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Abstract. Recently, stability-based techniques have emerged as a very
promising solution to the problem of cluster validation. An inherent
drawback of these approaches is the computational cost of generating
and assessing multiple clusterings of the data. In this paper we present
an efficient prediction-based validation approach suitable for application
to large, high-dimensional datasets such as text corpora. We use ker-
nel clustering to isolate the validation procedure from the original data.
Furthermore, we employ a prototype reduction strategy that allows us to
work on a reduced kernel matrix, leading to significant computational
savings. To ensure that this condensed representation accurately reflects
the cluster structures in the data, we propose a density-biased selection
strategy. This novel validation process is evaluated on a large number
of real and artificial datasets, where it is shown to consistently produce
good estimates for the optimal number of clusters.

1 Introduction

The task of evaluating the output of a clustering algorithm, referred to as clus-
ter validation, is a fundamental problem in unsupervised learning. One common
application of validation is in the identification of suitable values for algorithm
parameters such as the optimal number of clusters k̂. Internal validation indices,
which make assessments based on intrinsic properties of the raw data, have fre-
quently been used for this task in the past [1]. However, many of these indices
make assumptions about the distribution of clusters and are only useful when
used in conjunction with certain distances measures. On the other hand, exter-
nal validation techniques, which make use of a priori information to evaluate
clustering accuracy, are not directly applicable here as external knowledge will
typically be unavailable during the clustering process.

Recently, methods based on stability analysis have proved popular for the
task of model selection. The stability of a clustering model refers to its ability
to consistently replicate similar solutions on data originating from the same
source [2]. Since there is often only a single set of data available in unsupervised
learning scenarios, solutions are typically obtained by clustering subsamples of
the original dataset. If the solutions on different samples agree, we may conclude
that the model is appropriate for the data. A related approach for estimating



the optimal number of clusters was proposed by Tibshirani et al. [3], which is
motivated by the concept of prediction accuracy in supervised learning. This
prediction-based validation scheme estimates k̂ by assessing, for each candidate
value k, the degree to which we can consistently construct a classifier on a
training set that will accurately predict the assignment of objects in a clustering
of a corresponding test set.

A key advantage of these methods lies in their ability to evaluate clustering
solutions without making assumptions about the true cluster structures in the
data. However, from a computational perspective, the use of stability analysis in
cluster validation has significant drawbacks. Due to the time required to generate
and compare multiple clusterings of the data, such methods have rarely been
applied to high-dimension, large-scale datasets such as text corpora.

In this paper, we tackle the computational issues of stability analysis by
proposing an efficient prediction-based validation scheme. Our approach makes
use of kernel clustering methods so that we no longer require multiple partitions
to be generated in the original high-dimensional space. Furthermore, we propose
a novel unsupervised prototype reduction strategy that allows us to construct a
condensed kernel matrix, leading to substantial efficiency improvements in the
subsequent validation procedure without significantly impacting upon its ability
to correctly identify k̂. Rather than explicitly computing a new set of reduced
prototypes in the original feature space, we rely on the “kernel trick” [4] to
produce implicit representations of the new objects in the kernel-induced space.
Prototype reduction is a delicate process as the reduced dataset must be a good
proxy for the full dataset in the validation process. To achieve this, we present
a density-biased selection strategy that allows us to consistently produce good
estimates for the number of clusters in text corpora. On text data, our evaluation
shows that the proposed method results in a 16-20 fold speed-up without any
loss in acuity as a validation score.

The remainder of this paper is organised as follows. The next section provides
a summary of relevant work pertaining to cluster validation and prototype reduc-
tion. In Section 3 we discuss our proposed validation scheme, with a particular
focus on its application to document clustering. To demonstrate the effectiveness
of the scheme, in Section 4 we compare it to existing methods on a large number
of real and artificial datasets. Finally, Section 5 presents concluding remarks and
suggestions for future work.

2 Related Work

2.1 Cluster Validation

The task of identifying the optimal number of clusters presents a significant
challenge when clustering documents. Popular partitional algorithms such as
k-means require the a priori selection of a value for k. In practice, users will
often generate multiple clusterings over a range of k values and select the best
partition of the data according to some objective function. Alternatively, when



hierarchical clustering algorithms are employed, a termination criterion is often
used to identify a suitable point at which agglomeration or sub-division ceases.
In either case, some form of internal validation criterion is required to evaluate
partition quality. In the past, measures such as the gap statistic [5] and the
Bayesian information criterion [6] have been applied in certain domains to select
a value for the number of clusters. However, these tend to be model dependent
in the sense that they make assumptions about the structure of clusters in data
[2]. In addition, many internal criteria are tied to a specific distance function
or clustering technique. As a result, their ability to detect arbitrarily-shaped
clusters in complex text datasets is generally limited.

2.2 Stability-Based Validation

Validation techniques based on stability analysis have recently been shown to be
particularly effective in determining the optimal number of clusters in data [2].
These methods seek to infer k̂ based on a clustering model’s ability to consis-
tently generate similar partitions on data originating from the same source. If the
chosen number of clusters is too large, repeated clusterings will lead to arbitrary
partitions of the data, resulting in a low level of stability. On the other hand,
if the number of clusters is too small, the clustering algorithm will be forced to
produce partitions that merge subsets of objects which should remain separate,
also resulting in poor stability. In contrast, repeated clusterings generated using
the optimal number of clusters k̂ should be robust with respect to perturbations
of the data produced by subsampling or the addition of noise, resulting in high
stability.

One commonly-used approach to stability analysis involves applying sam-
pling to the original data to generate τ non-disjoint subsets [7, 8]. For each
candidate value of k, all subsets are clustered and the agreement between the
resulting partitions is computed. To determine the level of agreement, partition
similarity measures such as those used in external validation are employed. An
evaluation of the stability achieved using k clusters is obtained by taking the
mean or median agreement over all pairs of partitions.

Tibshirani et al. [3] proposed a novel method for stability analysis which
is motivated by the concept of prediction accuracy in supervised learning. To
illustrate the relevance of this idea in the context of validation, we consider
a small subset of the well-known 20 newsgroups collection (20NG), consisting
of 300 documents from the ‘cryptography’ group and 150 documents from the
‘hockey’ group. Figures 1(a) and 1(b) show training and testing partitions of this
data generated for k = 2. Clearly, a suitable classifier built upon the clusters in
the former is likely to be successful at predicting the assignment of documents
in the latter partition. In contrast, the partitions of the same sets for k = 3
shown in figures 1(c) and 1(d) are significantly different, making it unlikely that
a classifier constructed on the former will accurately predict the latter. If these
patterns are frequently replicated over many different splits of the data, it is
reasonable to conclude that k = 2 represents a more appropriate choice for the
number of clusters than k = 3.
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Fig. 1. Plot of first two Principal Components for partitions generated on subset of
450 documents from 20NG collection.

In practice, each run of the validation process involves applying two-fold
cross-validation to randomly split the dataset X = {x1, . . . , xn} into disjoint
training and test sets, denoted Xa and Xb respectively. Both sets are then clus-
tered to produce partitions Ca and Cb, using an algorithm such as k-means. Sub-
sequently, a prediction Pb for the assignment of objects in the test set is produced
by assigning each xi ∈ Xb to the nearest centroid in Ca. Prediction accuracy is
measured by evaluating the degree to which the class memberships in Pb corre-
spond to the cluster assignments in Cb. To formally produce an evaluation, the
authors in [3] proposed a new measure for comparing partitions, referred to as
prediction strength. For each cluster in the test clustering Cb = {C1, . . . , Ck}, we
identify the number of pairs of objects assigned to the same cluster that are also
assigned to the same class in the predicted partition Pb = {P1, . . . , Pk}. These
associations can be represented as a n

2 ×
n
2 binary matrix M, where Mij = 1 only

if the objects xi and xj are co-assigned in both Cb and Pb. From this matrix, an
evaluation is computed based on the cluster containing the minimum fraction of
correctly predicted pairs:

S(Cb,Pb) = min
1≤h≤k

 1
|Ch| (|Ch| − 1)

∑
xi 6=xj∈Ch

Mij

 (1)

This prediction process is repeated for τ runs for each candidate value k in a fixed
range [kmin, kmax]. A final estimate for k̂ is made using a heuristic approach that



involves identifying the largest k such that the corresponding mean prediction
strength is above a user-defined threshold.

2.3 Supervised Prototype Reduction

Prototype reduction techniques have been extensively used in supervised learn-
ing for tasks involving large datasets, typically in conjunction with a nearest-
neighbour classifier. These techniques are concerned with producing a minimal
set of objects or prototypes to represent a dataset, while ensuring that a classifier
applied to this set will perform approximately as well as on the original dataset.
In the literature, these techniques are generally divided into two categories: pro-
totype selection is the process of identifying a subset of representative objects
from the original data, while prototype extraction involves the creation of an
entirely new set of objects. A comprehensive overview of supervised reduction
schemes has been provided by Bezdek and Kuncheva [9].

Many reduction techniques are computationally intensive, often involving
clustering-like procedures to identify relevant prototypes. In contrast, Hamamoto
et al. [10] proposed a simple, fast, stochastic technique (BTS), based on bootstrap
editing. Initially, a random sample of n′ seed objects is drawn from the dataset.
Each seed object is then replaced by a new prototype constructed from the mean
of its p-nearest neighbours and the seed itself. A 1-NN classifier is then applied
to the new set of n′ prototypes. The entire process may be repeated multiple
times to give improved results. In [11] a novel framework was proposed which
involves using a chosen reduction scheme, such as BTS, to produce a smaller
set of prototypes, on which a reduced-kernel matrix is constructed. Ensemble
classifier methods are then employed on this kernel to compensate for any loss
in accuracy resulting from the reduction in dataset size.

2.4 Unsupervised Prototype Reduction

While most work in prototype reduction has focused on supervised learning
tasks, the concept has been used implicitly as part of many clustering algo-
rithms. It has particular relevance for clustering applications in limited resource
scenarios, such as interactive information retrieval. Cutting et al.proposed a
technique, referred to as fractionation, to improve the efficiency of hierarchical
clustering methods for large text corpora, which can be viewed as a form of
prototype reduction. The procedure involves randomly splitting the corpus into
fractions. The documents in each fraction are then clustered separately so that,
by treating the generated clusters as if they were individual “meta-documents”,
the number of data objects is reduced. The algorithm is repeated using these
meta-documents, with the process terminating when only k clusters remain. It
should be noted that the use of prototype selection in clustering is closely re-
lated to both the problem of outlier removal [12] and the choice of seeds in cluster
initialisation [13].



3 Proposed Method

For small datasets, stability-based validation techniques offer an attractive op-
tion for inferring a value for the optimal number of clusters. However, for larger,
high-dimensional data such as text corpora, the cost of generating and evaluating
multiple clustering solutions is often prohibitive. When using the standard vector
space model, each document in a corpus will be represented by an m-dimensional
feature vector. As the dimensionality m increases, the cost of repeatedly running
a clustering algorithm such as k-means will greatly increase. The number of doc-
uments n will also be a limiting factor, as an increase in n will greatly affect the
running time of the clustering and the stability assessment procedures, which
will typically run in O(n2) time or slower. To tackle the computational issues
of stability analysis, we now introduce an efficient prediction-based validation
method suitable for use in document clustering tasks.

3.1 Kernel-Based Stability Analysis

To avoid having to work in the m-dimensional vector space, we make use of
recently proposed kernel clustering methods. A kernel function is usually repre-
sented by an n × n kernel matrix K, where Kij indicates the affinity between
objects xi and xj . The advantage of using kernel methods in the context of
stability analysis stems from the fact that, having constructed a single kernel
matrix, we may subsequently generate multiple partitions of the data without re-
ferring back to the original high-dimensional feature space. A variety of popular
clustering techniques have been re-formulated for use in a kernel-induced space.
As the standard k-means algorithm has commonly been used in both stability
analysis and document clustering, we focus here on the use of the corresponding
kernelised k-means algorithm [14].

To form the basis for our validation scheme, we choose the prediction-based
method proposed in [3] due to its sound theoretical foundation, computational
advantage over other stability-based methods and empirical success. We con-
struct disjoint training and test sets by employing two-fold cross-validation.
Experimental observations support the authors’ assertion that using a larger
number of folds is unlikely to be beneficial. Consequently, each run of the kernel
k-means algorithm involves only a sample of n

2 objects. We apply this process τ
times for each candidate k in a fixed range, assessing the stability achieved by
the clustering model at each run.

The stability assessment phase involves measuring the level of agreement
between a clustering of the test set and the assignments as predicted by a given
classifier. To perform this comparison, some authors have suggested the use of
set matching measures, including normalised hamming distance [2] and partition
similarity [15]. However, we make use of an adjusted version of the prediction
strength measure (1) because of its strong theoretical foundation and superior
empirical performance. Rather than using a heuristic method to choose among
the candidate values of k, we select the value k that leads to the maximum
average score over τ runs. Since Eqn. 1 exhibits a natural bias toward smaller



values of k, we employ the widely-used adjustment technique described in [16]
to correct for chance agreement:

S′(Cb,Pb) =
S(Cb,Pb)− S̄(Cb,Pb)

1.0− S̄(Cb,Pb)
(2)

where S̄(Cb,Pb) is the expected prediction strength on the split (Xa,Xb) for a
given k, which may be approximated by calculating the mean value of Eqn. 1
over a large number of pairs of random partitions.

As noted in [2], the choice of classifier used to make predictions should com-
plement the clustering algorithm. For k-means, a nearest centroid classifier is
appropriate, where a prediction is made by associating each object in the test
set Xb with the closest training centroid. To “mimic” the assignment behaviour
of the kernel k-means algorithm, we employ a kernel nearest centroid classifier,
such that each object in Xb is classified as being a member of the class repre-
sented by the nearest pseudo-centroid in the training clustering. Subsequently,
we use Eqn. 2 to evaluate the degree to which the predicted classification agrees
with the clustering of Xb as produced by kernel k-means.

3.2 Kernel Reduction

In Section 3.1 we described a method for stability-based validation that is suit-
able for application to high-dimensional data. However, the validation process
still requires τ runs consisting of clustering and prediction assessment phases,
which both run in O((n

2 )2) time. Additionally, for a given value of n, to produce
robust results we will need a sufficiently large number of runs to compensate
for the variance introduced by subsampling. Clearly, decreasing n will make
the validation process significantly less computationally expensive. Motivated
by existing techniques such as fractionation [17], it is apparent that a natural
approach for accomplishing this is to create a reduced set of n′ < n objects,
upon which the validation procedure may be subsequently applied. However,
any such reduction must be performed in a way that preserves the structure of
the underlying “natural classes” in the data so as not to overly impact upon our
ability to robustly estimate k̂. Specifically, we wish to ensure that the expected
number of prototypes representing each class is proportional to the size of that
class. In addition, we wish to sample uniformly from within that class, so that
we cover both core and outlying regions.

Meeting these requirements without any form of supervision is not a trivial
task. In [9] it was noted that “pre-supervised” reduction approaches, which use
both the raw data and class information to produce new prototypes, tend to
be far more successful than their purely unsupervised counterparts. Since the
former generally involve processing each class separately, the resulting reduced
prototypes will be “meaningful” in the sense that they will represent regions from
a single class only. In document clustering we will generally not have access to any
form of external knowledge, so we must rely instead upon intrinsic properties
of the data to ensure that all cluster structures are adequately represented.



Unfortunately, text corpora often contain unbalanced cluster sizes, which may
also differ in their relative densities, making the task particularly problematic.

To address these issues, we propose a reduction scheme consisting of two
phases. In the first phase, prototype extraction is used to generate a set of
candidate prototypes representing small homogeneous regions of the data. The
second phase selects from among these a subset of n′ prototypes to form a
reduced kernel matrix K′. This selection phase involves the application of a
deterministic density-biased strategy to select from the set of possible prototypes.

To create the extracted prototypes, we employ a bootstrap method similar
to the supervised BTS reduction scheme [10], where new prototypes are formed
by locally combining subsets of objects from the original data. Firstly, we define
a neighbourhood Na as a subset of X consisting of a seed object xa together with
its set of p nearest neighbours. A new prototype sa may be constructed from the
mean of these p + 1 objects. Since we wish to work in the kernel-induced space
only, we consider sa to be the pseudo-centroid of the subset Na as calculated
from the values in K. Motivated by the need to construct meaningful proto-
types, we observe that, by the well-known statistical concept of neighbourhood
consistency, if objects assigned to the same natural class are highly similar, then
the nearest neighbour of any given object in a class are also likely to belong
that class. This principle has recently been used in both clustering [18] and in-
ternal validation [19]. We assert that, as regions forming cluster structures will
be locally homogeneous, the majority of the set of neighbours of each object
should belong to the same natural class as that object. Therefore, prototypes
constructed from the centroid of sufficiently small neighbourhoods will generally
be representative of a single natural class.

However, the problem remains of selecting a subset S ′ of n′ optimal proto-
types from the set of n candidates, denoted by S = {s1, . . . , sn}. One possible
solution is to apply unbiased random sampling to choose S ′ in the same man-
ner as employed in BTS, where each seed object xi (and corresponding reduced
prototype si) has an equal probability of being selected. However, this approach
has several notable drawbacks in the context of validation. As stated previously,
we wish to select a fraction of prototypes from each class that is proportional
to the size of that class in the original dataset. A single random subsampling
of S is not guaranteed to achieve this. As an example, we consider the case of
the 20NG subset described in Section 2.2. Figures 2(a) and 2(b) respectively
show the block-ordered matrices corresponding to the full kernel matrix and
a reduced matrix produced by randomly selecting seeds. From the latter, it is
evident that the smaller ‘hockey’ class is not adequately represented after the
random reduction process. We observed in our evaluation that subsets of reduced
prototypes randomly chosen in this way frequently fail to produce a true proxy
for the dataset, resulting in poor estimations for k̂ in the subsequent validation
process. In these cases, the failure is often due to the neglection of smaller clus-
ters or important sub-regions within clusters. While we could run the process
multiple times and aggregate the results, in practice the resulting computational
cost would typically negate the benefits of performing prototype reduction.



(a) (b) (c)

Fig. 2. Gram matrix for (a) full kernel; (b) kernel reduced by random sampling; (c)
kernel reduced by density selection.

As an alternative, the second phase of our reduction procedure employs a
deterministic density-biased strategy to select the subset S ′. This procedure has
similar goals to existing density-biased sampling techniques (e.g. [20]), but is
stochastic and does not require that we partition the original high-dimensional
feature space. Firstly, we define the compactness of a neighbourhood Na to be
the average of the pair-wise affinities between its constituent members:

C(Na) =

∑
xi,xj∈Na

Kij

|Na|2
(3)

where |Na| = p + 1. This is equivalent to the “self-similarity” of the pseudo-
centroid formed from Na. As stated previously, we wish to select a fraction
of prototypes from each class that is approximately proportional to the size
of that class in the original dataset. To achieve this, the prototypes in S are
ranked in descending order according to their compactness. We now uniformly
choose n′ = n

ρ prototypes from the ranked list, where ρ is the reduction rate
that determines the degree to which the number of objects should be reduced.
Specifically, we select every ρ-th prototype from the ranked list, thereby ensuring
that we represent all density patterns in the data. The n′ selected prototypes are
then used to build the reduced kernel matrix K′. Rather than computing explicit
representations of the new prototypes in the original feature space, we can make
use of the affinity values in the original kernel matrix to directly construct K′.
Formally, the affinity between a pair of reduced prototypes si and sj is calculated
as:

K ′
ij =

∑
xa∈Si,xb∈Sj

Kab

(p + 1)2
(4)

Referring back to our previous example, we can see that, unlike in the case of
random sampling, the reduced kernel matrix in Figure 2(c) is clearly represen-
tative of the two classes in the original dataset, despite their differing sizes and
densities. In practice, we consistently observe that this density-biased selection
strategy produces a set of extracted prototypes that accurately summarise the
underlying structures in the data. We contend that this success is due to the in-



clusion of regions of all densities in the data, ensuring good coverage of clusters
of varying densities and all sub-regions within those clusters.

Once we have constructed the reduced kernel matrix, the prediction phase of
the validation procedure proceeds as described in Section 3.1. While it is possible
that a matrix defined by Eqn. 4 will not represent a valid Mercer kernel in the
sense that it may not be positive semi-definite, it has previously been shown
in [21] that this does not pose a significant problem for the kernel k-means
algorithm.

The application of the proposed reduction procedure results in a significant
decrease in the computational cost of the validation process. Our approach does
require a once-off initialisation phase, with complexity O(n log n) for the pro-
totype extraction phase and O(n′2p2) for the construction of K′. However, the
computational gains in the subsequent validation process are substantial. For
each of the τ runs of the validation process, the costs associated with clustering
and prediction assessment both become O(( n

2ρ )2). In practice, particular bene-
fits may be derived from the greatly reduced clustering time, which represents a
bottleneck in traditional stability-based validation procedures.

3.3 Application to Document Clustering

While our proposed method may be used in conjunction with any valid kernel
function, for the purpose of document clustering we make use of a linear kernel
that has been normalised according to the approach described by Schölkopf and
Smola in [4], yielding values in the range [0, 1]. The matrix of this normalised ker-
nel is equivalent to that produced by the widely used cosine similarity measure,
so that the affinity between a pair of documents xi and xj is given by

Kij =
〈xi, xj〉√

〈xi, xi〉 〈xj , xj〉
(5)

Typically, the cost of producing this matrix can be significantly reduced by using
a sparse matrix representation and computing pair-wise similarities across non-
zero features values only.

While a kernel defined by Eqn. 5 represents an intuitive choice for document
clustering, its matrix will typically suffer from the problem of diagonal domi-
nance. This phenomenon occurs when, for a given kernel function, self-similarity
values are large relative to between-object similarities. It has been shown in [21]
that this can negatively impact upon the accuracy and stability of centroid-
based kernel clustering algorithms. To reduce the dominance effect, we apply a
negative shift to the diagonal of the kernel matrix so as to minimise its trace,
as described in [21]. In Section 4, we see that this frequently has the effect of
increasing clustering accuracy during the validation process, leading to a no-
ticeable improvement in validation performance. A summary of the complete
validation process is provided in Figure 3.

As mentioned previously, our proposed method is based on the assumption
that regions will be locally homogeneous, which should generally be the case



Initialisation Phase

– Construct full n× n kernel matrix K from the original dataset using Eqn. 5.
– Extract set of n candidate prototypes S, consisting of neighbourhood centroid

vectors.
– Evaluate the compactness of each candidate and rank them in descending order.
– Select the set of reduced prototypes S ′, such that |S ′| = n/ρ = n′, based on the

compactness ranking.
– Construct the n′ × n′ reduced kernel matrix K′ from K using prototypes in S.
– Apply zero-trace diagonal shift to K′.

Validation Phase

– Produce τ splits of S ′ into training and test sets.
– For each value of k ∈ [kmin, kmax] :

1. For each split (Xa,Xb):
(a) Apply kernel k-means to training set Xa using kernel K′.
(b) Apply kernel nearest centroid classifier to predict the assignment of doc-

uments in Xb.
(c) Apply kernel k-means to test set Xb using kernel K′.
(d) Evaluate prediction strength and correct for chance as in Eqn. 2.

2. Compute mean corrected prediction strength for k.
– Select k̂ to be the candidate k with the highest mean prediction strength.

Fig. 3. Complete kernel prediction-based validation scheme, with prototype reduction.

when an appropriate kernel function is chosen. To maximise neighbourhood ho-
mogeneity, we select a low value for the number of neighbours, with p = 5 being
used for our experiments in the following section. We note that the use of a
small value for p also has the effect of reducing the time required to construct
the reduced kernel matrix K′.

Bezdek and Kuncheva [9] concluded that the goals of supervised prototype
reduction tasks, the identification of a minimal number of prototypes while max-
imising accuracy, will naturally conflict. Similarly, it is unsurprising that the
extent to which we reduce our kernel matrix will impact upon our ability to
correctly identify k̂. In our experimental evaluations, we have observed that a
value of ρ = 4 for the reduction rate substantially reduces the time required for
the validation process, without significantly affecting its accuracy. The selection
of ρ will also influence the maximum number of runs τ , where the computa-
tional gains resulting from prototype reduction allows us to select a larger value
(e.g. τ > 100) to guarantee the robustness of the overall validation procedure.

It must be stressed that, in our experiments on text data, the use of these
“general purpose” parameter values proved to be effective on a diverse range
of datasets, indicating that the proposed validation method is quite robust to
the choice of values for these parameters. This allows us to focus on the more
immediate task of selecting the number of clusters.



4 Empirical Evaluation

In this section we compare the newly proposed validation scheme with prediction-
based techniques operating on the full data. Specifically, we consider four valida-
tion methods. The first involves applying k-means in conjunction with the pre-
diction strength criterion (KM-S). Assessments are performed using a version of
Eqn. 1 corrected for chance agreement, so that we do not require a final value for
k to be manually selected by inspecting the plot of results. The second method
also uses k-means, with assessments made using the partition similarity criterion
described in [15] (KM-P). Note that this technique is also essentially equivalent
to that described in [2]. The final two methods are those proposed in this pa-
per: kernel k-means with prediction strength (KKM-S), and kernel k-means with
prediction strength after prototype reduction (RED-S). Both kernel-based tech-
niques employ the diagonal shift technique prior to validation to address the issue
of diagonal dominance. For comparison, when applying k-means, we make use
of the standard cosine similarity measure, which is equivalent to the normalised
kernel defined in Eqn. 5. All clustering algorithms are initialised by randomly
assigning documents to clusters.

The experimental process involved applying the schemes to each dataset
across a reasonable range of values for k (for the data in this paper, we chose
[2, 10]) and comparing their output with the “true” number of natural classes.
It should be noted that, while we make use of this external information in the
evaluation, it is possible that the validation schemes may identify other values of
k as being potentially valid, serving to highlight alternative interesting groupings
in the data. In all cases, we used τ = 200 to minimise any variance introduced
by subsampling.

4.1 Evaluation on Artificial Data

For our initial experimental evaluation, we required a large number of datasets
to illustrate significant differences between the validation strategies. While many
authors examining stability-based validation techniques have made use of syn-
thetic datasets, generating data that realistically models the distribution of term
frequency values in text data is difficult. As an alternative, we used the 20NG
collection as a source for artificially constructed datasets because it contains a
range of topics that overlap to varying degrees. From the collection we derived
a large number of smaller datasets for which the correct value of k̂ is known.
We constructed 84 sets in total, 12 for each value of k̂ ∈ [2, 10]. Half of these
datasets consist of newsgroups that are reasonably compact and well-separated
(e.g. ‘graphics’, ‘hockey’, ‘mideast’). The remaining sets consist of newsgroups
that overlap considerablely (e.g. ‘mac’, ‘windows’). These two groups are further
divided into sub-groups of datasets containing clusters of different proportions,
in a manner similar to that suggested for producing artificial data in [15]: bal-
anced clusters containing 500 documents each, unbalanced clusters where one
cluster contains 10% of the documents in the dataset, and unbalanced clusters



where one cluster contains 60% of the documents. In all cases the documents
were randomly drawn from each class1.

Table 1. Percentage of correct and top-3 estimations for k̂ on artificial data.

Datasets # KM-S KM-P KKM-S RED-S
First Top 3 First Top 3 First Top 3 First Top 3

Balanced 28 54% 68% 61% 89% 71% 86% 79% 89%
Unbalanced 56 21% 61% 25% 70% 30% 71% 36% 66%
Non-overlapping 42 45% 76% 43% 81% 62% 90% 67% 88%
Overlapping 42 19% 50% 31% 71% 26% 62% 33% 60%

Overall 84 32% 63% 37% 76% 44% 76% 50% 74%

Table 1 summarises the relative performance of the four methods under con-
sideration in terms of the the percentage of datasets on which each method
was successful in identifying k̂. These results indicate that both kernel-based
techniques consistently outperformed those employing the standard k-means al-
gorithm. In these cases, the application of the diagonal shift frequently lead to
significantly higher prediction accuracy. Furthermore, we see that, across the
84 artificial datasets, the reduced validation process (RED-S) generally lead to
more instances where the true number of clusters was correctly identified. This is
particularly apparent for datasets with non-overlapping clusters. The difference
was less pronounced on datasets with overlapping clusters, where object neigh-
bourhoods were generally less homogeneous. When performing the evaluation
on such a large number of datasets, we observed that the speed-up achieved by
working on n

4 reduced prototypes was dramatic.

4.2 Evaluation on Real Data

In our second evaluation, we compare the four validation schemes on real-world
corpora that have previously been used in document clustering. The classic3
and classic datasets are collections of technical abstracts taken from Cornell’s
SMART repository2, which have been widely used in information retrieval. The
bbc corpus contains news articles from the BBC corresponding to stories in five
topical areas: business, entertainment, politics, sport and technology. The bbc-
sport corpus consists of a smaller set of sports news articles from the same
source3. The ng17-19 dataset is a commonly used subset of the 20NG collection,
consisting of three groups relating to politics that exhibit considerable overlap.
The ng3 dataset is another subset derived from the same collection, composed
of three relatively well-separated groups pertaining to astronomy, politics and
1 See http://www.cs.tcd.ie/Derek.Greene/research/datasets.html for full description

of artificial datasets
2 Available from ftp://ftp.cs.cornell.edu/pub/smart
3 Both available from http://www.cs.tcd.ie/Derek.Greene/research/datasets.html



computer graphics. The reviews dataset contains articles from the TREC collec-
tions relating to food, movies, music, radio and restaurants4. Further details for
these datasets are given in Table 2.

Table 2. Details of real datasets.

Dataset Description Documents Terms k̂

bbc News articles from BBC 2225 9635 5
bbcsport Sports news articles from BBC 737 4613 5
classic3 CISI/CRAN/MED 3893 6733 3
classic CACM/CISI/CRAN/MED 7097 8276 4
cstr Technical abstracts 505 2117 4
ng17-19 Overlapping newsgroups 2625 11841 3
ng3 Approximately disjoint newsgroups 2900 12875 3
reviews Entertainment news articles (TREC) 4069 18391 5

Table 3 shows the results of the comparison between the four schemes, indi-
cating the top three estimated values for k̂ on the eight real datasets, together
with the corresponding criterion scores. In almost all cases, the reduced clus-
tering method (RED-S) recommended the same value of k as that chosen when
validation was performed on the full kernel matrix (KKM-S). Only in the case
of the reviews dataset, which contains significantly overlapping clusters, did it
fail to rate k̂ among its top three choices. However, the methods based on k-
means also performed poorly on this corpus. In the case of the cstr dataset, all
four techniques demonstrated a preference for three clusters, which is explained
by the considerable overlap between the ‘ai’ and ‘vision’ classes. Specifically, the
mean affinity between documents across the two classes is greater than the mean
affinity between documents in the ‘vision’ class, suggesting that k = 3 does in
fact represent a suitable choice. It is interesting to note that, as with the artifi-
cial data, the kernel-based methods generally outperformed those relying on the
standard k-means algorithm. Once again, we observed that employing a diagonal
dominance reduction technique prior to validation results in higher prediction
scores and better estimates of k̂ when using kernel k-means. In general, we ob-
served that using prototype reduction with ρ = 4 consistently afforded a 16-20
fold decrease in the time required for the validation process.

5 Conclusion

We have proposed a practical approach to stability-based validation suitable for
the task of estimating the number of clusters in large, high-dimensional datasets
such as text corpora. The use of kernel clustering methods allows us to work on
a single kernel matrix rather than repeatedly computing distances in the original
feature space. Moreover, we have demonstrated that we can significantly decrease
4 Available from http://www.cs.umn.edu/∼karypis/cluto



Table 3. Summary of results on real datasets.

Dataset Method 1st 2nd 3rd

bbc (k̂ = 5)

KM-S 5 (0.51) 4 (0.38) 6 (0.36)
KM-P 5 (0.75) 6 (0.71) 7 (0.66)
KKM-S 5 (0.62) 6 (0.46) 4 (0.42)
RED-S 5 (0.51) 6 (0.43) 4 (0.42)

bbcsport (k̂ = 5)

KM-S 4 (0.29) 5 (0.27) 3 (0.27)
KM-P 5 (0.55) 6 (0.53) 4 (0.50)
KKM-S 5 (0.45) 6 (0.43) 4 (0.41)
RED-S 5 (0.47) 4 (0.43) 6 (0.41)

classic3 (k̂ = 3)

KM-S 3 (0.85) 2 (0.56) 4 (0.44)
KM-P 3 (0.90) 2 (0.73) 4 (0.72)
KKM-S 3 (0.94) 4 (0.49) 5 (0.45)
RED-S 3 (0.95) 4 (0.48) 5 (0.44)

classic (k̂ = 4)

KM-S 3 (0.58) 5 (0.57) 2 (0.50)
KM-P 3 (0.83) 5 (0.78) 2 (0.76)
KKM-S 5 (0.78) 4 (0.74) 2 (0.63)
RED-S 5 (0.65) 4 (0.57) 2 (0.52)

cstr (k̂ = 4)

KM-S 3 (0.58) 2 (0.29) 4 (0.28)
KM-P 3 (0.78) 4 (0.57) 2 (0.53)
KKM-S 3 (0.82) 4 (0.50) 5 (0.38)
RED-S 3 (0.75) 4 (0.43) 5 (0.36)

ng3 (k̂ = 3)

KM-S 3 (0.61) 4 (0.45) 2 (0.40)
KM-P 3 (0.86) 4 (0.77) 5 (0.67)
KKM-S 3 (0.69) 4 (0.46) 2 (0.38)
RED-S 3 (0.63) 2 (0.56) 4 (0.50)

ng17-19 (k̂ = 3)

KM-S 5 (0.37) 4 (0.33) 6 (0.29)
KM-P 5 (0.62) 4 (0.56) 6 (0.56)
KKM-S 5 (0.40) 4 (0.39) 3 (0.34)
RED-S 4 (0.33) 5 (0.33) 3 (0.32)

reviews (k̂ = 5)

KM-S 2 (0.87) 3 (0.42) 6 (0.40)
KM-P 2 (0.97) 8 (0.71) 9 (0.70)
KKM-S 2 (0.91) 5 (0.53) 4 (0.51)
RED-S 2 (0.95) 6 (0.42) 3 (0.42)



the computational demands of the validation process by employing a form of
prototype reduction to construct a reduced kernel matrix. To ensure that the
use of a condensed representation does not adversely impact upon the accuracy of
the validation process, we have proposed a density-biased strategy for selecting a
set of reduced prototypes that adequately represent the underlying classes in the
data, regardless of their relative sizes or densities. Notably, the reduction process
does not require that we explicitly represent these new prototypes as feature
vectors. Extensive experimental evaluations have shown this validation process to
be effective on a large number of real and artificial datasets, where it consistently
produced good estimates for the optimal number of clusters, often outperforming
existing methods that are significantly more computationally expensive.

While we have particularly focused on validation in the area of document
clustering, we believe that our approach is applicable for a wide variety of other
domains and kernel functions, where large datasets would otherwise make stabil-
ity analysis unfeasible. We also expect that, while the new prototype reduction
technique has been used in conjunction with prediction-based validation, the
underlying principles may also be useful in improving the efficiency of other
computationally costly learning methods, such as ensemble clustering.
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