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Abstract. In this paper, we show that the optimization of density fore-
casting models for regression in machine learning can be formulated as a
multi-objective problem. We describe the two objectives of sharpness and
calibration and suggest suitable scoring metrics for both. We use the pop-
ular negative log-likelihood as a measure of sharpness and the probability
integral transform as a measure of calibration. We show how optimiza-
tion on negative log-likelihood alone often results in sub-optimal models.
To solve this problem we introduce a multi-objective evolutionary op-
timization framework that can produce better density forecasts from a
prediction users perspective. Our experiments show improvements over
state-of-the-art approaches.

1 INTRODUCTION

Regression is a supervised learning problem where the fundamental task is to
predict some continuous variable. There are innumerable examples of this type
of prediction problem from the medical domain to financial and environmental
modeling. Density forecasting is an important emerging subfield of regression
that attempts to tackle the practical problem of uncertainty in predictions of a
regression model. To achieve this, a density forecast estimates a complete prob-
ability density for the target variable, rather than just producing a single value
point forecast. This is useful because prediction users are generally sensitive to
the possible variance around a prediction. Furthermore, with a correctly specified
density forecast they can make the optimal decision under uncertainty.

The most common approach to parameter estimation of regression models
is maximum likelihood. Density forecasting is not an exception, using an adap-
tation of maximum likelihood called negative log-likelihood (N LL). The conve-
nience of this approach is that the traditional non-linear optimization techniques
such as conjugate gradient or quasi newton can be used with minimal adapta-
tions. However, on closer examination of this approach, it can be shown that
certain aspects of the problem of density forecasting are not addressed and so
this technique can lead to poor, sub-optimal, and often misleading, models.

In this paper we suggest that the primary goals of any density forecasting
model should be to maximize sharpness and calibration [1]. Sharpness refers to
the variance of the prediction around the observation and calibration refers to
the empirical validity of the probability estimates (see Section 2). In Section 3



we show that optimization on sharpness alone results in models that are often far
from optimal. Therefore, we suggest that the optimization of density forecasting
should be reformulated as a multi-objective search task where both sharpness
and calibration can be taken into consideration. In Section 5 we outline a broad
framework, based on a multi-objective evolutionary algorithm, that can be used
to optimize most density forecasting models. Our framework can be combined
with evolutionary computing techniques, such as, Evolutionary Strategies [2],
multi-objective search [3] and evolutionary neural networks [4] to optimize den-
sity forecasting models e.g. Mixture Density Networks [5] and GARCH [6]. Sec-
tion 6 compares results achieved from two different models optimized using our
approach on a foreign exchange data set. Finally, Section 7 briefly concludes the

paper.

2 GOALS OF DENSITY FORECASTING

We address the regression problem of estimating the parameters for a model
given a set of training data {(x;,t;)}7,, where the ith example is described
by the pattern x; € R"™ and the associated response t; € R. Point forecasting
attempts to estimate, (¢;|x;), the conditional mean of the target variable given
an input pattern. Density forecasting models attempt to estimate, p(¢;|x;), the
conditional probability density that the target is drawn from, a considerably
more complex task. Rather than simply minimizing residual errors, a density
forecast must maximize density at the target and also achieve empirical consis-
tency in the probability estimates. These two goals of density forecasting are
commonly called sharpness and calibration. The N LL addresses the first goal of
maximizing density at the target by rewarding models based on the density of
the prediction at the target.

NLL; = —log(p(ti|x:)) (1)

Calibration, the second goal, refers to the property that if a predicted density
function suggests P percent probability of occurrence, the event truly ought to
have probability P of occurring. This is a joint property of the target and the
predictions. Unfortunately, the assessment of calibration is less straightforward
than sharpness. It is dependent on the assumption that you are attempting to
find the model that correctly describes the data generating process. However, this
is a fair assumption as the correct model weakly dominates all other models’.
In the case where the correct data generating process is described, the set of
cumulative densities at the observations will be uniform. Therefore, to determine
calibration you must carry out the following,

a= [ st )

! Weakly dominant means the model is at least as good as, if not better than, any
other possible model.



where z; is the cumulative of the predicted density at the target ¢;. This is
known as the Probability Integral Transform (PIT) [7]. For a data set of length
m, Diebold et al. [8] show that the z series should be {z;}/", “ Ulo,1].

We know z; € [0,1] because it is a value from a cumulative density. Therefore,
a test for calibration relates directly to a test for whether the z series is a U[0, 1].
A useful method for discerning the calibration of a model is to plot a histogram
of the z series (e.g. Figure 1), or alternatively, plot the z series as an empirical
stepwise distribution and compare against the cumulative uniform distribution.
However, both these techniques require visual assessment, it would be more
desirable to have a means of ranking a set of models in terms of their uniformity.
Fortunately, this is a common problem and relates to testing the goodness-of-fit
of a sample of data to a specific distribution. Noceti et al. [9] compared a number
of goodness-of-fit tests and concluded that the Anderson-Darling (A2) [10] test
for uniformity was the most robust among the most common tests for uniformity.
The A? test is negatively oriented returning a 0 in the case here a model is

perfectly calibrated to the data. The formula for A2 is,

1 m
2 .

A% =-m—— ;(23 1)[log(z) + log(1 — zm—;)] (3)
Where, m, is the number of z values, and the z values are sorted in ascending
order. We can now rank the calibration of a set of models based on their A? score
on a test set. It is important to note at this point that this ranking score should
be used in conjunction with a sharpness metric because it gives no indication
of the predictive ability of a model. For example, a model that simply predicts
the unconditional density of the set of target variables will produce a calibrated

model.

3 PROBLEMS WHEN OPTIMIZING WITH
NEGATIVE LOG LIKELIHOOD

The central message in this paper is that the calibration of a density forecasting
model can be as important as the sharpness of the model in many applications.
If the model predicts that a variable has a 10% chance of exceeding a particular
threshold, then the observation should exceed that threshold roughly one time
in ten. We show in the evaluations in section 6 that models that are optimized
on sharpness only are likely to produce predictions that are over confident at
the observation and do not allocate enough probability to rare events. Thus the
real probability of rare events is underestimated.

The negative log-likelihood (NLL) is used as a measure of sharpness in many
density forecasting techniques, including [5,6,11]. Optimizing a model using NLL
is an attempt to find the set of model parameters that maximise the probabil-
ity density at the observation. This approach produces accurate estimates of
the conditional density function in situations where the underlying generating
distribution is known or can be approximated well by the distribution assumed



by the model. In circumstances where the data generating process is very com-
plex, or the incorrect assumptions are made about the underlying distribution,
or over-fitting is an issue, the NLL performs poorly, particularly in terms of
calibration. To demonstrate, we present two scenarios where the N LL produces
poorly calibrated predictions.

For the first example we have constructed a simple synthetic data set based
on the sine function with added noise drawn from a Student-t distribution with
3 degrees of freedom. Inputs for the data are uniformly drawn from the interval
[0,5]. The target values are generated according to,

t(x) = sin(z) + € (4)

where ¢ is the noise. We trained a Mixture Density Network (MDN) [5] with
5 hidden units and 1 Gaussian output for 2,000 epochs on 1,000 input/output
pairs of the sine wave data, (see Section 5.1 for more information on MDNS).
Figure 1 depicts the resulting model’s PIT histogram. The histogram shows that
the model has produced a set of forecasts where the observations occur too often
in the area around the first standard deviation of the predicted distribution. We
call this an under-confident model i.e. it has too broad a variance around the
conditional mean. This effect is often seen when the generating distribution has
fat tails. It can be attributed to the fact that the NLL applies error penalties on
an exponential scale i.e. a change in density of A results in a change in error of
exp(A). In this case the extreme outliers that are more common in the Student-t
distribution than the Gaussian predicted by the MDN have a disproportionately
large effect on the NLL causing the resulting prediction to have too large a
variance about the mean of the distribution.

"Under-confident" PIT - MDN out-of-sample

0 0.2 0.4 0.6 0.8 1

Fig. 1. Sample under-confident model. Dashed line represents the desired distribution
shape.

A second example of when the NLL has difficulty producing good probabil-
ity estimates is when it “over-fits” the variance of it’s predictions to the train-
ing data. Not unlike traditional over-fitting of point estimates to training data,
over-fitting of density forecasts is a common and unwanted side-effect of over
training a density forecasting model to the available training data. This results
in forecasts that are “over-confident”, applying a very narrow density around



the predicted mean. This is harder to diagnose than under-confident predictions
because in this case it is generally not apparent from the training data that this
problem has occurred. Instead the in-sample PIT histogram produces a uniform
z series. Figure 2 shows a sample over-confident prediction. This example is
taken from [12], a GARCH type model (see section 5.2) is trained on IBM daily
closing prices. The model performs well in-sample, however, out-of-sample it is
clear that the model is over-confident about it’s density forecasts resulting in a
U-shaped PIT histogram.

"Over—confident" PIT - GARCH out-of-sample
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Fig. 2. Sample over-confident model.

Here we have highlighted two of the most common problems that can be
diagnosed through of evaluation of the PIT, other problems, including bias in
the mean prediction, can also be identified through this technique.

4 ANALYSIS ON THE RELATIONSHIP BETWEEN
NLL AND A?

In the previous sections we describe the two goals of density forecasting, here we
briefly analyse their relationship in terms of the parameter space of a model. We
have constructed an experiment using a very simple density forecasting model
from the econometrics literature called GARCH [6]. The GARCH model has
two parameters of importance commonly called the ARCH and GARCH terms
that relate to weights applied to the residual and variance for the preceding
time-step (see section 5.2 for more information on GARCH). In this experiment
we use a synthetic data set so that we can specify the other parameters of the
GARCH model correctly a priori. Since we have restricted the model to only
two free parameters, an error function will be a surface above a 2-dimensional
parameter space. Figure 3 shows plots of the error function surfaces in terms of
the two parameters (ARCH and GARCH) of the model around the NLL global
minimum. It is clear from the surface plots that they are completely different
functions and the minima of the two error functions are located in different
regions of the parameter space. This confirms that NLL and A? are conflicting
objectives.
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Fig. 3. Comparison of the NLL and A? error surfaces in the region of the NLL min-
imum. This is an error function for a GARCH(1,1) model trained on data from 1,000
observations simulated from an EGARCH(1,1) model that assumes a Student-¢ distri-
bution [13].

5 MULTI-OBJECTIVE OPTIMIZATION
FRAMEWORK

In the preceding sections we showed how our quality scoring metrics for cali-
bration and sharpness (A2 and NLL) are conflicting, i.e. they do not converge
to the same point in parameter space. Therefore, implicitly, we have described
a multi-objective optimization problem. There are a number of ways to solve a
multi-objective search problem, however, the preferable approach is to use an
a posteriori multi-objective evolutionary algorithm (MOEA). In the context of
MOEA'’s, a posteriori means that the optimization process maintains an archive
of optimal trade-off (non-dominated) solutions known as the Pareto front [14]
throughout training and the user selects the model that best optimizes their
goals from the resulting Pareto front of solutions [3].

Figure 4 shows the MOEA for optimization of density forecasting models.
This is a general framework that can be applied to almost any density forecasting
model that can be represented as a set of parameters. It is similar to most other
evolutionary algorithms. To implement the MOEA the modeler must;

1. Determine a vector representation for the parameters of the density forecast-
ing model.

2. Be able to calculate the A% and NLL score for the model’s predicted densi-
ties.

3. Decide on a mutation and selection strategy for the evolutionary algorithm.

In the following subsections we will briefly describe the implementation of this
algorithm for two particular density forecasting models.
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Fig. 4. Multi-objective density forecasting algorithm.

5.1 Pareto Mixture Density Network

In Section 3 we introduced the MDN, a particular class of neural network adapted
to produce density forecasts. MDNs represent the conditional density function
by a weighted mixture of Gaussians known as a Gaussian Mixture Model(GMM).
GMMs are a flexible, convenient, semi-parametric means of modeling unknown
distributional shapes. The conditional density function is described in the form
p(t|x) = Zf’;l a;(¢i(t|x)) where ¢; is the ith of C' Gaussian components, and
a; is the weighting for that component. MDNs are generally optimized using
a conjugate gradient technique, however, like most neural networks they can
also be optimized using an evolutionary algorithm. Recently, Fieldsend et. al in-
troduced the Pareto Evolutionary Neural Network (PENN) for multi-objective
optimization of neural networks [15]. We have adapted this to fit our framework
by using an MDN as the underlying model and setting the objective functions
to the NLL and A? scores. To generate new individuals we select a model from
the non-dominated set using Partition Quasi Random Selection (PQRS) [16]
and mutate the selected individuals through network weight addition, deletion
and adaptation. This results in objective function and network architecture op-
timization. For a full description of the Pareto-MDN see [17].

5.2 Pareto GARCH

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models
are commonly used in finance to estimate the conditional variances of a time
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Fig. 5. In-sample and out-of-sample objective spaces after 10,000 iterations of Pareto-
GARCH

series [6]. There is a large family of GARCH type models. In our experiments
we use the simplest and most popular model GARCH(1,1). Here the predicted
distribution is a Gaussian, the mean is presumed to be constant and the con-
ditional variance for the next time step is predicted as a weighted sum of the
previous time-steps residual, predicted variance and the unconditional variance
of the series. This very simple model can successfully capture the serial depen-
dence in financial data. The GARCH(1,1) can be represented as a vector of 4
parameters. This vector representation is used to encode an individual in our
evolutionary algorithm. We use an Evolutionary Strategy (ES) for optimization
because it has a number of advantageous characteristics [2]. Besides being able
to optimize a non-differentiable objective function (e.g. A? score), ES is attrac-
tive because it can solve complex, high dimensional, multimodal, real valued
problems. However, most other evolutionary algorithms could be used instead.
For a full description of the Pareto-GARCH model see [12].

6 CASE STUDY: FINANCIAL DATA

The financial domain has many applications where density forecasts are of use,
not least, the popular area of risk management, which is effectively dedicated
to making accurate density forecasts. Other applications include, derivatives
pricing, where the range of possible future values of the underlying financial
instrument has the most influence on the price, and high frequency trading,
where strategies such as statistical arbitrage depend on well calibrated trading
models to ensure profits.

In this case study, we analyse the performance of both an MDN and GARCH
model on the notoriously difficult domain of foreign exchange data. The data is
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Fig. 6. In-sample and out-of-sample objective spaces after 10,000 iterations of Pareto-
MDN

comprised of 1,501 examples of daily price observations for the DeutscheMark/British
Pound foreign exchange rate, from April 1985 to January 19922, a particularly
volatile period for these two currencies. We transform the daily prices into a log
returns series by r; = log(pip—t), where p; is the price at interval ¢. The return
series was separated into a training set of the first 1,000 observations and a test

set comprised of the last 500 observations.

Using a non-linear optimization technique (quasi-newton) we train a GARCH(1,1)
model minimizing the NLL3. This solution is used as the initial model for our
ES. We can presume that this model represents a near global optimum solution
in terms of the NLL and should be present in the Pareto front. The aim of the
next step in training, the multi-objective search, is to start from this point on
the Pareto front and search to find as diverse a Pareto front as possible. This
process should provide new solutions that improve on calibration.

We carried out 10,000 iterations of the ES algorithm resulting in a set of
316 non-dominated individuals. Figure 5 shows the the in-sample and out-of-
sample objective spaces for each of the models in the Pareto set. Each point
on the objective space represents a model. We have highlighted some models
of interest, the GARCH model represents the initial solution trained using the
standard optimization procedure. NLL P-GARCH is the model that has the
best NLL score and A2 P-GARCH is the model with best A? score from the
Pareto front.

2 This data is included with the Mathworks™™ Matlab™ Garch Toolboz.

3 There is no standard implementation of the GARCH optimization algorithm, how-
ever, the error function, NLL, is the same in all cases. Therefore, there is usually
negligible difference between the models that are produced by different implemen-
tations.



For comparison, we also trained an MDN model on the same data. The MDN
was given 6 hidden units and outputs were represented as a 2 component GMM.
Again, an initial model was trained on the data using a standard optimization
technique, in this case we use a Scaled Conjugate Gradient method [18]. We use
this model as our initial starting position in parameter space for our evolution-
ary algorithm. The resulting objective spaces, on both training and test data,
after 10,000 epochs of training are shown in Figure 6. The Pareto front has 736
individuals.

We have determined the Spearman rank correlation coefficients between the
in-sample and out-of-sample models on each objective function. Both for the
GARCH Pareto set and for the MDN Pareto set the model rankings are strongly
correlated suggesting little over-fitting of the models to the data on either ob-
jective function. Table 1 shows the correlations.

NLL A?
P-GARCH|0.9967 0.9943

P-MDN |0.8589 0.9848
Table 1. Spearman rank correlation coefficients between the in and out-of-sample
objective function values for each model.

The in-sample and out-of-sample MDN objective spaces (Figure 6) are scaled
so that they can be compared easily with the GARCH objective spaces (Figure
5). Also, as in the GARCH objective space, the MDN models with best NLL
and A? scores are highlighted. The objective space figures suggest that the MDN
produces a far better calibrated set of solutions on the in-sample data. This is
confirmed in Figures 7 and 8 where it is shown that the training sets of A?
P-GARCH and A? P-MDN models have almost perfect calibration. This shows
us that the multi-objective optimization has achieved a degree of success on the
in-sample data at least. Fortunately, this success is also present in the test data
where the same effect can be seen. Interestingly, however, the simpler GARCH
models outperform the MDN models considerably in the out-of-sample data.
Again, from the PIT histograms it can be confirmed that the GARCH models,
although suffering slightly from under-confidence due to the assumption of nor-
mality, produce superior models on both the NLL and A? scores. Analysis of
the dominance of solutions shows that in-sample the MDN and GARCH models
produce solutions that do not dominate each other. However, out-of-sample there
are 70 dominant solutions out of the possible 1,052 and 69 of these solutions are
GARCH models.

In summary, this strategy allows the user to identify models that score well
on both sharpness and calibration. There are many domains such as finance
or weather forecasting where calibration is almost as important as sharpness.
If rare events are significant then it is important that the model assigns the
correct probability to them. This approach allows the prediction users to select
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Fig. 7. GARCH pit histograms for the training data (top row) and test data (bottom
row).
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Fig. 8. MDN pit histograms for the training data (top row) and test data (bottom
row).

the model that gives them the best trade-off solution from the Pareto set of
solutions.

7 CONCLUSIONS

In this paper we have outlined the two goals of density forecasting. We show that
taking only one of these goals into consideration during training of a density fore-
casting model results in poor performance. To solve this problem we introduce
a new technique for density forecasting optimization that uses a multi-objective
search algorithm to find the best solution. Our framework can be applied to
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most likelihood based density forecasting models. An attractive advantage of
this approach is that the underlying model is not augmented in any way so the
model can be interpreted in the normal manner. Our experiments have shown
that this optimization approach can find models that are better calibrated than
those found through negative log-likelihood.
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