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Abstract

In this paper we present a new perspective on noise reduction for nearest-neighbour classifiers.
Classic noise reduction algorithms such as Repeated Edited Nearest Neighbour remove cases from
the training set if they are misclassified by their nearest neighbours in a leave-one-out cross vali-
dation. In the approach presented here, cases are identified for deletion based on their propensity
to causemisclassifications. This approach was originally identified in a case-based spam filtering
application where it became clear that certain training examples were damaging to the accuracy of
the system. In this paper we evaluate the general applicability of the approach on a large variety of
datasets and show that it generally beats the classic approach. We also compare the two techniques
on artificial noise and show that both are far from perfect at removing noise and that there remains
scope for further research in this area.
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1. Introduction

Because nearest neighbour classifiers (case-based classifiers) are local learners they can be very
susceptible to noise. This can be overcome to a great extent by using more than one neighbour
(k> 1) in classification. Nevertheless, there is still a great deal of interest in removing noisy training
examples in case-based classifiers (Wilson, 1972; Tomek, 1976). There has been a resurgence of
interest in recent years because noise reduction is a key issue in case-base editing (McKenna and
Smyth, 2000; Wilson and Martinez, 1997; Brighton and Mellish, 2002). Noise reduction is useful

not only to improve the accuracy of a case-based classifier but also in situations where cases will
be retrieved for use in explanation (Roth-Berghofer (2004)) as inaccurate cases will undermine the
credibility of the explanation.

In this paper we present a novel approach which we call Blame-Based Noise Reduction (BBNR)
for identifying noisy cases that are candidates for deletion. This approach was developed while
optimising the performance of a case-based spam filtering system (Delany and Cunningham, 2004).
In the spam filtering work, it was possible to home in on the cause of misclassifications and it became
clear that certain training cases were unhelpful and would be better removed. In some situations
these cases were genuinely noise (i.e. mislabeled). In other situations they were not noise in the
true sense but nevertheless caused misclassifications; for instance this occurred with spam training
examples thabokedlike legitimate email. Such cases were indistinguishable from legitimate email
in the representation on which the classifier worked.

This insight suggested that a deletion policy based on an analysis of the damage done by train-
ing cases could be effective. This contrasts with traditional noise reduction mechanisms which tend
to focus on removing the actual cases that are misclassified. The dominant technique in this area is
Repeated Edited Nearest Neighbour (RENN) (Tomek, 1976). Our earlier work shows that our noise
deletion policy (BBNR) improved the accuracy of our spam filtering system and was more effective
than RENN (Delany and Cunningham, 2004). The evaluation we present here shows that this gen-
erally holds true for other datasets, however the improvements in accuracy from both techniques are
often disappointing.

The noise reduction technique we present extends the competence-based modelling ideas of
Smyth and colleagues (Smyth and Keane, 1995; Smyth and McKenna, 1998). Their case coverage
measure indicates how well a case contributes to correctly classifying other cases in the case-base.
We extend this model to include the notion of blame or liability. We introduce a measure of how
often a case contributes to the misclassification of other cases. This information is gathered as part
of an off-line leave-one-out analysis of the training data.

BBNR as outlined is grinciple on which a family of noise deletiopoliciescan be based. Two
such policies are presented in section 2. The traditional RENN approach is also described in section
2. In section 3 both approaches are evaluated on 20 datasets and in section 4 the techniques are
evaluated on data with varying levels of artificial noise in an attempt to gain some insight into the
relative strengths of the two techniques. The paper concludes in section 5 with some suggestions for
future work.

2. Nearest Neighbour Classifiers and Noise Reduction

This section discusses how noise reduction fits into the more general area of case-base editing and
outlines the existing noise reduction techniques. It discusses BBNR, our new approach to noise
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reduction and describes the extensions to the models of case-base competence on which BBNR is
based. It also defines two possible deletion policies for BBNR.

2.1 Noise Reduction in Case-Base Editing

There has been significant work on case-base editing techniques over the years. This work generally
classifies techniques as either noise reduction techniques (also known as competence enhancement),
redundancy reduction techniques (also known as competence preservation) or a hybrid of both. The
earliest work on noise reduction is Wilson’s Edited Nearest Neighbour Rule (ENN) (Wilson, 1972)
which removes cases from the training set that do not agree withktheirest neighbours. Tomek
(1976) extended this with his “unlimited editing technique”, which is more commonly known as
Repeated ENN (RENN), where multiple passes are made over the training data performing Wilson’s
ENN rule at each pass until no more cases can be removed. Tomek also presentedkHisN"all
which performs multiple passes over the training set using incrementing valkes of

More recent case-based editing techniqgues combine noise reduction and redundancy reduction
in separate stages (McKenna and Smyth, 2000; Wilson and Martinez, 1997; Brighton and Mellish,
2002), with the noise reduction stage being performed in advance of redundancy reduction. In all
these cases the noise reduction stage is based on RENN. In addition there are hybrid techniques
which attempt to perform both noise reduction and redundancy reduction in a single algorithm. The
most notable of these is Aha’s Instance Based Learning algorithnmy (fha et al., 1991). IB2
is a redundancy reduction algorithm based on Hart's Condensed Nearest Neighbour (CNN) (Hart,
1968). It's susceptibility to noise is handled by IB3 which records how well cases are classifying and
only keeps those that classify correctly to a statistically significant degree. A number of variations on
the I1Bn algorithms have also been presented (Brodley, 1993; Cameron-Jones, 1992; Zhang, 1992).

2.2 BBNR, a Different Approach to Noise Reduction

The noise reduction policies used in the majority of case editing techniques presented in section 2.1
above are based on Wilson's ENN rule, most commonly on RENN. Wilson’s ENN rule removes
from the case-base cases that are misclassified by its neighbouring cases implying that these cases
are incorrectly labeled and therefore noisy cases. However a misclassified case may not necessarily
be a mislabeled case but could be classified incorrectly due to the retrieved cases that determine
its classification. Mislabeled cases that are retrieved as neighbours of a target case can affect the
classification of the target case.

Our BBNR approach concentrates on the casesthagtemisclassification rather than those that
are misclassified. We attempt to analyse the reason for misclassifications and to identify “unhelpful”
cases that cause others to be misclassified.

2.2.1 THE ENHANCED CASE-BASE COMPETENCEMODEL

BBNR is based on extensions to Smyth and McKenna's case-based competence model (Smyth and
McKenna, 1998). Their competence model identifies a measure of how well a case performs when
classifying other cases in the case-base during an off-line leave-one-out analysis of the case-base.
This measure is represented in tbeverage Sedf a casd as defined in Equation 1.

CoverageSét € C) = {cc C:Classifiegc,t)} (1)
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whereClassifiega,b) means that cade contributes to the correct classification of target case
In effect this means that target casés successfully classified and cdsés returned as a nearest
neighbour ofa and has the same classificatioreas

We extend the model to include a measure of how much harm a case causes when classifying all
the other cases in the case-base. This measure is captured.ialiiity Setof a case as defined
in Equation 2.

LiabilitySett € C) = {c € C: Misclassifiesc,t)} 2

whereMisclassifiega, b) means that case b contributes in some way to the incorrect classification
of target case. In effect this means that when target cases misclassified by the case-base,
caseb is returned as a neighbour afbut has a different classification # For k-NN with k=1,
caseb causes the misclassification but forl caseb contributes to the misclassification. Casis
therefore a member of the liability set of cdse

Smyth and McKenna also introduced the idea ofReachability Sedf a casd as the set of all
cases that successfully clasdgifyf his is the set ok nearest neighbours of catsthat have the same
classification as. It is defined in Equation 3.

ReachabilitySét € C) = {c € C: Classifiest,c)} (3)

In the same way that the reachability set of a case is the converse of the coverage set, (the
former being the set of all cases that classify a ¢amed the latter being the set of all cases that
t classifies), we extend the model to include the converse of the liability set which we call the
Dissimilarity Set For a case, the dissimilarity set are thenearest neighbours dthat contribute
to its misclassification, i.e. those neighbourg diat have a different classification tpas defined
in Equation 4.

DissimilaritySeft € C) = {c € C: Misclassifiegt,c)} 4)

2.2.2 THE PRINCIPLE OFBBNR AND IMPLEMENTATION STRATEGIES

These extensions to the case-base competence model allowed us to identify and analyse those cases
that cause misclassifications, the cases that are harmful to the classification process. The greater
the size of the liability set of a case, the more impact it has had on misclassifying the other cases

in the case-base. It is however important to consider this in light of how good this case is, how
well the case performs, i.e. how often it contributes to correct classifications. Our BBNR deletion
principle is toremove all cases that cause more harm than gddee amount of “harm" caused by

a case is encapsulated in the case’s liability set while the amount of “good” caused by the case is
encapsulated in the case’s coverage set.

The BBNR deletion principle of removing cases that do more harm than good can be imple-
mented as a number of different deletion policies. Identifying the cases that do harm is a matter of
detecting those cases in the training set with liability sets that contain at least one element. There are
different ways of establishing the amount of good that these cases achieve, e.g. a very simple policy
is to calculate the size of the case’s coverage set. The deletion policy that was most successful for
the case-based spam filtering system was one that for eacl wéitea liability set, (i.e.c caused
some level of harm) if the cases in thls coverage set could still be classified correctly without
thenc could be removed. This algorithm, called BBNRV1, is described in Listing 1.
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T = Training Set
/+ Build case-basecompetencenodelx/ for (each
cinT)
CSet(c) = Coverage Set of c
LSet(c) = Liability Set of c
endfor
/% removenoisy casesx*/
TSet = T sorted in descending
order of LSet(c) size
c = first case in TSet
while (] LSet(c)| > 0)
TSet = TSet— {c}
misClassifiedFlag = false
for (each x in CSet(c))
if (x cannot be correctly classified by TSet)
misClassifiedFlag = true
break
endif
endfor
if (misClassifiedFlag == true)
TSet = TSet + {c’}
endif
C = next case in TSet
endwhile

Listing 1: BBNRv1

The BBNRvV1 algorithm worked well for the case-based spam filtering problem and resulted in
a conservative reduction of the number of cases in the spam case-base removing, on average, not
more than 5% of the cases (Delany and Cunningham, 2004). Our evaluation of this algorithm on
other datasets indicated that the number of cases being removed by BBNRv1 was much higher on
these other datasets. Up to 57% of cases were removed from one dataset and the average percentage
of cases removed across all 20 datasets evaluated was 25%. For this reason a more conservative
deletion policy was devised which we call BBNRv2. The competence model built at the start of
the noise reduction process is static in BBNRv1. Once a case is removed from the case-base, the
liability sets for other cases do not reflect this change. BBNRv2 updates the liability set competence
model after each case is removed. The effect of this is that, if the removal of a case results in a
previously misclassified casenow being correctly classified, any other cases which contributed to
that misclassification have their liability sets updated to indicaterttiatno longer an element.

Consider Figure 1 andlaNN classifier withk=5, caseo; is misclassified (as classification X
instead of classification O) due to its nearest neighbfxrs, X3, 02, 03}. The liability sets of cases
X1, X2 andxz will contain the case; as these cases contribute to cagbeing classified incorrectly.
Applying BBNRv1 and assuming that the coverage sets pX, andxz are empty or all cases in
these coverage sets can still be classified correctly when their owner is removad xakhndxs
will be removed from the case-base. Now consider BBNRv2, oncexgaseremoved, case; is
now correctly classified as its neighbours are {ow X3, 02,03,04}. Updating the liability sets will
remove case; from the liability sets ok, andxs aso; is no longer misclassified. Therefore cases
X2 andxz will not be removed from the case-base. It is worth noting that in this simple example
RENN will have removed cass .

To rebuild the competence model after each removal can affect the performance of the algorithm.
The dissimilarity set, discussed in section 2.2.1, allows a speedy update of the liability set details.
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Figure 1: The effect of BBNR

The dissimilarity set of caselists all those cases that have contributed to the misclassification of

If casec is how classified correctly, to update the competence model it is only necessary to remove
c from the liability sets of alkc dissimilarity set members. The algorithm for BBNRV2 is given in
Listing 2.

3. Evaluation

In this section we present the evaluation methodology and the results. The objective of these ex-
periments was to find out if our competence based deletion policies—that is the two variants of

BBNR—were getting good results on other datasets. We present here an evaluation of the perfor-
mance on 20 datasets, of which 15 are from the UCI repository (Blake and Merz, 1998) and 5 were
gathered locally (see section 3.2).

For each dataset we used 20 fold cross-validation, repeated 10 times. Thus each run had a
training set comprising 95% of the data and that was used to classify the remaining 5%. First, the
the test cases were classified using the unedited training set (using a kihl@lgorithm with
k = 3), then against the training set edited with each editing technique. For each technique we
recorded the overall accuracy on the test data and the average size of the resulting case-base. Then
we calculated an error interval for the accuracy; the actual value for the accuracy is expected to
lie in this interval with 99% probability. These “intervals of confidenc&®i” are intervals such
as [én—s,én+s], in which we are confident that the correct value lies vaith confidence; i.e.
intervals that ensure

P(6—6n >8)<1—a .

where8, is the estimated value @ based on n trials. Assuming that the trials are independent
then the n trial estimates are normally distributed and the interval of confide@é & given by
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T = Training Set/+ Build case-basecompetencenodelx/ for (each
cinT)
CSet(c) = Coverage Set of c
LSet(c) = Liability Set of c
DSet(c) = Dissimilarity Set of c
endfor
/+ removenoisy cases/
TSet = T sorted in descending order of LSet size
c = first case in TSet
while (] LSet(c)| > 0)
TSet = TSet— {c}
misClassifiedFlag = false
for (each x in CSet(c) )
if (x cannot be correctly classified by TSet)
misClassifiedFlag = true
break
endif
endfor
if (misClassifiedFlag == true)
TSet = TSet + {c’}
c = next case in TSet
else /+ caseis removed rebuild competencenodelsx/
for (each | in L-Set(c))
if (I is correctly classified by TSet)
for (each d in DSet(d) )
remove | from LSet(d)
endfor
endif
endfor
I+ re sort to reflect any changesin LSet sizes «/
TSet = TSet sorted in descending order of LSet size
c = first case in TSet
endif
endwhile

Listing 2: BBNRv2
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Noo No1
Number of cases misclassified by Number of cases misclassified by
bothA andB A but not byB
N10 N11
Number of cases misclassified by Number of cases misclassified by
B but not byA neitherA norB

Table 1: The contingency table for Mc Nemar’s test.

Equation 7.

A Bo 5 Bo
en 9 n
S RN

Thus, ©r = 0.95, it is given thaP3 = 1.96 and likewise, foo = 0.99, we have} = 2.5758.0r 95%
confidence, i.e.d = 0.95), the confidence interval can be calculated @ith 1.96 and likewise, for
a=0.99,3=25758.

As it has been pointed out by Dietterich Dietterich (1998), one must be very careful when using
statistical tests to prove significant difference between two algorithms. The pa@stividely used
in this domain is shown to have high probability of type | error, that is, of incorrectly detecting a
difference when no difference exists. We used, as recommended by Diettddddemar’s test
(Everitt, 1977) which has a more acceptable type | error rate.

Before describing the evaluation, the method for calculating Mc Nemar's statistic will be de-
scribed.

] (5)

3.1 Mc Nemar’s Test

Dietterich (1998) has compared five approximate statistical tests for determining whether one learn-
ing algorithm outperforms another on a particular learning task. It is clear from this analysis that the
widely used paired-differendetest has a high probability of detecting incorrect differences (type

| error) and should not be used for that purpose. He suggests using Mc Nemar's test for situations
where the learning algorithms can be run once, which is our case.

To compare how two classification algorithrAsand B perform on the same training set, we
need first to record the classification result for each casehe test seT (c € T). We can put these
values in acontingency tablas shown in Table 1.

Mc Nemar’s test is based ony@ (chi-square) test for goodness of fit, and the quantify(,
see Equation 6) is approximately distributedas

(Inop — Nyl — 1)2
No1+ N1o

(6)

tven =

We can use this statistic to assess the similarity in performance between the two algériinchs

B. For instance, if the result is greater than a critical valtyg.y, > 3.841459, then the probability

that the performance of the two algorithms is identical is less th@%5, 8o we are able to conclude
that they are different at the 95% level.
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3.2 Data Sets

For this evaluation we have used 20 datasets, 15 from the UCI repository (Blake and Merz, 1998),
and the others 5 coming from other studies. The “Breathalyser” and “Bronchiolitis” datasets are
described in (Cunningham et al., 2003) and (Walsh et al., 2004) respectively. These are both medical
classification tasks; in the first the objective is to classify subjects as under or over the legal blood-
alcohol limit based on features such as weight, amount consumed, etc. In the Bronchiolitis domain
the objective is to determine whether children presenting at an accident and emergency unit with
bronchiolitis should be admitted or discharged. In the three “Music” datasets the objective is to
classify songs by genre, from internal characteristics such as spectrum and time-beat histograms
(Grimaldi et al., 2003).

3.3 Results

The results are presented in two tables, Tables 2 and 3. Table 2 shows cross-validation accuracy
figures resulting from applying each noise reduction technique to each dataset. The baseline accu-
racy, i.e. using no noise reduction, is also shown. For each dataset, the best accuracy figure is shown
in bold. The cell containing the best accuracy figure is shaded if the difference between it and the
baseline accuracy is significant at the 90% confidence level.

Dataset k-NN (k=3) | RENN BBNR
vi [ v2

Bronchiolitis 64.51 71.72 | 6508 | 63.61
Breast-Cancel 72.35 76.17 | 7430 | 7170
Iris 95.2 95.87 | 94.53 | 94.67
Breathalyser 77.81 84.86 | 8288 | 78.83
Heart 8126 81.33 | 80.88 | 81.04
Led 17 39.33 39.6 | 39.27 | 37.87
Vowel 97.66 9448 | 97.68 97.66
\ote 92.92 916 | 93.79 9347
lonosphere 89.12 88.09 [ 90.31 8991
Sonar 84.81 8125 | 85.38 85.10
Music4c 67.97 66.92 | 68.67 | 68.35

Led 7107 7167 | 71.8 | 704
Car 82.60 79.98 | 8214 | 82.64
Vehicle 70.26 68.72 | 7153 | 71.70
Glass 7252 67.57 | 7112 | 72.62
Zoo 93.86 9247 | 9564 | 96.04
Music5c 61.52 60.96 | 6148 | 62.39
Music6c 54.38 5373 | 5337 | 5397
Liver 66.84 64.52 | 651 | 63.88

Soybean 100 100 100 100

Confidence level higher than 90¢
Confidence level lower than 90%

Table 2:Table of results between kNN, RENN and 3 versions of BBNR, with confidence levels
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The first obvious result is that the accuracy df-&IN algorithm is improved, or at least not
significantly damaged, by noise reduction preprocessing in all cases except for two datasets. The
baselinek-NN obtains the best accuracy on both the “Music6c” and the “Liver” domains but it is
not significantly better than RENN or BBNR. Secondly, if we consider only the significant dif-
ferences between the techniques, we can see that Wilson’s RENN algorithm improves accuracy
only once (the “Bronchiolitis” dataset), while the BBNR family is effective on seven datasets. The
disappointing aspect of these results is that the improvements due to noise deletion are not very
substantial and there are cases where the accuracy with noise deletanséthan without.

Since it is hardly fair to compare two algorithms against one, the results of comparing RENN
with BBNRv1 and RENN with BBNRv2 are shown in Table 3. Cells are still shaded if the difference
between the two algorithms is significant. The dataset column is shaded when neither of the noise
reduction algorithms outperforms the basekadN.

] Dataset | RENN [ BBNR V1 | ] Dataset [ RENN | BBNR V2 |
Bronchiolitis | 71.72 65.08 Bronchiolitis | 71.72 6361
Breast-Cancer 76.17 74.30 Breast-Cancer 76.17 7170

Iris 95.87 94.53 Iris 95.87 94.67
Breathalyser | 84.86 82.88 Breathalyser | 84.86 78.83
Heart 81.33 80.88 Heart 81.33 81.04
Led 17 39.6 39.27 Led 17 39.6 37.87
Vowel 94.48 97.68 Vowel 94.48 97.66
\ote 91.6 93.79 \ote 91.6 93.47
lonosphere | 88.09 90.31 lonosphere | 88.09 89.91
Sonar 8125 85.38 Sonar 8125 85.10
Music4c 66.92 68.67 Music4c 66.92 68.35
Led 71.67 71.8 Led 71.67 70.4
Music5c 60.96 61.48 Music5c 60.96 62.39
Music6c 53.73 5337 Music6c 5373 53.97
Liver 64.52 65.1 Liver 64.52 63.88
Car 79.98 82.14 Car 79.98 82.64

] Vehicle 68.72 71.53 Vehicle 68.72 71.70
Glass 6757 71.12 Glass 67.57 72.62
Z00 9247 95.64 Z00 9247 96.04
Soybean 100 100 Soybean 100 100

Confidence level higher than 90%
Confidence level lower than 90%
Neither RENN nor BBNR improv&-NN results

Table 3: Results between RENN and BBNRv1 (left) and RENN against BBNRv2 (right) (with confidence
levels).

It can be seen from these results that BBNRv1 significantly outperforms RENN in six of the
twenty datasets and BBNRv2 wins in seven of the twenty datasets whereas RENN only outperforms
BBNR (both v1 and v2) in just one of the twenty datasets.

10
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This evaluation shows that the BBNR approach is more effective at noise reduction than RENN
with the more computationally expensive BBNRv2 being marginally the best. It must be said that
the performance against the baselBN is quite disappointing with no significant improvement
in twelve of the twenty datasets. This contrasts with the situation with the spam data described
in (Delany and Cunningham, 2004). On the spam data BBNR consistently beat RENN and also
significantly improved on the performance of thé&N classifier without noise reduction, i.e5%
reduction in error when error is already at a low of 7%.

4. Analysis of Effects of Artificial Noise

While this new perspective on noise reduction shows an improvement over the standard technique
the reality is that neither technique shows consistent improvement over the baseline accuracy of
thek-NN over all datasets. While BBNR comes out on top it is not as impressive as it was on the
original spam data for which it was conceived (Delany and Cunningham, 2004). It may be that the
spam data is noisy in the sense that the two classes are not well separated in the feature space in use
(i.e. lexical tokens).

To explore this further, we have added artificial noise to some of the datasets to see how ef-
fective the techniques are at finding and removing that noise (see Figures 2 and 3 for results on
three datasets). We have two key indicators to assess the effectiveness of noise reduction on these
datasets, we can compare the accuracy against thapeffactnoise reduction algorithm which
we implement by manually removing the artificial noise. We can also count the number of artificial
noise examples removed by each algorithm.

The evaluation strategy uses 20-fold cross validation as before. This time there are three versions
of the case-base; the original version, the version with the artificial noise and the version with the
artificial noise removed. This last set allows us to compare against the performangeidéet
noise deletion algorithm.

In the version of the case-base with the artificial noise, noise is inserted in the region of the de-
cision surface as follows. We sort each case by ascending distance to the Nearest Unlike Neighbour.
Then we add noise by changing the case label of randomly selected cases from the top of this sorted
list. This has the effect of adding noise in the region of the decision surface.

For each of the 20 datasets we created four different levels of artificial noise. Taking two sets
made up of the top 10% and the top 20%, respectively, of cases from the sorted list, we firstly
changed the class labels of a random 25% of cases in these two sets. We then changed the labels of
50% of these two sets. This gives four sets of results for each dataset as shown in Figures 2 and 3.
For each of these four levels of artificial noise, we have six sets of accuracy figures in all:

e the accuracy figure fdc-NN on the original data

e the accuracy figure fdt-NN on the noisy data (some class labels changed)

e the accuracy figure fdr-NN on the data with the noise removed (manually)

e the accuracy figures resulting from the application of the three noise deletion policies.

Results for two datasets where noise reduction is effective (lonosphere and Vehicle) are shown
in Figure 2 with each group of bars representing a different level of noise. The six bars in each group
represent the scenarios described above. The second and third bars are effectively limits in which we

11
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Figure 2: Artificial Noise Experiment on Two Datasets.
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Noise added within|| Noise added within
10% of cases 20% of cases
Amount of noise| 25% \ 50% 25% \ 50%
=
,gg BBNRvV1 | 37% 37% 38% 38%
(]
z9
L3 RENN 78% 49% 69% 50%

Table 4: Percentages of artificial noise found by each algorithm in the lonosphere data at different
levels of artificial noise.

expect the accuracies of the noise reduction techniques to lie (the third bar bepeyfinenoise
reduction. In fact BBNR beats the perfect noise reduction technique at the lowest level of noise in
each dataset — presumably because it finds other noise as well. It is only at the highest level of noise
(50% in top 20% of cases) that it fails to make significant improvements.

Given that BBNR also beats RENN on this type of artificial noise, it is surprising what we find
when we look at the statistics on tlaetual noisy examples that get removed. These results are
shown in Table 4. It is clear that, at all noise levels in this data, RENN is much more effective than
BBNR at finding and removing the artificial noise. This is surprising given that BBNR is producing
greater accuracy improvements by its noise deletion efforts. Since both methods are deleting similar
numbers of cases (see Figure 2), it is clear that BBNR is also deleting a significant number of
non-noisy cases. This suggests that BBNR workgHigning out the boundary region between
the classes, a policy that is effective in problems where the classes are not well separated (in the
representation being used).

This analysis using artificial noise was repeated on all the datasets shown in Table 2. In general,
neither noise reduction algorithm was very effective at removing the artificial noise. In fact, Figure
2 shows the best results, with the results in Figure 3 being more typical. On this “car” dataset neither
noise reduction algorithm finds much of the artificial noise that has been inserted.

5. Conclusions and Future Work

So we can summarise our findings as follows. Blame-Based Noise Reduction is generally better than
Repeated Edited Nearest Neighbour at improving the generalisation accuracy that a set of training
data will yield. This is not surprising as BBNR is based on a consideration of how training examples
contribute to generalisation accuracy as opposed to an assessment of how they disagree with their
neighbours.

There are two caveats however, there are some datasets on which RENN performs better, and
on several datasets neither produces a significant improvement over the ble$d&Nredgorithm.

Noise deletion is useful because it can improve the accuracy of a decision support system. It is
also important if training cases are to be invoked in explanations (Roth-Berghofer, 2004). We feel
BBNR is a contribution to this objective of cleaning up case-bases but there is still considerable
scope for improvement. From working with BBNR it is clear that it can be a bit unstable in that
different runs of the algorithm (with small differences in the training set) will select different cases
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Figure 3: The effect of adding artificial noise in the "Car” dataset - the noise deletion policies are
not effective here.

for deletion. A promising line for further study would be to aggregate several runs of BBNR in an
ensemble to stabilise and improve the selection process.
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Appendix A. Confidence Intervals

These “intervals of confidence@®o” are intervals such a{én —€, én + €], in which we are confident
that the correct value lies withh% confidence; i.e. intervals that ensure

P(6—6n >8)<1—a .

Monte Carlomethods (Metropolis and Ulam, 1949) provide a way to calculate quantities like
0 = E[X] whereX is a random variable (real or vector), based on the generation of many diaws (
of independent copies &f and on the strong law of large numbers :

1 . oA
B=Iim =(Xg+...+Xy) :=1im 6y .
n—oo N n—oo

In our case, each cross-validation is independent and generates an accuracy as a result. Then thanks
to the central limit theorem, we know thag@(e— 6,) converges to a standard normal distributed
random variable, with the varianc® = var(X). We infer :

P(10—8n| > £) ~ 2(2m) 2 / e /24y |
€y/n/o

1. Monte Carlo methods are algorithms for solving various kind of computational problems by using random numbers,
or more often pseudo-random numbers.
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If we let B be as 2211)‘% f[;” e "/2du=1—a , we can deduce that the interval of confidence at
0% is given by Equation 7.

~ Bo . Po
[Gn—%,en—k%

When the standard deviatianis not known—which is our case precisely—it is replaced by the
empirical (observed) value, writtes, and given by 02 = 47 57, (X; — 6n)2 . Fora = 0.95, it is
given that3 = 1.96 and likewise, foor = 0.99, we havel = 2.5758.

These intervals of confidence improve our judgement upon the gaps between the algorithms.

- (7)
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