
Tools for Model-based Security Engineering

Jan Jürjens
∗

Competence Center for IT Security, Software &
Systems Engineering

Dep. of Informatics, TU Munich, Germany

http://www4.in.tum.de/̃ juerjens

Jorge Fox
Institut für Informatik

Technische Universität München

http://www4.in.tum.de/̃ fox

ABSTRACT
We present tool-support for checking UML models and C
code against security requirements. A framework supports
implementing verification routines, based on XMI output of
the diagrams from UML CASE tools, and on control flow
generated from the C code. The tool also supports weav-
ing security aspects into the code generated from the mod-
els. Advanced users can use this open-source framework to
implement verification routines for the constraints of self-
defined security requirements. We focus on a verification
routine that automatically verifies crypto-based software for
security requirements by using automated theorem provers.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques -Computer Aided Software Engineering (CASE); D.2.4
[Software Engineering]: Software/Program Verification

General Terms
Security

Keywords
Security, Model-based Software Engineering, UML, Verifi-
cation Framework, Code Analysis

1. INTRODUCTION
Understanding the security goals provided by software

making use of cryptography is one of the major challenges
with security-critical systems. Any support to aid secure
systems development is thus dearly needed. Towards this

∗This work was partially funded by the German Federal
Ministry of Education, Science, Research and Technology
(BMBF) in the framework of the Verisoft project under
grant 01 IS C38. The responsibility for this article lies with
the author(s).

Copyright is held by the author/owner.
ICSE’06, May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

goal, the security extension UMLsec for the Unified Mod-
eling Language (UML) [3] allows us to include security re-
quirements as stereotypes with logical constraints. In this
paper we present automated tool-support for the analysis
of UMLsec models against security requirements by check-
ing the constraints associated with the UMLsec stereotypes.
Besides presenting a general, extensible framework for im-
plementing verification routines for the constraints associ-
ated with security-critical UML stereotypes, we focus on a
plug-in that utilizes an automated theorem-prover (ATP)
for first-order logic (FOL) to verify security properties of
UMLsec models which make use of cryptography (such as
cryptographic protocols), which was explained in [5]. To do
so, the analysis routine extracts information from behav-
ioral UML diagrams that may contain additional specific
cryptography-related information. If the analysis reveals
that there is an attack, an attack generation script written
in Prolog generates the attack trace.

Next, one can generate code from the models, in which
security aspects can be woven in, as explained in [6]. That
the weaving process actually results in software that satis-
fies the intended security requirements is non-trivial to fore-
see, because of possible aspect intereferences. We therefore
further present a tool for analyzing crypto-based C imple-
mentations for security requirements also using ATPs for
FOL. This analysis tool is not only intended for C code
generated by our code generator, but also (for example) for
legacy code. The C code gives rise to a control flow graph
in which the cryptographic operations are represented as
abstract functions. The control flow graph is translated to
formulas in first-order logic with equality. Together with a
logical formalization of the security requirements, which are
then given as input into the ATP. Our approach supports a
modular security analysis by using assertions in the source
code. Thus large software systems can be divided into small
parts for which a formal security analysis can be performed
more easily and the results composed. Also, this way our
approach can be applied to code that calls libraries even if
the code for the libraries is not (yet) available. Note that
our goal is not to provide an automated full formal verifica-
tion of C code but to increase understanding of the security
properties enforced by cryptoprotocol implementations in a
way as automated as possible. Because of the abstractions,
the approach may produce false alarms (which however have
not surfaced yet in practical examples). Note that our focus
here is on high-level security properties such as secrecy and
authenticity, and not on detecting low-level security flaws
such as buffer-overflow attacks.

819



UMLsec

XMI1.2)
(UML1.5/

Model

Model
UML

Modified
Code

Report
Text
and

(UML1.5 / XMI1.2 compliant)
UML Editor

MDR JMI

UMLsec Tool Framework

Code Analyzer

ties
Proper−

Code
and

Analysis

Result

Code Generator

Model Analyzer

Error Analyzer

data flow

"uses"

Model Extractor

Figure 1: Overall tool-flow of the seCse analysis suite

Since in particular the code verification part is computa-
tionally very challenging, we have developed a further tool
plugin in our framework, which combines the ATP-based
analysis with the use of the model-checker Spin. This allows
one to perform abstractions on the state machines generated
from the code which are then verified using the ATP, and
verify using the model-checker that the abstracted state ma-
chines are actually faithful against the original control flow
graphs of the code.

The tools are accessible through a web-interface and avail-
able as open-source. They have been validated in several
industrial projects including OpenSSL and a biometric au-
thentication system, identifying several major security flaws
in software during its industrial development.

2. THE VERIFICATION FRAMEWORK
The usage of the framework as illustrated in Fig. 1 pro-

ceeds as follows. The developer creates a model and stores it
in the UML 1.5/XMI 1.2 file format.1 The file is imported by
the verification framework into the internal MDR repository.
MDR is an XMI-specific data-binding library which directly
provides a representation of an XMI file on the abstraction
level of a UML model through Java interfaces (JMI). This
allows the developer to operate directly with UML concepts,
such as classes, statecharts, and stereotypes. It is part of the
Netbeans project. Each plug-in accesses the model through
the JMI interfaces generated by the MDR library, they may
receive additional textual input, and they may return both
a UML model and textual output. There are two kinds
of model analysis plug-ins: 1) The static checkers parse the
model, verify its static features, and deliver the results to the
error analyzer. 2) The dynamic checkers translate the rele-
vant fragments of the UML model into the input language
for example of an ATP. The ATP is spawned by the frame-
work as an external process; its results are delivered back to
the error analyzer. The error analyzer uses the information
received from the static and dynamic checkers to produce a
text report for the developer describing the problems found,
and a modified UML model, where the errors found are vi-
sualized. Besides the automated theorem prover binding
presented in this paper there are other analysis plugins in-
cluding a model-checker binding and plugins for simulation

1This will be updated to UML 2.0 once the corresponding
DTD has been officially released.

and test-sequence generation. The developer can then use
the aspect weaver to weave in security aspects on the model
or into the code that can be generated. The resulting code
can then again be analyzed for security requirements.

The framework is designed to be extensible: advanced
users can define stereotypes, tags, and first-order logic con-
straints which are then automatically translated to the au-
tomated theorem prover for verification on a given UML
model. Similarly, new adversary models can be defined.

The user webinterface and the source code of the verifica-
tion framework is accessible at [10].

3. TRANSLATING UMLSEC DIAGRAMS
TO FIRST-ORDER LOGIC FORMULAS

We shortly recall from [5] the automated translation of
UMLsec diagrams to first-order logic (FOL) formulas which
allows automated analysis of the diagrams using ATPs for
FOL. Details on the UMLsec notation can be found in [3],
although these are not essential here.

We assume that we are given a UML package contain-
ing the following kinds of diagrams: A deployment diagram
specifies the physical layer of the system, such as system
nodes and communication links, and the level of security it
provides, using UMLsec stereotypes, such as 〈〈 Internet 〉〉 de-
noting an Internet communication link. From this, in the
security analysis, the adversary model is generated in first-
order logic who is able to control certain communication
links. Secondly, a class diagram describes the data structure
of the system, including the security requirements on the
system data, for example using the UMLsec tags {secrecy},
{integrity} and {authenticity} which represent the respective
requirements. For the security analysis, from this informa-
tion the conjecture is derived that is to be checked by the
automated theorem prover. The package also contains dia-
grams specifying the intended behavior of the system, which
may include an activity diagram coordinating the compo-
nents or objects in the package, a sequence diagram spec-
ifying interaction between them by message exchange, and
statecharts specifying the behavior of single components or
objects. The behavioral specifications are compiled to first-
order logic axioms giving an abstract interpretation of the
system behavior suitable for security analysis.

The translation defines an upper bound for the set of
knowledge the adversary can gain using a predicate knows(E)
meaning that the adversary may get to know E during the
execution of the protocol. For any data value s supposed
to remain secret as specified in the UMLsec model, one
thus has to check whether one can derive knows(s). For
each publicly known expression E, one defines knows(E) to
hold. The fact that the adversary may enlarge his set of
knowledge by constructing new expressions from the ones
he knows (including the use of encryption and decryption) is
captured by a logical formula which formalizes the fact that,
if the adversary knows expressions exp1, . . . , expn expected
by one of the protocol participants which validate the con-
dition cond(exp1, . . . , expn) the protocol participant checks
at the receipt of the message, then he can send them to re-
ceive the message returned by that participant in exchange,
and then the protocol continues. There are also further for-
mulas formalizing the fact that the adversary may build up
knowledge by applying cryptographic algorithms. With this
formalization, a data value s is said to be kept secret if it

820



is not possible to derive knows(s) from the formulas defined
by a protocol. This way, the adversary knowledge set is
approximated from above (because one abstracts away for
example from the message sender and receiver identities and
the message order). This means that one will find all pos-
sible attacks, but one may also encounter “false positives”,
although this has not happened yet with any real examples.
The advantage is that this approach is rather efficient. The
conjecture, for which the ATP will check whether it is deriv-
able from the axioms, depends on the security requirements
contained in the class diagram. For the requirement that the
data value s is to be kept secret, the conjecture is knows(s).

Attack Generation. In case the result is that there may be
an attack, in order to fix the flaw in the code, it would be
helpful to retrieve the attack trace. Since theorem provers
such as e-SETHEO are highly optimized for performance
by using abstract derivations, it is not trivial to extract
this information. Therefore, we also implemented a tool
which transforms the logical formulas explained above to
Prolog. While the analysis in Prolog is not useful to estab-
lish whether there is an attack in the first place (because it is
in order of magnitudes slower that using e-SETHEO and in
general there are termination problems with its depth-first
search algorithm), Prolog works fine in the case where one
already knows that there is an attack, and it only needs to
be shown explicitly (because it explicitly assigned values to
variables through its search, which can then be queried).

4. CODE ANALYSIS
We explain the code analysis part of the framework. From

the control flow graph generated from the source code using
the aiCall tool [1], the seCse tool constructs the FOL ax-
ioms giving an abstract interpretation of the system behav-
ior suitable for security analysis. Technically, this is realized
via the export format GDL of the aiCall tool for the control
flow graph. For space restrictions, we explain the transla-
tion only for a simplified fragment of C without loops and
concurrency. We use standard transformation to simplify
the translation from the state machines to logic.
side effects Side effects are transformed away as usual. For

example, i + + is substituted by i = i + 1, the state-
ment a+ = 20 is replaced by a = a + 20, and b = + + k
by the command sequence k = k + 1; b = k.

static single assignment The program is transformed to
the static single assignment (SSA) format as usual.
For example, the command sequence k = k + 1; b = k
is replaced by k1 = k0 + 1; b = k1.

dereferencing pointers To transform away the use of
pointers, we use a standard method.

Although the construction of the control flow graph from
a C program is essentially standard, the input and output
patterns are somewhat special. They are needed because of
the emphasis on interaction when verifying cryptoprotocols.
An input pattern consists of a message name msg and a list
of variables which will be assigned values when a message
with name mgs is received over the network. We use code
annotations (defined below) to define which input variables
store the incoming arguments of which messages, and which
functions are used to receive them. Similarly, an output pat-
tern consists of a message name msg and a list of expressions,
that are at run-time evaluated to values which are sent on

//@C2SM_ANN (<<function name>>)
//@C2SM_TRANS (<<trigger>>; <<guard>>; <<effect>>)
//@C2SM_INSERT (<<value>>)
//@C2SM_AXIOMS
// <<FOL axioms>>
//@C2SM_AXIOMS_END

Figure 2: Code Annotations

the network as arguments of the message msg. Again we use
code annotations defined below to specify which functions
take care of sending out the messages. Lastly, we may use
other kinds of annotations to map an assignment assgmt
of an expression to a variable in C to a logical predicate
passgmt on the corresponding logical variable. inpattern may
be empty and condition equal to true where they are not
needed. The state machine constructed in this way can now
be translated to a FOL formula as in the previous section.

Abstraction through Annotations. An annotation, as de-
fined in Fig. 2, starts with the key word //@C2SM ANN
followed by the name of the function or variable. Then
the keyword //@C2SM TRANS follows (optionally) which
specifies the trigger, the guard, and the effect of a tran-
sition which should be inserted in the statemachine where
the function is called or variable is used. Here one can re-
fer to the arguments of the function which appear at the
occurence which should be replaced by identifying them as
functni where functn is the name of the function as speci-
fied with the key word //@C2SM ANN and i the number
of the argument. The keyword //@C2SM INSERT specifies
an expression that should be inserted at the place of the
function call as its return value, or in place of the variable,
respectively. The definition ends with the optional keyword
//@C2SM AXIOMS which allows one to insert FOL formu-
las axiomatizing the expressions used in the state machine
transition and the inserted value.

Standard function annotations map functions in the stan-
dard libraries to their representations in the state machine.
For example, memset(), memcpy(), strcpy(), and strncpy()
are each mapped to an effect at a transition which assigns
the value given as their second argument to the variable
given as their first argument (and abstracts from the third
argument, giving the size of the variable value). The C
function memcmp() is mapped to the two-argument state
machine function equal num() which returns 0 if its two ar-
guments evaluate to the same value and which abstracts
from the third argument of memcmp() defining the size of
the arguments. The C functions !memcmp(), strcmp(), and
strncmp() are mapped to the function equal() returning true
if its two arguments are the same and false otherwise (and
also abstracts from the argument sizes). To be feasible, one
also needs to completely abstract away irrelevant parts of
the code. For example, since in our security analysis on the
given level of abstraction we are not concerned with memory
allocation, the C commands malloc(), calloc(), realloc(), and
free() are abstracted away using our annotations.

Modular Verification. We explain how one can perform a
modular security analysis by including security assertions in
the program parts generated during the security analysis.
A set of security assertions for a program part p consists of
statements derived(L, C, E) where L is a list of variables, C is
a condition over the variables in L, and E is an expression
which may contain free variables from L. These assertions

821



generator
Formula

Control
flow
graph

Analyzer

ANSI C editor

ATP
results

code
MC

las
formu−
FOL

data flow

"uses"

cessed
annotated

code

Report
Text

seCse Suite

Model checkerAutomated
theorem prover

Prepro−

C
code tions

Annota−
Test driver

Tests

Figure 3: Analysis part of the seCse suite

mean that the set of adversary knowledge is contained in
the set of expressions E constructed by instantiating the
variables from L with values that themselves can be derived
this way for p and which fulfill the condition C. To analyze
a program fragment p carrying a set of assertions L one
takes the formulas generated from the approach in Sect. 4
and adds for each the assertion of the form derived(L, C, E)
an axiom of the form

![v1,...,vn]: knows(v1) & ... & knows(vn)

& C(v1, ..., vn) => knows (E)

(where L is the list of variables v1, ..., vn and C(v1, ..., vn) the
instantiation of C with the variables v1, ..., vn).

5. AUTOMATED THEOREM PROVERS VS.
MODEL-CHECKERS

Providing automated verification techniques for state ma-
chines specifying distributed systems is challenging in sev-
eral aspects: On the one hand, the non-deterministic inter-
leaving of the states and actions of parallel substates and
of different statecharts executed in parallel leads to a state
space explosion. On the other hand, complex data struc-
tures add further to the complexity. Lastly, state machines
derived from a practical context (such as control flow graphs
of implementations) can be quite large. At the hand of the
verification of security properties, we use automated theo-
rem provers for first-order logic for automated verification of
state machines generated from code in a combination with
using model-checkers for security-sensitive model-based test-
ing to ensure the abstractions that have to be made are valid.
The tool-flow for this extension of our framework is given in
Fig. 3.

6. RELATED WORK
For space restrictions, we can each only point to a few

exemplary works in the fields of tool support for security,
UML, and software verification.

[9] formalizes the well-known BAN logic in FOL and uses
the ATP SETHEO to proof statements in the BAN logic.
BAN logic is a modal belief logic used to formulate the be-
liefs of protocol participants during protocol execution.

In the field of software model-checking, [2] presents the
Bandera toolset using model-checkers to reason about cor-
rectness requirements of Java programs. More precisely, the
tool “provides tool support for defining and managing collec-
tions of requirements for a program, for extracting compact

finite-state models of the program to enable tractable analy-
sis, and for displaying analysis results to the user through a
debugger-like interface”. Further developments in this line
of work include the Bogor model-checking framework which
provides “an extensible input language for defining domain-
specific constructs and a modular interface design to ease
the optimization of domain-specific state-space encodings,
reductions and search algorithms” [8].

With respect to tool frameworks in general, related work
includes [7], which offers a tool framework which goes be-
yond our framework presented here in that it is open to
non-UML-based tools.

7. CONCLUSION
We use automated theorem provers for first order logic

to understand the security requirements provided by UML
models and C code implementations of crypto-based soft-
ware. Our approach constructs a logical abstraction of the
annotated models or code which can be used to analyze them
for security properties (such as confidentiality) with ATPs.
It supports a modular security analysis of crypto-based im-
plementations using assertions in the source code. Although
our approach is not completely automatic and requires some
effort for annotating the code to make it scale, it turned out
to be applicable with reasonable effort even in large software
projects, as demonstrated at the hand of the OpenSSL suite
and a biometric authentication system [4]. We keep the an-
notation effort bounded by providing an annotated standard
library (although these do not cover user functions). We are
also currently exploring ideas from automated discovery of
proof invariants in order to partially automate annotating
the code.

8. REFERENCES
[1] AbsInt. aicall. http://www.aicall.de/, 2004.

[2] J.C. Corbett, M.B. Dwyer, J. Hatcliff, and Robby. Bandera: a
source-level interface for model checking java programs. In 22th
International Conference on Software Engineering (ICSE
2000), pages 762–765. IEEE Computer Society, 2000.

[3] J. Jürjens. Secure Systems Development with UML. Springer,
2004.

[4] J. Jürjens. Code security analysis of a biometric authentication
system using automated theorem provers. In 21st Annual
Computer Security Applications Conference (ACSAC 2005).
IEEE Computer Society, 2005.

[5] J. Jürjens. Sound methods and effective tools for model-based
security engineering with UML. In 27th International
Conference on Software Engineering (ICSE 2005). IEEE
Computer Society, 2005.

[6] J. Jürjens and S.H. Houmb. Dynamic secure aspect modeling
with UML: From models to code. In ACM / IEEE 8th
International Conference on Model Driven Engineering
Languages and Systems (MoDELS / UML 2005), LNCS.
Springer, 2005.

[7] T. Margaria, R. Nagel, and B. Steffen. jETI: A tool for remote
tool integration. In N. Halbwachs and L.D. Zuck, editors, 11th
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS 2005),
volume 3440 of LNCS, pages 557–562. Springer, 2005.

[8] Robby, M.B. Dwyer, and J. Hatcliff. Bogor: an extensible and
highly-modular software model checking framework. In 11th
ACM SIGSOFT International Symposium on Foundations of
Software Engineering (FSE’03), pages 267–276. ACM, 2003.

[9] J. Schumann. Automatic verification of cryptographic protocols
with SETHEO. In W. McCune, editor, 14th International
Conference on Automated Deduction (CADE-14), volume
1249 of LNCS, pages 87–100. Springer, 1997.

[10] UMLsec tool, 2004. http://www4.in.tum.de/csduml/interface.

822


