
Gaussians known as a Gaussian Mixture Model(GMM). GMMs are a flexible,

6 The PIT histogram gives insight into the biases of the prediction technique. For
example, a U shaped PIT histogram that has a large number of cumulative predictive
densities at both extremes suggests that the model is producing predictions that are
over-confident.

7 Noceti et al. (2003) tested on the Kolmogorov-Smirnov, Kuiper, Cramer-von Mises,
Watson and Anderson Darling. Independently, we tested the Chi-square and Shapiro-
Wilks tests for uniformity. The Anderson-Darling test performed better than these
two other metrics also.
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convenient, semi-parametric means of modeling unknown distributional shapes.
The conditional density function is described in the form

p(t|x) =
c
∑

i=1

αi(x)φi(t|x) (4)

where φi is a Gaussian as follows,

φi(t|x) =
1

(2π)q/2σi(x)c
exp(−

‖t − µi(x)‖2

2σi(x)2
) (5)

where c is the number of components in the mixture. The parameter αi is the
Gaussian weight or mixing coefficient and φi(t|x) represents the ith Gaussian
component’s contribution to the conditional density of the target vector t. For a
full discussion on the Mixture Density Network architecture see (Bishop, 1995).

MDNs use the negative log-likelihood error function during optimisation. Due
to the complexity of the local error curvature, straightforward gradient descent
fails. To overcome this problem Bishop uses a Scaled Conjugate Gradients (SCG)
(Moller, 1993) optimisation technique to dynamically adjust the learning rate
during the training process to converge to a minimum. We use an Evolutionary
Strategy to optimise our network in terms of sharpness and calibration.

5.1 Sharpness and Calibration Optimisation for MDN’s

In the preceding sections we introduced the concept of sharpness and calibration
in a density forecasting model, we also briefly introduced the MDN. Now we will
describe how to train an MDN to optimise both sharpness and calibration.

Sharpness and calibration are conflicting objectives, optimising one compro-
mises the other. Therefore, optimisation of both objectives is a multi-objective
search problem. Unlike single objective search problems, multi-objective search
problems have a set of global optima called the Pareto optimal set. Each member
of the Pareto optimal set represents a trade-off solution to the multiple objec-
tives. Progressing solutions towards the Pareto optimal set while maintaining
a diverse set of trade-off solutions is the goal of a multi-objective search. The
set of trade-off solutions is known as the non-dominated set, so called because
no solution in the non-dominated set is worse in all objectives than (dominated
by) another solution in the set. There are a number of comprehensive reviews of
multi-objective optimisation techniques, for example (Deb, 2001; Van Veldhuizen
& Lamont, 1998; Coello, 1999)

Fortunately, Evolutionary Artificial Neural Networks (EANN’s) allow us to
optimise an ANN using an evolutionary algorithm. EANN’s have become in-
creasingly popular over recent years. They have the ability to find good, global
solutions to complex optimisation problems while simultaneously optimising the
network architecture (Yao, 1999). They also provide a means of optimising an
ANN on a non-differentiable objective function. More recently, a framework for
a Pareto Evolutionary Neural Network (Pareto-ENN) (Fieldsend & Singh, 2005)
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has been developed to optimise ANN’s under multiple objectives. We have devel-
oped an extension to this basic framework that optimises MDN’s. Specifically, we
use Fieldsend and Singh (2005), Mv, optimisation framework. Our adaptation
uses the two error functions described in Section 4 above, NL and zA2.

To optimise a neural network using an Evolutionary Strategy (ES) you must
be able to describe your network in terms of a decision vector that can be
mutated by the ES. We represent our networks as a single vector of real values.
To do this we simply carried out columnwise vectorisation of the weight and
bias matrices of each network and concatenated the resulting vectors. We then
created a mask for this vector so that mutations could be easily applied. The
mutation strategy we applied included hidden node addition/deletion, weight
addition/deletion and weight adjustment. This approach optimises the specified
objectives as well as the network’s architecture.

The initial training solution is determined through standard SCG training of
an MDN. The resulting MDN characteristically will have excellent sharpness but
poor calibration. This is because the objective function used is the negative log-
likelihood which does not take calibration directly into account. From this initial
sharp prediction that is near the Pareto optimal set our multi-objective optimi-
sation should fan out from this point to create a diverse non-dominated set of
good trade-off solutions. The initial population is determined by mutation of this
initial solution. The ES used in the experiments in this paper is an ES(1 + 1). At
each epoch a decision vector is selected from the archive of non-dominated so-
lutions using the Partition Quasi-Random Selection technique (Fieldsend et al.,
2003). The selected decision vector is mutated and compared against the archive.
If it is not dominated it is included in the archive of non-dominated solutions.
This process is repeated for 25,000 epochs. For a full discussion on implementa-
tion of a Pareto-ENN see (Fieldsend & Singh, 2005).

6 Analysis of the Pareto-EMDN on Artificial Data

In this section we will demonstrate, using a synthetic dataset, our proposed
calibrated density estimating model. The advantage of using a synthetic dataset
is that we can develop a data generating process where we know the conditional
distribution of the data at every point on the function. For the purpose of this
experiment we chose an artificial data source that had both higher moment
influences and bimodality. The data takes the form of a random phase shift
sinusoid. The function we use is adapted from Lo and Bassu (2002) and is fully
described by,

f(x) = sin(x + c) + ǫ (6)

Where x is in the interval [0, 2π], c is equal to 0 with probability 0.75 and 2
with probability 0.25; and

ǫ ∼
(W (λ, k) − median)

5
(7)
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Where W is the Weibull distribution, with λ = 2 and k = 2 and median is the
median of the distribution. The median offsets the errors on the sinusoids and
the denominator scales the errors. Datasets can be created by drawing values
at random from the interval [0, 2π] and evaluating the corresponding function
values. We generated 2000 data pairs for training, 1000 for validation and 2000
for testing for each experiment run. Figure 1. is a sample plot of a training set
generated from Equation (6).

0 1 2 3 4 5 6
−1.5

−1

−0.5

0

0.5

1

1.5
Sample from Artificial Data

Fig. 1. Sample plot of artificial data set.

6.1 Experiment Details

For each experiment run, a single MDN was trained using a Scaled Conjugate
Gradient (SCG) optimisation algorithm for 5000 epochs. The epoch with the
lowest negative log-likelihood error on the validation set determined the weights
for the network. This is the base network that we use for benchmarking our
calibrated model against. It is denoted as, Standard MDN, in figures and tables.
In this experiment the MDNs topology has 5 hidden nodes and 12 outputs, which
equates to a 4 Gaussian mixture model conditional density estimate.

Before commencing training, the archive and validation archive of the mul-
tiobjective search are populated by carrying out 200 mutations on the initial
solution determined by the Standard MDN. The parameters for the optimisa-
tion process are summarised in Table 1. Training was 25000 epochs. The ex-
periment was repeated 20 times using different initialization vectors, different
random seeds and different training, validation and test data sets drawn from
the generating function.
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Table 1. The parameters of the Pareto-EMDN used on the artificial data sets.

Initial weights N(0, 1)

Probability of weight perturbation 0.2

Perturbation N(0, 1) x 0.1

Probability of node addition/deletion 0.02

Probability of weight flip 0.02

6.2 Experiment Results

The artificial data set allows us to visually compare our Pareto-EMDN predicted
density functions against the real conditional distribution of the data. Figure 2.
is a surface plot of the predicted conditional densities from a member of the
validation archive set compared with the real conditional distribution of the
data.

Fig. 2. The plot on the left is the actual conditional distribution of the data and the
plot on the right is the predicted distribution. Simple visual comparison shows that
the predicted densities accurately capture the dynamics of the data.

The expectation for our Pareto-EMDN models is that training will result in
a set of models ranging from accurate and not well calibrated, to less accurate
but well calibrated. Figure 3. is a plot of the archive of models produced during
training on one run of the experiment. The characteristic shape of the non-
dominated set can be clearly seen and the high degree of sharpness of the initial
Standard MDN solution is present.
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Fig. 3. This is a plot of the objective space after training a Pareto-EMDN on a single
run of the artificial data experiment. The initial MDN produced a single very sharp but
poorly calibrated model. Using this as an initial solution the Pareto-EMDN creates a
set of non-dominated or trade-off solutions varying in calibration and sharpness. The
user can then pick the model that best suits their objectives.

As can be seen in Figure 3. our Pareto-EMDN produces a number of candi-
date models that describe different trade-offs on objectives in decision space. It is
intended that the decision maker selects the model that optimises their objectives
in the way that best suits their needs. Therefore, to evaluate the effectiveness of
our model we can suppose that there are two different decision makers (User A
and User B). User A wishes to maximise the accuracy/sharpness of their predic-
tions. The other, User B, wishes to maximise the calibration of his predictions.
Table 2. summarises the performance of the selected models over 20 runs of the
experiment, assuming the users choose the model that optimised their goals the
most on the validation set. We compare results against the Standard MDN.

Table 2. The results show the average error and standard deviation over 20 runs of
our model on the artificial data. User A and User B both improve their respective
objectives. User B obtains a statistically significant improvement over the standard
MDN in the calibration metric. The errors and the standard deviation of the errors are
presented in each case.

NL zA2

Standard MDN -0.736 2.942
±0.057 ±1.598

User A (Pareto-EMDN) -0.737 2.432
±0.056 ±1.110

User B (Pareto-EMDN) -0.734 1.391

±0.057 ±1.057
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This straightforward evaluation shows that there is an improvement in the
calibration score. However, it is necessary to assess whether an improved calibra-
tion score results in improved calibration of predictions. To do this we carried
out 2 tests of calibration that use the fact that we are using an artificial data
set, and can determine the true conditional distribution, to evaluate calibration.

6.3 Analysis of the Calibration Score

To determine whether our zA2 objective function affects the actual calibration
of the Pareto-EMDN predictions we developed two tests. The first examines
each predictions divergence from the conditional density directly. We used the
Kullback-Leibler divergence to calculate the average predicted density divergence
from the actual conditional density. The second evaluation is an empirical test
on the set of percentiles of the predicted distributions. This test we call the
percentile empirical hit rate and is described in detail below.

Kullback-Leibler Results The Kullback-Leibler divergence (1951) is used to
determine the divergence of an estimated distribution p from the true distrib-
ution ptrue. If p and ptrue are identical the Kullback-Leibler divergence is zero.
The formula is,

K(p, ptrue) =

∫

∞

−∞

dyp(y) log

(

p(y)

ptrue(y)

)

(8)

However, the classic Kullback-Leibler formula, in this form, is asymmetric8.
We can correct for this asymmetry by adjusting the formula to the following

KL(p, ptrue) =
∣

∣K(p, ptrue) − K(ptrue, p)
∣

∣ (9)

Figure 4. has a plot of the normalised average KL divergence against the
normalised zA2 for the set of non-dominated models produced after 1 run of
training. The plot shows a strong correlation between the zA2 and the KL
divergence. This is compelling evidence towards confirming our conjecture that
it is possible to optimise an MDNs calibration.

Empirical Validity - Percentile Test A second test for calibration that
we devised is a percentile evaluation that empirically tests the consistency of
the predictions. Intuitively, over a large set of predictions, the number of target
values within the 5th percentile of the predicted distributions should be 5%. We
call this value the hit rate.

8 K(p, ptrue) 6= K(ptrue, p). Although the K divergence is often called a distance
metric this is in fact a misnomer. The asymmetric nature of the K means that the
‘distance’ from ptrue to p is not the same as the ‘distance’ from p to ptrue. This fact
means that the K is not a true distance metric.
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Fig. 4. A comparison of measures of calibration. The correlation coefficient between
the KL divergence and the Calibration score is 0.9 in this example. Similarly, the
correlation coefficient between the Hit Rate and the Calibration score is also 0.9.

HitRate =

∣

∣

∣

∣

∣

(

∑N
i=1

1
{

Φ−1

i (q) > ti
}

N

)

− q

∣

∣

∣

∣

∣

(10)

Where, q, is the specified percentile and Φ−1 is the inverse cumulative distri-
bution.

We tested every 5th percentile between 5% and 95%. We measured the ab-
solute difference between the percentile being tested and the hit rate. Figure 4.
shows the relationship between the hit rate and the zA2 score.

This evaluation empirically demonstrates that our zA2 error function is a
valid means of improving the calibration of our models.

7 A Case-Study in Anticoagulant Drug Therapy

Warfarin is the only oral anticoagulant licensed for use in the Republic of Ire-
land. The indication for its use in many patients is to reduce the embolic risk
associated with diseases such as atrial fibrillation, left ventricular dysfunction,
deep vein thrombosis and mechanical aortic valve replacement (Byrne, 2002).
While a patient is receiving therapy with an oral anticoagulant, careful moni-
toring and adjustment of their dosage is necessary so that the length of time it
takes for their blood to clot is maintained within a predefined range, known as
the International Normalised Ratio (INR) range (Sachdev et al., 1999). Giving
a patient too low a dose increases their risk of developing a clot while giving
a patient too high a dosage exposes them to potential bleeding complications
(Scottish Intercollegiate Guidelines Network, 1999). The current method of de-
termining the dosage of warfarin required by a particular patient is on a trial
and error basis. The reason for this approach is that every patient will respond
to warfarin differently as each patient’s pharmacological response is affected by
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many exogenous factors other than the dosage prescribed, some of which are
listed in Table 3.

Our data was collected from patients undergoing anticoagulant therapy. The
variable that we are trying to predict is the patient’s observed INR value. The
Target INR value for all patients in our data set is 2.5 (Target INR range of
2.0-3.0). If the patient’s INR measurement drops below 1.5, they are said to be
at unacceptable risk of clotting and if a patient’s INR rises above 4.5 they are
exposed to increased risk of bleeding. Fifteen patient attributes were recorded
for this problem. Table 3 is a summary of these attributes.

Table 3. The fifteen attributes compiled for each case in our input set.

Age Compliance
Weight Previous warfarin dosage
Height Measured INR
Marital Status Duration of therapy
Prescribed Medication Target INR value
Gender Hours since last warfarin dosage
Smoking Any adverse events
Alcohol

7.1 Predicting Density Functions for Anticoagulant Drug Therapy

In this section we will show how our Pareto-EMDN model can be used to aid
a physician when prescribing warfarin. The physician’s objective is to prescribe
the dosage that maximises the likelihood of the patient’s INR value being 2.5 at
their next visit. An example of how our model can help a physician achieve this
goal follows. The target INR value is based on the patient’s disease state and is
specified by the prescribing physician. Guidelines regarding specific ranges are
endorsed by the British Society for Haematology (1998).

Given a patient’s attributes (see Table 3), a physician can use our system to
estimate the affect a warfarin dosage will have on a patient. In our example, the
physician wishes to estimate the affect a 1mg, 2.5mg or a 4mg dosage will have
on his patient’s INR. Figure 5 shows the set of predicted INR distributions for
a specific patient if prescribed these warfarin dosages. The probability distribu-
tions clearly show that a prescription of 2.5mg will greatly reduce the patient’s
risk of either clotting or bleeding. We suggest that the probability distributions
should be presented with a table of the risks of the patient’s INR moving outside
their therapeutic index, (see Table 4).
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Fig. 5. This figure shows the predicted INR distributions for a patient under different
warfarin dosages. The target INR for the patient is 2.5 (red line). Three scenarios
are presented; the predicted INR distribution if the patient is prescribed (top) 1mg
warfarin (middle) 2.5mg warfarin (bottom) 4mg warfarin.

Table 4. This is a table of estimated risk of the patient exceeding specific INR values
determined from the predicted distributions shown in Figure 5. This should be used in
conjunction with the distributions and not as a substitute.

Dosage INR ≤ 1.5 1.5 < INR < 4.5 INR ≥ 4.5

1 mg 68.1% 31.8% 0.1%

2.5 mg 4.6% 94.4% 1.0%

4 mg 3.8% 80.6% 15.6%
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7.2 Evaluation

In our artificial data example above we demonstrated empirically the effective-
ness of our zA2 cost function at optimising the calibration of our density fore-
casting model. Table 5. shows comparative results on both the NL and zA2 cost
functions for three model types. Performance of the Pareto-EMDN is bench-
marked against the Standard MDN over 10-fold cross-validation. Not surpris-
ingly, User A achieves the best sharpness score and User B achieves the best
calibration score on average.

Table 5. Results after 10-fold cross-validation on the warfarin data set. User A selected
members from the non-dominated set that maximised sharpness. User B selected mem-
bers that maximised calibration. The results demostrate the Pareto-EMDN’s ability to
optimise density forecasts under multiple objectives.

NL zA2

Standard MDN 1.106 2.577
±0.151 ±3.772

User A (Pareto-EMDN) 0.945 1.300
±0.114 ±0.709

User B (Pareto-EMDN) 1.001 1.279

±0.094 ±0.970

The unconditional distribution of INR values that we have compiled is shown
in Figure 6. Mac Namee et al. (2002) showed the effect of bias in this dataset and
suggested a technique to meliorate results using an ensemble of point predictors.
By maximising calibration, we correct the bias in the predicted distributions, a
corollary to this is that the tails of the predicted distributions on a calibrated
model should be statistically consistent. As the tail predictions are of more
interest, this is an important improvement to the predictions. To show that our
calibration score improves the tail errors we repeated the empirical validity test
that we carried out on the artificial data. However, this time we assessed the
validity of the tail percentiles. In Table 6. we compare the results of this test.
The calibrated models selected by User B perform the best. This improvement is
statistically significant against both User A and the Standard MDN in a two-tail
t-test (p = 0.05).

Comparative Evaluation The final evaluation that we have carried out com-
pares the classification accuracy of a number of other prediction approaches to
this problem. We have converted the dataset into a classification problem by
labeling cases that have an INR of less than or equal to 1.5 as clotting, those
with an INR greater than or equal to 4.5 as bleeding and patient’s with an INR
between these two values as normal. This results in 835 cases of normal, 124 of
clotting and 47 of bleeding. Table 7. below compares the classification accuracy
for each class over 10-fold cross-validation for each of the following classifiers.
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Fig. 6. A histogram of INR values of the 1006 cases in our data set. Every case in this
dataset has been assigned a target INR value of 2.5. It is clear that there is a skew
in the data with the majority of cases centered around the mode, 2.5. There is a fat,
right tail with values stretching out as far as 13. The left tail, however, only extends
as far as 0.5. Physicians are interested in cases that are on the tails of the distribution,
as these values represent patient’s that are outside their therapeutic index and are at
risk of bleeding or clotting.

Table 6. Results after 10-fold cross-validation on the warfarin data set. User A se-
lected members from the non-dominated set that maximised sharpness. User B selected
members that maximised calibration. Results show the average Hit Rate error over the
percentiles 0.01, 0.05, 0.1, 0.9, 0.95, 0.99.

HitRate

Standard MDN 0.0834
±0.030

User A (Pareto-EMDN) 0.0782
±0.032

User B (Pareto-EMDN) 0.0722

±0.030
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– C4.5 - decision tree algorithm (Quinlan, 1993).
– Logistic Regression - multinomial logistic regression model with a ridge es-

timator (Witten & Frank, 2005).
– Naive Bayes - simple probabilistic classifier (Witten & Frank, 2005).
– kNN - k nearest neighbour classifier (Doyle et al., 2005).

We convert the predicted density function produced by our models into clas-
sifications by determining the predictive density for each class range and classify-
ing based on a probability threshold. We based our thresholds on the percentage
contribution of each class to the unconditional distribution.

Table 7. Results after 10-fold cross-validation on the warfarin classification dataset
for 7 different classifiers. % represent class accuracies.

Classifier clotting normal bleeding

C4.5 95.2% 29.0% 12.8%

Logistic Regression 97.4% 27.4% 23.4%

Nave Bayes 92.2% 10.5% 17.0%

kNN (k=1) 91.3% 21.8% 10.6%

kNN (k=3) 97.0% 9.7% 6.4%

Standard MDN 76.9% 71.0% 72.3%

User A (Pareto-EMDN) 76.6% 77.4% 74.5%

User B (Pareto-EMDN) 79.6% 78.2% 76.6%

The specificity and sensitivity9 of the classifiers are shown in Table 8. To
calculate the specificity and sensitivity of the classifiers we reduced the number
of classes from 3 to 2. This was achieved by combining bleeding and clotting

into a new warning class and leaving the normal class as it was. This approach
probably over simplifies the problem, but the results are useful to demonstrate
the effect of skewed data on classifiers in standard medical evaluation terms.

Table 7. and Table 8. clearly show that the skew in the data creates a bias
that causes very poor classification accuracy for the minority classes in the non-
MDN classifiers, but extremely high prediction accuracy in the majority class
(normal). The Pareto-EMDN shows a consistent accuracy across each class
suggesting that it has overcome this bias problem. This consistency allows the
practitioner to be more confident when using this system in practice. Combining
this with a well calibrated probability distribution estimate of the INR further
enhances the insight the user gets from the predictive model. By clearly display-
ing the uncertainty in the predictions, density forecasting mitigates some of the
concerns of using artificial neural networks in the medical domain and provides
an attractive alternative to the more traditional prediction techniques.

9 Specificity is the proportion of people that have an unsafe INR value and the classifier
has predicted this. Sensitivity is the proportion of people that have a safe INR value
and the classifier has predicted they are safe.
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Table 8. Specificity and sensitivity of classifiers on the warfarin problem when con-
verted into a binary classification task.

Classifier Specificity Sensitivity

C4.5 24.9% 95.0%

Logistic Regression 26.5% 97.2%

Nave Bayes 13.0% 91.2%

kNN (k=1) 19.5% 90.5%

kNN (k=3) 8.9% 96.7%

Standard MDN 76.7% 75.8%

User A (Pareto-EMDN) 82.4% 75.6%

User B (Pareto-EMDN) 83.1% 78.6%

8 Conclusions

We propose a new approach to density forecasting. Existing methods optimise
on sharpness alone and don’t explicitly address calibration. Thus they can have
poor performance in identifying situations when rare events have a significant
chance of occurring. Our density models are optimised directly to achieve sharp-
ness and calibration. To do this we introduce a new class of models called the
Pareto-Evolutionary Mixture Density Network or Pareto-EMDN. An experiment
on an artificial data set shows that our new objective function can optimise cal-
ibration during training. An application of this model in the medical domain
shows that the model can be especially useful when the response variable has a
skewed distribution, overcoming biases that adversely affect traditional estima-
tion techniques. The type of application described in Section 7.1 shows that this
extra information can be very useful in medical decision support.
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