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Abstract. Instilling confidence in the abilities of machine learning sys-
tems in end-users is seen as critical to their success in real world prob-
lems. One way in which this can be achieved is by providing users with
interpretable explanations of the system’s predictions. CBR systems have
long been understood to have an inherent transparency that has partic-
ular advantages for explanations compared with other machine learning
techniques. However simply suppling the most similar case is often not
enough. In this paper we present a framework for providing interpretable
explanations of CBR systems which includes dynamically created dis-
cursive texts explaining the feature-value relationships and a measure of
confidence of the CBR systems prediction being correct. We also present
the results of a preliminary user evaluation we have carried out on the
framework.It is clear from this evaluation that being right is important.
It appears that caveats and notes of caution when the system is uncertain
damage user confidence.

1 Introduction

CBR systems have long been understood to have an inherent transparency that
has particular advantages for explanations compared with other machine learn-
ing techniques [1]. The realisation that there is a need to make machine learning
systems more interpretable and user friendly has brought this fact back into
focus in recent years. Research by Cunningham et al. found CBR explanations
where the user is simply supplied with the most similar case are more convincing
than rule-based explanations in some domains [2].

Recently researchers have begun to look at ways in which this method can
be improved upon. The issue with case-based explanations lies in the perceived
appropriateness of the presented cases to the validity of the prediction. This is
an issue that has received a lot of attention in the CBR community. In CBR
explanations, the ability of the user to make meaningful comparisons between the



query and the retrieved explanation case is of critical importance to the success of
the explanation [3]. CBR systems are not wholly transparent and much domain
knowledge can be contained within the similarity metrics used in the system. It
is implicitly assumed in simple CBR explanations systems that the user has this
same domain knowledge and so the appropriateness of the explanation case is
clear. However, this may not be the case and the relevance of the retrieved case
may be lost on novice users. This is an issue that McSherry has addressed in his
ProCon System [4]. McSherry has focused on making the relationship between
the feature values within a case and its predicted value explicit. Similarly we
address this issue in our case-based explanation system for black-box systems
[5]. However in our approach we used localised information to ensure that our
system captured any non-linear feature interactions that occurred in the feature
space.

In other work, Doyle et al. have focused on the observation that the nearest
retrieved case in a CBR system may not be the best case to present as an
explanation [6]. They use these cases to form a fortiori arguments in favour of
the CBR systems prediction. They argue that in classification tasks, cases that
are between the query case and the decision boundary, provide more convincing
explanations. That is, cases that are more marginal on the important criteria
are more convincing. With such cases the user is better able to assess whether
the classification of the target case is justified.

The primary motivation in providing users of CBR systems with interpretable
explanations is to increase their confidence in the system. However, as is pointed
out by Cheetham and Price people can quickly lose confidence in a system if it
makes predictions which then turn out to be incorrect [7]. To address this issue
Cheetham and Price propose using confidence measures so as to alert the user
of when a system may be making a mistake.

We have developed an explanation framework for CBR systems which at-
tempts to address the issue of providing user confidence by providing inter-
pretable explanations coupled with a measure of confidence of the systems pre-
diction. We have performed preliminary evaluations on the explanation frame-
work and the results are presented.

The paper is structured as follows. Section 2 outlines how the framework
works. Section 3 describes the evaluation we have carried out and presents the
results of those evaluations. Finally we end with the conclusions in Section 4.

2 Explanation Framework

We have developed a framework for providing interpretable explanations in CBR
systems. The explanations produced by the framework contain a number of
elements;

– Cases that form a fortiori augments
– Discursive text describing the effects of differences feature-values between

the Query Case and the Explanation Case.



– A measure of confidence in the system’s prediction

The framework expands on earlier work in which we used localised models to
help explain the feature-value relationships in regression tasks [5]. The two key
aspects of our localised approach are; the generation of a local case-base and the
use of a local model. The local model is used to help describe the feature-value
relationships and to inform the search for an explanation case. To build a local
case-base we simply use a Nearest Neighbour algorithm to create a subset case-
base of the original case-base. First we find the Query Case’s nearest neighbours
and include them in our new subset case-base until we have at least K cases of
each class. This ensures that our local case-base traverses the decision boundary
in the area of our Query case. Once we have our localised case-base we then build
our local model on it. As a model to use to capture the local information stored in
the casebase we have selected to use logistic regression model. Logistic regression
models are quite simple yet powerful and allow us to realise all the elements of
our explanation framework listed above. In the coming sections we discus the
logistic regression model and how it is used in the generation of explanations.

2.1 Logistic Regression

Logistic regression, like linear regression, produces a set of coefficients from which
the relationship of an input variable to the target class variable can be deduced.
However unlike linear regression, logistic regression coefficients don’t directly
correspond to slope values in the same way. Logistic regression models are re-
stricted to binary tasks tasks and the two possible class values are coded as being
either 0 or 1. Because the value predicted by the model, the conditional mean, is
no longer an unbounded value as in linear regression but a value between 0 and
1, the data is fitted to a distribution that ensures the outputted value always
meets this bounding criteria. To do this the logistic distribution is applied as
can be seen below (1).

Y (x) =
eβ0+β1x

1 + eβ0+β1x
(1)

Here Y (x) is the conditional mean for a particular value of x while β0 and
β1 are the model parameters. The distribution produces the conditional mean, a
value between 0 and 1, for any given inputted value of x. Importantly, for binary
problems the conditional mean is in fact the probability of class 1 given x.

At first glance this model looks quite intimidating and seems to offer no hope
of offering an insight into the relationship between x and our class variable. How-
ever, the logistic distribution is chosen because it can be easily transformed into
another form which has many of the desirable properties of a linear regression
model. By applying the logit transform, equation 2, we end up with a simple
and interpretable model, the logit (3).

g(x) = ln
Y (x)

1− Y (x)
(2)



g(x) = β0 + β1x (3)

The parameters of the logit model can easily be converted into odds ratios.
The odds ratio of an event is the odds of that event occurring over the odds
of it not happening. For instance if someone were to state the odds ratio of
smokers to non-smokers getting cancer is 2 then this would mean smokers are
twice as likely to develop cancer as non-smokers. Alternatively, if we looked at
the relationship the other way round, non-smokers to smokers, we would get a
odds ratio of 0.5. This means that non-smokers are half as likely to get cancer. In
general an odds ratio greater then one for possibility A over possibility B means
A makes the event more likely than the alternative while and odds ratio of less
then one means it makes it less likely. The logistic regression model makes the
calculation of odds ratios quite easy and this is extremely useful and informative.
It is this simple relationship between the model coefficients and the odds ratio
and their natural interpretation that has made logistic regression such a popular
tool. We will discuss in a very general sense how this is done as it will be of use in
section 2.3 where we use the logistic regression model to explain the differences
in feature-values between the query case and the explanation case.

In order to extract the odds ratio, two steps are taken. First the logit differ-
ence is found. Imagine we are interested in the odds ratio of two different events,
x = c and x = d. the logit difference can be calculated as in equation 4. The logit
difference, ld, is simply the difference in the logit function for the two values of x
we are interested in. Once this value has been obtained it can then be converted
into an odds ratio, see equation 5.

LogitDifference(x = c, x = d) = g(c)− g(d) = ld (4)

OddsRatio(x = c, x = d) = eld (5)

The trick with the logistic regression model is that in many cases it isn’t nec-
essary to calculate the logit difference. If the model variables have been properly
coded then the desired information usually can be got by simply looking at the
model coefficients. As an example consider a hypothetical situation where we
have developed a model that relates smoking to the development of cancer. Our
hypothetical model might look something like that shown in equation 6.

g(Smoker) = 0.3 + 0.69Smoker (6)

If we code our smoking variable as being equal to 1 if someone smokes and
0 if they don’t then the calculation of the logit difference is simply equal to the
Smoker coefficient (7).

g(Smoker = 1)− g(Smoker = 0) = 0.3 + 0.69(1)− (0.3 + 0.69(0)) (7)
= 0.69

OddsRatio(Smoker) = e0.69



OddsRatio(Smoker) = 2

As can be seen above in 6 we need not have bothered calculating the logit
difference and instead just used the model coefficient. This is also true for con-
tinuous and multi-value nominal variables if they are coded correctly (chapter 4,
[8]). Once we have the odds ratio the relationship between input variable and the
class variable is clear. We have focused most of our discussion on examples with
only a single input variable for simplicity sake but the above observations are
also true in multi-variable problems. In the next section we discus how exactly
information derived from the logistic regression model can be used to provide
convincing explanations.

2.2 Finding A Fortiori Cases and a Measure of Confidence

Using the local logistic regression model we can generate a fortiori arguments
dynamically and without any prior domain knowledge. As discussed in section
2.1 Logistic Regression models allow us to generate a probability for a given
set of inputs. In the explanation case retrieval process we can then use this to
find an explanation case that is nearer the decision boundary and so a more
convincing argument. We consider each of the cases in our localised case-base
as a candidate case for inclusion in the explanation. By passing each of our
candidate explanation cases through our local logistic model we can generate a
probability for each. A case that is nearer the decision boundary and of the same
class as our CBR system has predicted will have a more marginal probability
and so this should be the case we select.

After the Query Case has been classified we can then build our logistic model
on our local data. In table 1 we can see the Query Case, its predicted classification
and three candidate explanation cases which are in fact the Nearest Neighbours
used to classify it. In order to select a case to use in our explanation we first run
each of the cases including the Query Case through our local logistic regression
model. This gives us the set of probabilities that can also be seen in table 1. We
can see that Nearest Neighbour 2 has the lowest probability and so is the case
nearest the decision boundary. This is an alternative to the explanation utility
framework described by [6] for selecting the case to present to the user to make
the most convincing argument. Although Nearest Neighbour 2 had consumed
more units of alcohol and weighed less, they were under the limit so it seems
reasonable that our Query Case should be too.

We can make this argument more explicit to the end user by explaining the
effects of the feature differences between the Query Case and Explanation Case.
In the next section we will outline how this can be done using the local logistic
regression model. As Cheetham and Price point out being able to provide a
measure of prediction confidence is an extremely useful asset in maintaining end-
users confidence in a system [7] . Using the localised logistic regression models
we have got a probability of a our CBR systems prediction being correct. If this
probability is below a certain threshold we can inform the user that confidence
is low. How this threshold might be decided upon is discussed in section 3.2.



Table 1. Explanation Case Retrieval Process

Features Query Nearest Nearest Nearest
Case Neighbour 1 Neighbour 2 Neighbour 3

Weight 88 82 79 76
Duration 120 120 120 120
Gender Male Male Male Male
Meal Full Full Full Full
Units 5.2 5.0 7.2 4.6

BAC Under Under Under Under
Probability 0.98 0.97 0.89 0.96

2.3 Explaining Feature-Value Relationships

Using equations 4 and 5 from section 2.1 we can substitute each of the feature
differences into the equations individually and get the odds ratio for each. Using
the odds ratio we can then determine the effect of the change. The kind of dialog
that can be produced can be seen in Table 2. In this sample explanation we can
see the advantage of using our local model to classify the Query Case as this
gives us a measure of confidence in the prediction.

Table 2. Sample Explanation

Query Explanation
Case Case

Weight (kgs) 57.0 79.0
Duration (mins) 240.0 240.0

Gender Male Male
Meal Full Full

Amount (Units) 12.6 9.6
BAC Over

The prediction for the individual in the Quey Case is: Over the limit

The confidence that this prediction is correct is: high

Discursive Text:

In support of this prediction we have the person presented by the Explanation
Case who was also Over the limit. Weight being higher and Amount being
bigger have the effect of making the Query individual more likely to be Over
the limit than the Explanation individual.



In our second example (table 3) the confidence measure is low and so the
explanation is adjusted so as to include a counter example. The counter ex-
ample selected is the case of the other classification from the local case-base
that is nearest the decision boundary. This is intended to assist the end user
in determining whether the prediction might be correct. Again the local logistic
regression model is used to explain the differences in the feature values. It is
worth nothing that if the case-base used to build the local model doesn’t ade-
quately represent the problem counter intuitive explanations can be produced.
For instance we found that if too few cases were used duration could be heavily
correlated with units and so a larger duration value could be seen as evidence
in favour of being over the limit.

Table 3. Sample Explanation with Counter Example

Explanation Query Counter
Case Case Example

Weight (kgs) 52.0 53.0 73.0
Duration (mins) 270.0 330.0 210.0

Gender Male Male
Meal Lunch Lunch Lunch

Amount (Units) 9.1 10.4 9.0
BAC Over Under

The prediction for the individual in the Query Case is: Over the limit

The confidence that this prediction is correct is: low

Discursive Text:

In support of this prediction we have the person represented by the Expla-
nation Case who was also Over the limit. Gender being Female and Amount

being bigger have the effect of making the Query individual more likely to be
Over the limit than the Explanation individual. However, Weight being heav-
ier and Duration being longer have the effect of making the Query individual
less likely to be Over the limit than the Explanation individual

As there is low confidence in the prediction we also have a counter example of
someone who is similar but Under the limit for you to inspect

Duration being longer has the effect of making the Query individual more
likely to be Under the limit than the counter example individual. However,
Weight being lighter, Gender being Female and Amount being bigger have the
effect of making the Query individual less likely to be Under the limit than
the counter example individual



3 Evaluation

In this section we examine the effectiveness of the explanation framework. There
were two principle aspects of the framework which we wished to assess. Firstly
the usefulness of the explanations and secondly how effective the framework is
at predicting confidence. In order to assess the usefulness of the framework’s ex-
planations we performed a user trial. The effectiveness of the confidence measure
was assessed on a number of different data sets using standard machine learning
techniques. We will discus the details of each evaluation in turn.

3.1 User Trials

In designing the user trial there were three principle questions we wished to
address; do people find the explanations understandable and useful, do the ex-
planations increase users’ confidence in the case-based system and finally can the
explanations alert users to when the system might be in error. The case-base
on which the trial was carried out was the blood alcohol case-base [2, 6]. The
task involves using information about peoples weight, gender, number of units
of alcohol consumed, etc. to predict whether someone’s blood alcohol content
(BAC) exceeds the drink driving limit. The full set of features used can be seen
in Table 4. We built a simple Nearest Neighbour algorithm on the data set and
applied our framework to providing explanations of it’s predictions.

Table 4. The features in the BAC data set

Weight (Kg) Duration (Time Spent Drinking)

Meal (None, Snack, Lunch, Full) Amount (In Units)

Gender BAC (Blood Alcohol Content)

In the trial subjects were given a questionnaire in which they were shown
three different forms of explanation; that given by the framework,

– The Full Framework Explanation: This is an explantion that includes
the selected a fortiori explantion case, a discursive text and a measure of
confidence as seen in table 2.

– Case-based Explanation: In this form of explanation the subject is just
shown the selected a fortiori case as evidence in favour of the prediction.

– No Explanation: The user is just presented with the feature-values of the
query and the systems prediction.

The trial subjects were shown four examples of each type of explanation and
asked three questions after each example shown;

– Question One: Do you think the prediction is correct?



– Question Two: How would you rate this Explanation?
– Question Three: Did the explanation help you in answering question one?

Below each question the trial subject had five options to select from. In both
question one and three the options were; No, Maybe No, Don’t Know, Maybe
Yes and Yes. In question two the options were; Poor; Fair; Okay, Good and Very
Good.

To assess the use of explanations in terms of alerting users to when the system
might be in error one of the four examples shown of each explanation type was
a mis-classification. Twelve people from a number of different backgrounds took
part in the evaluation and the results are discussed in the next section.

User Trial Results: In question one we looked at the frequencies with which
users chose each of the five options when the prediction made by the system was
correct. These can be see in figure 1. It is clear that the explanations given by the
framework give the users far greater confidence in the system than either of the
other two schemes. The trial subjects answered Yes 88% for the time with just
four answers being anything other than yes. Three people answered Maybe Yes,
one Don’t Know and there were no negative answers. We also examined the users
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Fig. 1. The distribution of user responses when the system predictions were correct

responses when the system had made an incorrect classification and the results
can be seen in figure 2. The graph of frequencies reveals a very different user
response pattern. Although no one responded Yes in the case of the explanations
produced by the framework there is far less certainty in the users responses.
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Fig. 2. The distribution of user responses when the system predictions were wrong

In question two we were trying to determine how satisfactory people found the
explanations. We coded the trial subjects responses as being a number between
one and five. One being fair and five beingVery Good. We then looked at the
average value given to each explanation for each scheme. The results are shown
in figure 3. Clearly people found the framework explanations to be far more
satisfying then the other two schemes and generally the level rating for the
framework explanation was quite high.

Finally in question three we were interested in the difference in behaviour
when the system was correct and when it was incorrect. We wanted to see how
useful users found the explanations in these two situations. We coded the re-
sponses as before and we can see that again generally the rating for the frame-
work is quite high (figure 4). However, it dips considerable in the case of the
system being incorrect. It is clear that in these circumstances users confidence
in the system has been damaged. From comments returned by test subjects the
addition of a counter example at times of uncertainty led to confusing explana-
tions. We would like to do a further survey to investigate this matter in greater
detail. In can be seen that generally the framework explanations added to users
confidence in the system’s predictions however user confidence was damaged
when the system made errors.

3.2 Confidence Measure Evaluation

We evaluated our confidence measure scheme on two data sets; the BAC set
and a Spam data set from the UCI repository. The key aspect in providing any
confidence measure is ensuring that when it is confident it is correct while also
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not being overly pessimistic and saying a lot of correct predictions are incor-
rect. Constantly supplying users predictions that we are unsure about is bound
to damage their confidence in the system. There often is a trade-off between
the two and a tolerance level where the level of confidence versus pessimism
is acceptable must be chosen. This can make comparing different schemes less
than straightforward as one scheme may be better at one level of tolerance and
another at a different level. The characteristics of this problem led us to inves-
tigate adapting ROC curves to the task [9]. We can characterize our wish for
accurate confidence as being our Confident Correct Rate (CCR) as defined in
Equation 8. Likewise we can encapsulate our need to minimise pessimism in the
Not Confident Correct Rate (NCCR) as defined in Equation 9.

CCR =
CC

CC + CI
(8)

NCCR =
NCC

NCC + NCI
(9)

Where CC is the number of times the measure is confident and the system
is correct and CI is the number of times measure is confident and the system
is incorrect. Likewise NCC is the number of times the measure is not confident
and the system is correct and NCI is the number of times the system is not
confident is right to be so. To make the definition of these parameters a little
clearer we have displyed them in the form of truth table in Table 5. Our scheme

Table 5. A Truth Table Defining the Equation Parameters

Incorrect Correct

Confident CI CC
Not Confident NCI NCC

for confidence requires one parameter K, the number cases of each type of class
value that is required in order to stop the local case-base building process. In
our confidence scheme we must chose a level of probability that we must have
in a prediction in order to be confident in it. We performed leave-one-out cross-
validations on both data sets recording the required statistics while both varying
K and the confidence threshold. We then plotted the results of the evaluation
on Characteristic Confidence Curves which are very similar to ROC curves as
can be seen in figures 5 and 6. For each scheme there is a separate curve and
the points on those curves represent different threshold levels for those schemes.
Like in ROC curves our ideal solution would lie in the top left hand corner and
the solution which is nearest this point optimises the trade-off. However different
applications may have restrictions about how often the system can be confident
and incorrect. It is quite easy using the characteristic curves to find the scheme
that best meets these requirements. It is also possible eliminate certain schemes



as being definitely worse than another (like in ROC curves) if the curve of one
scheme lies entirely inside another then it is worse than that scheme.
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Fig. 5. The Characteristic Confidence Curves for the UCI Spam Data set for a Range
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In figure 5 we can see that the three different schemes are all quite closely
aligned but that generally the scheme for k=6 out performs the others although
at certain points k=3 is slightly more favourable. Likewise in figure 6 we can
see that our best solution is clearly when k=3 as the two points on its curve
lie far closer to the upper left hand corner than any others. The reason that
there are only two points on the k=3 curve is that it very quickly goes from
being entirely not confident to reaching the minimum possible threshold value.
The minumum threshold value is the probability of 0.5 as any believe below
this actually represents a believe in the other class in binary problems. As an
example of how accurately we can predict confidence we chose the two points on
both graphs that maximised the trade-off. These can be see in table 6.

Table 6. The Confidence Measures Results

Spam BAC

Incorrect Correct Incorrect Correct

Confident 13 366 3 78

Not Confident 18 3 7 10

In the case of the Spam data set we are Confident and Correct (CC)91.5%
of the time while being Confident and Incorrect (CI) just 3.25% of the time.
Importantly we are not confident when correct less than 1% of the time. In the
alcohol data set CC 79% of the time while CI 3% of the time. If the amount
of CI predictions is of critical importance then the axis of the graphs can be
weighted appropriately.

4 Conclusions

In this paper we have addressed the issue of instilling confidence in the ability
of machine learning systems in the users. We have developed an explanation
framework which supplies users with interpretable explanations of the systems
predictions along with a measure of confidence in that prediction. We have also
presented a means by which the trade-off between being overly confident or
overly pessimistic can be inspected and different methods compared.

We carried out a preliminary evaluation on the explanation framework and
have found that the use of interpretable explanations does indeed increase con-
fidence in the system as can be seen in figure 1. The addition of discursive text
explaining the relationship between the presented explanation and the query
cases clearly had an effect in evoking this confidence as can be seen in the satis-
faction ratings shown in figure 3. However, when the system fails this confidence
can be damaged. This can be clearly seen in figure 2 as the users display far
less certainty about the system prediction compared with when the system is
correct. This is coupled with a drop in satisfaction in the ability of the expla-
nation to inform the user’s opinion of whether the system is correct or not (see



figure 4). This could be a result of the extra cognitive load associated with the
explanations produced when the level of confidence is low. However users were
still unable to reliably perceive that the system was making an error and so
their confidence in the system could be lost when the resulting error becomes
evident. Clearly notifying the user of uncertainty in the recommendation from
the system creates an element of doubt and confidence is damaged. The use of
an explanation including a counter example does not seem to make clearer what
the correct prediction might be.

This a matter that has only been touched on in our preliminary investigation
and it is one which we would like to address further in a more comprehensive
study. In the future we would also like to investigate localised logistic regression
as a CBR classification technique as well as find improved means by which we
can generate local case-bases.
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