
Coordination of Autonomous Mobile Entities
Mélanie Bouroche and Vinny Cahill

Distributed System Group, Computer Science Department, Trinity College, Dublin
{melanie.bouroche, vinny.cahill}@cs.tcd.ie

Abstract— Autonomous mobile entities, for example automated
guided vehicles, are playing an increasingly important role in
our everyday lives. Since these entities share their environment
with each other and with humans, they need to coordinate
their behaviour to ensure that strong safety constraints are
respected. However, as sensing range and accuracy are inherently
limited, and communication in wireless networks is unreliable,
autonomous entities have access to only limited information about
their environment and the current behaviour of other entities.
This makes ensuring system-wide safety constraints particularly
challenging.

In this paper, we show how system-wide safety constraints can
be translated into requirements on the behaviour of individual
entities depending on the information available. We first present
a formalism to express high-level system-wide safety constraints.
We then introduce a notion of distributed responsibility allowing
requirements on the behaviour of individual entities to be
deduced. We show how this process can be applied to an example
from the Intelligent Transportation System (ITS) domain.

I. I NTRODUCTION

Progress in miniaturisation of computing devices is encou-
raging the deployment of autonomous mobile entities in our
everyday environment. Examples of these entities include au-
tomated guided vehicles (AGVs) [2], and other mobile service
robots [18], as well as robots for disaster rescue [6] and, in
the future, autonomous cars. To ensure safe operation, such
entities must coordinate their behaviour both with each other
and with their environment. This means that the aggregated
behaviour of all these entities must respect some system-wide
safety constraints. As entities interact with their environment
and are mobile, ensuring these system-wide safety constraints
implies stringent real-time requirements on coordination. Fur-
thermore, because the safety of humans and possibly crucialor
expensive infrastructure is at stake, the coordination of entities
is safety critical [9], i.e., a violation of the safety constraints
could result in a catastrophe.

To coordinate their behaviour, entities can use both direct
communication and communication via the environment. Be-
cause they are mobile, such entities will typically communicate
over a wireless (possibly ad hoc) network. In wireless net-
works, however, communication, and in particular real-time
communication, is highly unreliable and achievable perfor-
mance varies greatly over time and location [5]. This implies
that existing consensus-based coordination methods whichrely
on continuous real-time connectivity cannot be applied, and
that entities need to take decisions independently. Ensuring
that system-wide safety constraints will be ensured by entities
taking decisions independently is particularly challenging.
This is complicated by the fact that, as (i) the range and

accuracy of sensors is inherently limited, (ii) communication in
wireless networks is unreliable, and (iii) entities must act under
stringent real-time constraints, entities must make decisions
using only limited information.

Because the amount of information available to each entity
varies over time, our approach is that entities should adapt
their behaviour depending on the amount of information
currently available to them. This includes information received
by sensors and messages, but also information about the
state of communication. The state of communication for an
entity can be described as the identity of the entities with
which it can communicate (as in group-based communication
models [4], [10]), the achievable message latency (as in the
quasi-synchronous communication model [19]), or the current
proximity in which entities can communicate (as in the Space-
Elastic Model [1]).

In this paper, we show how system-wide safety constraints
can be translated into requirements on the behaviour of
individual entities, by formalising safety constraints assets
of state incompatibilities that must be avoided and using a
notion of distributed responsibility to attribute the responsibi-
lity for incompatibilities to individual entities. We thenshow
how entities can prevent incompatibilities for which they are
responsible, by adapting their behaviour depending on the
amount of information available.

We first review existing work on the coordination of mobile
autonomous entities and show that none of it explains how
system-wide safety constraints can be ensured (Section II).
We then present a formalism to specify system-wide safety
constraints (Section III), and present the notion of distributed
responsibility, and the coordination mechanisms that we have
identified (Section IV). We eventually demonstrate how this
process can be applied to an example from the Intelligent
Transportation System (ITS) domain (Section V).

II. RELATED WORK

The work of Nett et al. [13]–[15] aims to ensure reliable
cooperation of autonomous vehicles, and, more generally, of
autonomous mobile systems. Their approach is to provide an
event service that delivers the global state of the system to
all entities every time an event is raised. Entities can thenuse
a local scheduling function to schedule shared resources. A
number of coordination middlewares have also been proposed
for mobile entities in ad hoc networks. LIME (Linda In Mobile
Environment) [11], [12] is inspired by the Linda communica-
tion model, in which processes communicate through a shared
tuple space. LIME caters for physical mobility of hosts and



logical mobility of agents, by having a tuple space attached
to each mobile entity. Entities then collaborate by transiently
sharing their tuple spaces, creating a “global virtual data
structure”. EgoSpaces [7], [8] is an extension of LIME, which
defines the concept of a “view” that allows nodes to specify
from which nodes tuples must be gathered. Finally, Limone
(LIgthly-coordinated MObile NEtwork) [3] is another LIME-
inspired middleware, designed for use on small devices and in
unstable environments. All of this work focuses on providing
a common view of the environment to all entities, but does
not demonstrate that this approach can deliver the required
level of reliability within the short time bounds availablein
the presence of unreliable communication. Furthermore, none
of this work investigates how requirements on the behaviour
of entities can be derived from system-wide safety constraints.

Other work [17] argues that there is a class of applications
in which coordination needs to be ensured by the exchange
of multiple, related, messages, i.e., a protocol. It is suggested
that support for protocols should be offered at the middleware
level to allow applications to use lower-level primitives such
as identification and unicast. A middleware is proposed in
[16], [17], based on the role abstraction, which specifies the
behaviour of a class of interaction partners and allows support
for a session. The authors do not describe how coordination
guarantees could be met in the presence of unreliable com-
munication. Furthermore, this work does not address how to
derive requirements on entity behaviour, or how to design the
coordination protocols.

III. SPECIFYING SAFETY CONSTRAINTS

In mobile settings, safety constraints typically include cons-
traints on the states and actions of entities, as well as their
proximity to each another. This exploits the rationale that
entities need to coordinate their behaviour when they are inthe
same vicinity, the definition of which is application-specific.
For example, two autonomous cars need to coordinate their
behaviour only when they are close to each other, but not
otherwise. In this section, we introduce a formalism to express
these notions and their interactions.

A. Scenario, modes and states

A scenario encompasses a set ofentities E1, E2, .., En,
a goal, and somesafety constraints. In the autonomous car
example, the entities are the cars. The goal of this scenariois
for the cars to drive to their destination. The safety constraint
is that no car should collide with another car.

The behaviour of an entity is composed of a set of modes
of operation (modes) that describe the actions it can take, and
the transition rules between these modes. Modes should be
defined so that an entity is always in one of its modes, i.e.,
transitions between modes are assumed to be instantaneous.
For example, the modes of a car could begoing_at_Vmax,
braking, stopped andaccelerating. We denote the
set of modes of entityEi asMi.

The situation of an entity at a given time is described by
its state which encompasses its mode, location, and some

application-specific information about it. We denote the set
of states of entityEi asSi. The state of a car is composed of
its location, current speed, direction and mode. We define the
function modeM : ∪Si 7→ ∪Mi that returns the mode of a
given state.

B. States compatibility

We define a set of states(s1, s2, ..., sn) ∈ S1 × S2... × Sn

as compatible if the safety constraints are not violated when
some entities are simultaneously in these states. This relation
will be notedCS(s1, s2, ..., sn). For example, the states of two
cars are compatible if they are far enough away, i.e., if the
distance between their positions is bigger than a boundd.

C. Expressing the safety constraints

The safety constraints can be expressed as a set of in-
compatibilities between states, with constraints on the relative
distance of entities (noteddistance(position1, position2)).
For example, the fact that two cars should not collide into
each other could be expressed as:

scar1Csscar2

iff q
(

(distance(scar1.position, scar2.position) < d)
)

.

This example is simple, but illustrates that the formalism is
high-level and implementation-independent. This formalism
captures all the salient details of the safety constraints,and
allows numerous safety requirements for mobile autonomous
entities to be expressed simply. It also enables the geographical
aspects of safety constraints to be captured.

IV. T RANSLATING SAFETY CONSTRAINTS

High-level system-wide safety constraints, while being sim-
ple and quite intuitive to state, are not easily exploitable
as such. In our experience, it is non-trivial to deduce the
necessary and sufficient requirements on individual entity
behaviour from such safety constraints, or even to check that
some specification of the entity behaviour ensures that these
safety constraints will not be violated. To ease this process,
we introduce a number of concepts that can be used to derive
requirements on entities.

A. Responsibility

For every possible incompatibility between the states of two
entities, i.e., possible violation of one of the safety constraints
involving these two entities, at least one of them needs to
ensure that it will not occur. We say that this entity is
responsible for the incompatibility.

The responsibility can be attributed to entities of a certain
type or to entities in a certain role. For example, entities of
the type traffic light might be responsible for ensuring that
cars do not go through the crossing when the light is red.
Another example might be that every car in the leading role
(i.e., in front), be responsible for ensuring that no car collides
into it from behind. Responsibility might be attributed a priori
or in real-time, and might be transferred. However, at any
time, at least one entity must be responsible for each possible



TABLE I

COORDINATION PRIMITIVES

Primitives Meaning

Adapt Perform another action than the one planned
Delay Perform an action later than initially planned

Transfer
responsibility Communicate with other entities

incompatibility. When using the model, an initial partitioning
of responsibility fulfilling this criteria must be chosen.

This notion of responsibility is the first step in the transla-
tion of system-wide safety constraints: it allows to distribute
the duty of ensuring safety constraints over entities. Being
responsible for an incompatibility implies requirements on
the entity’s behaviour: it should ensure at any time that the
incompatibility will not happen. This requires that an entity
be able to foresee when an incompatibility might happen. This
can be deduced from the modes of the different entities. For
this purpose, we define the notion of mode compatibility.

B. Mode compatibility

A set of modes(m1, m2, ..., mn) ∈ M1 × ... × Mn is
compatible if, when some entities are simultaneously in these
modes, their states are compatible. If we define, form ∈ Mi,
Si,m as the set of states of the entityEi in which it is in mode
m, i.e.,Si,m := {s ∈ Si|M(s) = m}, mode compatibility can
be defined as:

Cm(m1, m2, ..., mn) iff

∀(s1, s2, ..., sn) ∈ S1,m1
× ... × Sn,mn

, Cs(s1, s2, ..., sn) .

While the notion of state incompatibility captures whether
the safety constraints are being violated at a given time,
mode compatibility enables us to make predictions that no
incompatibility will happen (while entities are in these given
modes). It must be noted that if the modes of a set of entities
are not compatible, it does not imply that the safety constraints
will be violated. For example, the modesstopped of one car
and going_at_the_vmax of another are not compatible,
as entities might collide into each other when they are in these
modes, but if they are far enough apart, the safety constraints
will not be violated (and so their states at the time will be
compatible).

C. Coordination primitives

For a responsible entity to ensure that no state incompa-
tibility will happen, it is sufficient to ensure that its mode
is at any time compatible with the modes of all surrounding
entities. We have identified so far three different primitives
that a responsible entity can use to this effect: delay its
own action, adapt its behaviour, or communicate with other
entities. Each of these mechanisms is detailed below and
summarised in Table I. While other mechanisms might be
found, our experience to date demonstrates that these allow
a large number of scenarios to be solved.

1) Adapting its behaviour: A responsible entity can have
information about the modes that other entities can be in both
a priori (by previous knowledge) and in real-time, by means
of message or sensor information. Using this information, a
responsible entity can adapt its behaviour, i.e., perform an
action other than the one planned, to always ensure it is in
a mode in which the safety constraints will not be violated.

The default modes of an entity are the modes it can be
in when it has no information about the current state of its
environment. A modem of an entityE is said to be afail-
safe mode if it is compatible with all the default modes of
all the other entities. It is sufficient for an entity to remain in
a fail-safe mode to ensure that the incompatibility that it is
responsible for will not happen.

2) Delaying actions: The second primitive consists of de-
laying an action that can trigger an incompatibility (i.e.,delay
switching to a mode in which an incompatibility might occur).
An entity can delay its action until it gets information thatit
is safe to undertake it, or until it has warned all entities that
it will undertake it.

3) Transferring responsibility: Another means for respon-
sible entities to ensure that the incompatibility for whichthey
are responsible will not occur, is to warn other entities that
the incompatibility might occur, by sending a message, which
can include their state and mode. Entities that receive sucha
message become responsible to ensure that no incompatibility
arises with the entity that sent it, which corresponds to a
transfer of responsibility. The transfer only occurs if the
message has been received, so an entity needs to know that it
can communicate with another entity in order to transfer its
responsibility. This transfer is only partial as the responsible
entity remains responsible for the incompatibility in relation
to other entities.

D. Contracts

A responsible entity can use a combination of the three
coordination primitives mentioned above to ensure that the
incompatibility for which it is responsible will not occur.This
must be decided a priori, and can be seen as an implicit
contract between the responsible entity and other entities. We
have identified three types of contracts:

1) Contract without transfer: In this case, the responsible
entity will not transfer its responsibility, and must always
ensure, by adapting its behaviour if necessary, that the safety
constraints are not violated. Other entities do not need to
be aware of the contract, or even of the existence of the
responsible entity.

For this contract, the only coordination primitives used are
Adapt and Delay, and they are used only by the responsible
entity.

2) Contract without feedback: In a contract without feed-
back, the responsible entity must warn other entities at least
a predefinedtwarning duration in advance when the safety
constraints are liable to be violated. Other entities must be
able, at any time, to react (i.e., change their behaviour to



TABLE II

REQUIREMENTS IMPOSED BY THE THREE TYPES OF CONTRACTS

Type of
contract

Requirements on the re-
sponsible entity

Requirements on other
entities

without
transfer

Adapt its behaviour or de-
lay its actions to ensure
that the incompatibility it
is responsible for will not
happen

None

without
feedback

Communicate at least
twarning in advance
when the incompatibility
is liable to occur

Be able at any time to ad-
apt within twarning to a
message from the respon-
sible entity

with feed-
back

Communicate at least
twarning in advance
when the incompatibility
is liable to occur
Adapt to the feedback
from another entity within
twarning − tfeedback

Be able at any time to ad-
apt within twarning to a
message from the respon-
sible entity, or to commu-
nicate withintfeedback to
the responsible entity.

NB: In these contract, the times mentioned are times of delivery (as opposed
to times of sending of messages).

ensure that no incompatibility will happen) withintwarningof
a message from a responsible entity.

In this case, the responsible entity can use any of the
three coordination primitives, while other entities can use only
Adapt.

3) Contract with feedback: In this contract, the responsible
entity must also warn other entities at leasttwarning in
advance when the safety constraints are liable to be violated.
In this case, however, entities can provide feedback to the
responsible entity, when they cannot adapt their behaviourso
that the safety constraints will not be violated. Therefore, the
responsible entity must also be able to react, to ensure that
no incompatibility will happen, to the feedback from another
entity arising from its previous message, withintwarning −
tfeedback. Other entities must be able at any time either to
react withintwarning to a message from a responsible entity,
or to communicate withintfeedback to this entity. This contract
might include the exchange of further messages, but after
the initial exchange the entities have discovered the presence
of each other, and if necessary, the delay to exchange more
messages can be included in the definition oftwarning.

In this case, both responsible and other entities can use
any of the three mechanisms.

The requirements on both responsible and other entities
for each of the types of contract are detailed in Table II.
These contracts are decided a priori. The use of the three
mechanisms by both responsible entities (R) and others (O) in
the three contracts is described in Table III. It must be noted
that safety constraint will be guaranteed only if the contract is
respected. If it is believed that some entities might disregard
safety constraints and not obey a contract, legislation might be
introduced to enforce this. For example, it could be imposed
that every autonomous car commercialised obey a number of
contracts necessary for the safety of all road users.

TABLE III

USE OF THE PRIMITIVES BY THE CONTRACTS

Contract Adapt Delay Transfer re-
sponsibility

without transfer R R -
without feedback R, O R R

with feedback R, O R, O R, O

E. Zones

These contracts can be translated into geographical zones
around entities: the safety zone and the consistency zone.

The states of all entities of a scenario must be compatible at
all times. But the safety constraints actually impose constraints
only on specific states, typically when two entities are “close”
according to some application-specific definition. For this
reason, we define theSafety Zone as the set of positions of
entities where their states are liable to be incompatible with
that of the responsible entity.

If a responsible entity foresees that an entity could be in
a state that is not compatible with its own state when that
entity enters its safety zone, the responsible entity can choose
to transfer its responsibility, by sending a message. In this
case, it must do so early enough, so that the incoming entity
will have time to adapt its behaviour (either by not entering
the safety zone, or by changing its mode) to prevent the
incompatibility. The zone in which this must be achieved is
called theConsistency Zone of the modem that the responsible
entity is in, and notedCZ(m). Its size can be expressed as:

CZ(m) = SZ + O_reaction(m) · vmax(m) (1)

where m is the mode of the responsible entity,
O_reaction(m) is the maximum time necessary for an
entity receiving a message indicating that another entity is
in a modem to ensure that its state will be compatible with
that of the entity, andvmax(m) the maximal speed at which
entities might approach an entity which is in modem.

F. Summary

In Section III, we have shown how system-wide safety
constraints for mobile autonomous entities can be specified.
We have then shown how system-wide constraints can be
distributed among entities, using a notion of responsibility.
Requirements on the behaviour of entities can be met using
three identified coordination mechanisms, combined in con-
tracts between entities. These contracts can be translatedinto
geographical zones, hence scaling down the coordination pro-
blem, and the requirement on communication. The next section
demonstrates how the coordination model can be applied on
a specific example.

It must be noted that given a set of safety constraints, and
some characteristics of entities, not every scenario is solvable
when trivial non-progress making solutions (e.g., all entities
idle) are not considered. The resolvability of a scenario can
be assessed, but this is outside the scope of this paper.



V. EXAMPLE : EMERGENCY VEHICLE ARRIVAL WARNING

In this section, we show how the coordination model can be
applied to design a system to warn cars when an emergency
vehicle is approaching, so that they can get out of its way, if
possible.

A. Specifying the safety constraint

This scenario contains two types of entities: cars and emer-
gency vehicles. In the following, we consider only interactions
between emergency vehicles and cars (and ignore interactions
between cars and between emergency vehicles). The goal of
the scenario is for emergency vehicles to travel as fast as
possible, under the safety constraint that they should not crash
into cars. Communication can be used in addition to sensor
data, to improve achievable speeds. Emergency vehicles and
cars can send messages to each other, either in ad hoc mode,
or using wireless infrastructure. Communication, however, is
not always available, and its performance may vary greatly
over time and location.

Given the maximum speed of an emergency vehiclevmax,
and an increasing set of speeds{vi}i∈[1,n] with vn =
vmax, the modes of emergency vehicles can be defined
as: stopped, {going_at_Vi, accelerating_to_Vi,
braking_to_Vi}i∈[1,n]. The state of an emergency vehicle
encompasses its mode, position, and speed.

The behaviour of a car can be modelled with the
modestravelling, getting_out_of_the_way, and
out_of_the_way. Its state encompasses its mode, position,
and speed. The default mode of a car istravelling. The
modestopped of an emergency vehicle is compatible with
the modetravelling of a car (assuming that cars can
avoid crashing into a stopped emergency vehicle, as into any
other obstacle), thereforestopped is a fail-safe mode for
emergency vehicles. This captures the fact that it is sufficient
for an emergency vehicle to be stopped to ensure that it will
not collide into a car.

Using these definitions, the safety constraint that cars and
emergency vehicles should not collide can be stated as:

scarCssev iff q

(

(

distance(scar.position, sev.position) < d
)

∧

(sev.mode6= stopped)∧(scar.mode6= out_of_the_way)
)

where the index “ev” refers to the emergency vehicle. This
captures that the states of a car and an emergency vehicle
will remain compatible, unless they are closer that a distance
d apart, that the emergency vehicle is not stopped, and that
the car is on the road (we consider only single-lane roads for
explanation purposes).

B. Requirements on entity behaviour

In this part, we derive the requirements on the behaviour of
cars and emergency vehicles so that the safety constraint can
be ensured. In this scenario, we chose that emergency vehicles
are responsible for preventing incompatibilities with cars. This
choice is motivated by the fact that emergency vehicles can

adapt their behaviour (by varying their speed) to the current
state of communication. They need to transfer their responsi-
bility to cars with which incompatibilities might happen orto
remain stopped, so that no incompatibility will happen. This
implies that an emergency vehicle should send a message to
all the cars that are in front of it, so that they can get out of its
way. It must ensure that it will warn the cars early enough so
that they will have time to get out of its way before it arrives.
On the other hand, cars must ensure that they will, at any time,
be able to get out of the way of the emergency vehicle within
the given time delay, or be able to send a message back to the
emergency vehicle, to warn it that they cannot. Emergency
vehicles and cars therefore obey a contract with feedback,
with twarning = max(O_reaction, feedback_time) and
tfeedback = braking_time, where O_reaction is the time
within which a car should get out of the path of an emergency
vehicle, feedback_time the time required for a car to send
feedback to the emergency vehicle, andbraking_time the
time required for an emergency vehicle to stop.

The safety zoneSZ of an emergency vehicle can be
defined as a circle of 2 m of radius around it. From (1),
it can be derived that an emergency vehicle in the mode
going_at_Vi needs to send messages in a zone

CZ(vi) = SZ + O_Reaction · vi .

Therefore, emergency vehicles need to adapt their speed so
that they always travel at a speedvi, such that they can warn
entities withinCZ(vi) twarning before they arrive. So at any
time an emergency vehicle needs to adapt its speed to the
current state of communication and to possible feedback from
cars.

C. Evaluation

We have shown that a high-level system-wide safety cons-
traint such as “emergency vehicles should not collide into
cars” can be translated into requirements on the behaviour of
autonomous entities. Provided that both emergency vehicles
and cars respect the contract outlined above, they will never
crash into each other, even if the quality of communication
varies.

This solution maps the current operating protocol of emer-
gency vehicles, where a siren warns cars that an emergency
vehicle will arrive, and the emergency vehicle driver accele-
rates as much as possible provided that he can see that the
road is free far enough to allow it to slow down if necessary.
The proposed solution, however, allows the warning to be
forwarded by the infrastructure or other cars and enables cars
to warn the emergency vehicle if they will not be able to get
out of its way. The range of communication can be far greater
than the range of sight, so the addition of the proposed solution
might allow an emergency vehicle to travel faster.

VI. CONCLUSION

In this paper, we have presented a coordination model for
autonomous mobile entities. A formalism to express system-
wide safety constraints for applications composed of autono-
mous mobile entities was first presented. We have then shown



how these constraints can be translated into requirements on
the behaviours of individual entities. This approach has been
demonstrated in an example.

This coordination model was designed specifically to take
into account that the amount of information available to
autonomous mobile entities is limited and varies over time.
It allows entities to adapt their behaviour depending on the
information available, including the state of communication.
We have successfully applied this model to a variety of sce-
narios, including both mobile and stationary components. Our
future work includes deriving lower-level and more detailed
requirements on the behaviour of entities from the safety
constraints for different communication models.

ACKNOWLEDGEMENT

The authors are grateful to Science Foundation Ireland
for their support of the work described in this paper under
Investigator award 02/IN1/I250 between 2003 and 2007.

REFERENCES

[1] Mélanie Bouroche, Barbara Hughes, and Vinny Cahill. Building reliable
mobile applications with space-elastic adaptation. InMobile Distributed
Computing workshop (MDC 2006), June 2006. to appear.

[2] Jack Cawkwell. A visually guided agv for use as passengertransport in
urban areas. InProceedings of 2000 Intelligent Transportation Systems
Conference, pages 311–315. IEEE Computer Society, October 2000.

[3] Chien-Liang Fok, Gruia-Catalin Roman, and Gregory Hackmann. A
lightweight coordination middleware for mobile computing. In Rocco De
Nicola, Gian Luigi Ferrari, and Greg Meredith, editors,Proceedings
of the 6th International Conference on Coordination Models and Lan-
guages (COORDINATION 2004), volume 2949 ofLecture Notes in
Computer Science, pages 135–151. Springer, February 2004.

[4] Roy Friedman. Fuzzy group membership. In André Schiper,Alexan-
der A. Shvartsman, Hakim Weatherspoon, and Ben Y. Zhao, editors,
Future Directions in Distributed Computing, volume 2584 ofLecture
Notes in Computer Science, pages 114–118. Springer, June 2003.

[5] Gregor Gaertner and Vinny Cahill. Understanding link quality in
802.11 mobile ad hoc networks.IEEE Internet Computing, 8(1):55–
60, January–February 2004.

[6] Shigeo Hirose and Edwardo F. Fukushima. Development of mobile
robots for rescue operations.Advanced Robotics, 16(6):509–512, Sep-
tember 2002.

[7] Christine Julien and Gruia-Catalin Roman. Egocentric context-aware
programming in ad hoc mobile environments. InProceedings of the
10th ACM SIGSOFT symposium on Foundations of software engineering
(SIGSOFT ’02/FSE-10), pages 21–30. ACM Press, November 2002.

[8] Christine Julien and Gruia-Catalin Roman. Active coordination in ad
hoc networks. In Rocco De Nicola, Gian Luigi Ferrari, and Greg
Meredith, editors,Proceedings of the 6th International Conference on
Coordination Models and Languages (COORDINATION 2004), volume
2949 of Lecture Notes in Computer Science, pages 199–215. Springer,
February 2004.

[9] Hermann Kopetz.Real-Time Systems: Design Principles for Distributed
Embedded Applications. Kluwer Academic Publisher, 1997.

[10] Jun Luo, Patrick Th. Eugster, and Jean-Pierre Hubaux. Pilot: Proba-
bilistic lightweight group communication system for ad hocnetworks.
IEEE Transactions on Mobile Computing, 3(2):164–179, April 2004.

[11] Amy L. Murphy and Gian Pietro Picco. Using coordinationmiddleware
for location-aware computing: A lime case study. In Rocco DeNicola,
Gian Luigi Ferrari, and Greg Meredith, editors,Proceedings of the
6th International Conference on Coordination Models and Languages
(COORDINATION 2004), volume 2949 ofLecture Notes in Computer
Science, pages 263–278. Springer, February 2004.

[12] Amy L. Murphy, Gian Pietro Picco, and Gruia-Catalin Roman. Lime:
A middleware for physical and logical mobility. InProceedings of
the 21st International Conference on Distributed Computing Systems
(ICDCS’01), pages 524–533. IEEE Computer Society, April 2001.

[13] Edgar Nett, Martin Gergeleit, and Michael Mock. Mechanisms for a
reliable cooperation of vehicles. InProceedings of the 6th IEEE Interna-
tional Symposium on High-Assurance Systems Engineering (HASE’01),
pages 75–81. IEEE Computer Society, October 2001.

[14] Edgar Nett and Stefan Schemmer. Reliable real-time communication
in cooperative mobile applications.IEEE Transactions on Computers,
52(2):166–180, February 2003.

[15] Edgar Nett and Stefan Schemmer. An architecture to support cooperating
mobile embedded systems. InProceedings of the 1st conference on
Computing Frontiers (CF’04), pages 40–50. ACM Press, April 2004.

[16] Kurt Schelfthout and Tom Holvoet. Coordination middleware for
decentralized applications in dynamic networks. InProceedings of the
2nd international doctoral symposium on Middleware (DSM’05), pages
1–5. ACM Press, November 2005.

[17] Kurt Schelfthout, Danny Weyns, and Tom Holvoet. Middleware for
protocol-based coordination in dynamic networks. InProceedings of
the 3rd international workshop on Middleware for pervasive and ad-
hoc computing (MPAC ’05), pages 1–8. ACM Press, November 2005.

[18] Rolf Dieter Schraft. Mechatronics and robotics for service applications.
IEEE Robotics & Automation Magazine, 1(4):31–35, December 1994.

[19] Paulo Verissimo and Carlos Almeida. The timely computing base model
and architecture.IEEE Transactions on Computers - Special Issue on
Asynchronous Real-Time Systems, 51(8):916–930, August 2002.


