
Abstract—ITS architectures encourage integration of 
individual intelligent transportation systems into 
comprehensive platforms and enable sharing of information 
across a wide variety of systems and services. This paper 
presents a spatial programming model that has been designed 
as part of the iTransIT ITS framework to provide a 
standardized way to build value-added transportation user 
services and ultimately to deliver contextual transportation 
information to users. The spatial programming model is based 
on a topographical approach to modeling space that enables 
services to use potentially overlapping spatial context to 
correlate independently defined distributed information. This 
programming model has been evaluated by building a context-
aware service for multi-modal urban journey planning. 

I. INTRODUCTION

ntegrating individual intelligent transportation system into 
comprehensive platforms is a key challenge faced by 

transportation authorities in the provision of transportation 
services to users. The use of an Intelligent Transportation 
Systems (ITS) architecture encourages structured 
development and integration of individual systems [1] that 
leads to sharing of information and enables use and re-use of 
transportation information that is distributed across various 
independent systems. Services providing access to such 
transportation data might enable users to retrieve data 
ranging from information on places of interest, to prevailing 
road weather conditions, to expected journey times, to up-to-
date public transport information. Such services might also 
enable suitably privileged users to interact with the 
infrastructure, for example, to request a change to a traffic 
light or to reserve a parking space. 

The basis for the delivery of such context-aware services 
and information to users will be a conceptual abstraction for 
accessing and correlating the information associated with an 
ITS architecture. This paper presents a spatial programming 
model designed to provide a standardized way to build 
value-added transportation user services that deliver 
contextual transportation information derived from 
independent systems to users. The spatial programming 
supports a topographical location model and provides access 
to distributed context information based on potentially 
overlapping spatial and temporal aspects. 

This enables services to exploit and act upon information 
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from a variety of deployed (and novel) systems and services 
as well as to share information between them. The spatial 
programming model hides the complexity and diversity of 
the underlying systems and their data sources and provides 
services with a common view on the available information 
and its context. For example, a service might use the spatial 
programming model to retrieve public transport information, 
which might be provided by some underlying system, and 
then access relevant weather information provided by 
another system using the temporal and spatial context of this 
information. 

The spatial programming model is part of the iTransIT 
ITS framework for integrating individual transportation 
systems and related services. The iTransIT framework has 
been motivated by the needs of Dublin City and its multi-
layered distributed architecture has been designed to enable 
information integration and sharing across independent ITS 
and context-aware user services. The iTransIT framework 
has been developed in cooperation with the Traffic Office of 
Dublin City Council (DCC) in the Republic of Ireland. 
Detailed framework (and spatial programming model) 
requirements were informed by a comprehensive audit of 
existing and planned future intelligent transportation 
systems in the Dublin City area.  

The proposed spatial programming model has been 
realized as part of a proof-of-concept architecture and data 
model that captures a variety of real transportation 
information derived from systems currently deployed in 
Dublin City. This implementation has been evaluated by 
building a user service for multi-modal urban journey 
planning that exploits information generated by a variety of 
underlying heterogeneous systems in a context-aware 
manner. The evaluation is based on transportation 
information relevant to and derived from a real urban 
environment and demonstrates how our programming model 
supports user service development and eventually enables 
user access to context information. 

The remainder of this paper is structured as follows: 
Section II introduces the iTransIT framework for integrating 
individual transportation systems and related user services. 
Section III describes the spatial programming model and 
section IV outlines how the spatial programming model 
supports transportation user services. Section V presents our 
evaluation of this work outlining how the programming 
model provides city-wide access to the context information 
required by a multi-modal traveler information system. 
Finally, section VI concludes this paper by summarizing our 
work.
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II. THE ITRANSIT ARCHITECTURE

As illustrated in Fig. 1, the iTransIT architecture 
structures legacy systems, iTransIT systems, and context-
aware end-user applications into three tiers. These tiers 
define the relationships between systems and applications 
and provide a scalable approach for integrating systems and 
their context information as individual components can be 
added to a specific tier without direct consequences to the 
components in the remaining tiers. The relationships 
between systems and applications can be characterized 
according to the interaction paradigms that describe the 
possible information flows between legacy and iTransIT 
systems. 

A. Architecture Tiers 
The legacy tier provides for the integration of legacy 

systems and describes existing as well as future 
transportation systems that have not been developed to 
conform to the iTransIT system architecture and layered 
data model. Such legacy systems often feature a form of 
persistent data storage and might include systems for traffic 
and motorway management that have commonly been 
deployed in many urban environments. 

The purpose of the iTransIT tier is to integrate 
transportation systems that model spatial information and 
implement the spatial application programming interface. 
This tier therefore comprises a federation of transportation 
systems that implement the spatial data model. The data 
model is distributed across these iTransIT systems, with 
each system implementing the subset of the overall model 
that is relevant to its operation. iTransIT systems maintain 
their individual information, which is often gathered by 
sensors or provided to actuators, by populating the relevant 
part of the spatial data model. However, some of the 
information maintained in an iTransIT system specific part 
of the data model may actually be provided by underlying 
legacy systems. Most significantly, traffic information 
captured in this tier is maintained with its temporal and 
spatial context; persistently stored data is geo-coded 
typically by systems exploiting a database with spatial 
extensions. 

The systems that may exist in the iTransIT tier can be 
classified according to the paradigms they exploit when 
interacting with other legacy or iTransIT systems. Such 
iTransIT systems may be purpose built and therefore 
optimized to accommodate application or user-specific 
requirements or may be general purpose. As shown in Fig. 
1, the framework may incorporate a general-purpose 
iTransIT Management system. The iTransIT Management 
system is the canonical application of this domain and is 
expected to implement a major part of the spatial data 
model. It typically serves as a main repository for geo-coded 
data generated and used by connected legacy and iTransIT 
systems. 

The application tier includes value added services that 

provide context-aware user access to and interaction with 
traffic information. These services use the distributed data 
model and the associated context to access information 
potentially provided by multiple systems and might include 
a wide range of interactive (Internet-based) and embedded 
control services ranging from monitoring of live and 
historical traffic information to the display of road network 
maps. 
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Fig. 1.  iTransIT ITS framework overview. 

B. Common Spatial Data Model 
The spatial data model, common to all iTransIT systems, 

is comprised of a set of potentially distributed layers [2] and 
represents the central component of these systems. 
Individual iTransIT systems implement one or more of these 
layers (or parts of layers) and maintain the static, dynamic, 
live, or historical traffic data available in a particular layer. 
For example, a system might implement a data layer 
describing the current weather conditions while another 
layer capturing intersection-based traffic volumes might be 
maintained by a different system. 

Some of the information captured in data model layers 
may be generated or used by legacy systems. Such 
information is mapped to a legacy system through data 
flows. These flows can be described using a set of flow 
classes, including event, stream, request/response, 
configuration and alarm flows, based on the characteristics 
and requirements of communication links provided by the 
KAREN framework architecture [3]. Using these 
descriptions, individual iTransIT systems implement 
interfaces that map specific legacy data to their data layers. 
This approach enables the use of communication 
technologies that can address the requirements of particular 
systems and their respective data flows. The objective of an 
iTransIT system might be to handle a certain data subset 
efficiently and to provide specific guarantees for the 
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delivery of the data. For example, an iTransIT system may 
employ real-time communication technology to connect to a 
legacy system that is capable of supporting strong delivery 
guarantees.  

III. THE SPATIAL APPLICATION PROGRAMMING MODEL

The spatial programming model provides a standardized 
way for user services to access and use information and 
context that is distributed across independent systems and 
related services. The spatial programming model provides 
common access to such distributed information based on 
overlapping context thereby enabling services (and users) to 
exploit and act upon information from a variety of systems. 

A. Abstracting Information and Context 
The spatial programming model uses a small set of 

predefined types for composing information and context, in 
which context is any information that can be used to 
characterize the situation of an information element [4], to 
ensure interoperability between data sets captured across 
distributed systems. These types are used to model data sets 
and their context according to the different roles data sets 
can assume as spatial objects. Spatial objects represent 
information as a series of parameters and context as 
attributes. Such types are central to providing user services 
with a common view on the wide range of information and 
the associated context that might be available in an ITS 
infrastructure. They hide the complexity and diversity of the 
independent systems and data sources comprising such 
infrastructures and represent the hooks for information 
integration through overlapping context such as space and 
time. 

Developing such types is non trivial for any programming 
model for significant systems and is especially complex for 
ITS infrastructures due to the scale and multitude of inter-
relationships that exist between sensors, systems, services, 
users, and their data sets. Lehman et al. [5] suggest an 
exhaustive ontology for defining how context information 
can be shared between applications in augmented areas. 
However, based on our experience with the transportation 
domain, we have found that a relatively small number of 
types suffices to decompose a domain model. Using a small 
set of (coarse-grain) types rather than attempting to model 
the entire world in detail simplifies management and 
maintenance in light of continuously evolving 
infrastructures. Novel systems or services are expected to be 
modeled using combinations of existing types whereas an 
exhaustive model might have to be expanded to capture the 
specific characteristics of novel systems. 

The types for modeling information and context as spatial 
objects currently supported by the spatial programming 
model are summarized in Fig. 2. They have been designed 
as a series of abstract object types and include three main 
types for modeling global information, which are real world, 
system and data object, as well as types for modeling 

context. 
Spatial Object 

Identification ObjectLocation Object System Object Real World Object Data Object 

Actuator Object Sensor Object 

Fig. 2.  Information and context abstractions. 
The three information types model the different roles that 

objects can assume within the spatial programming model. 
System objects represent general information describing 
software components, including systems and services, while 
real world objects represent physical entities. For example, 
system objects might capture operational status from a car 
parking system or from a journey time estimation service 
whereas real world objects might model roads and junctions. 
Sensor and actuator objects are specializations of real world 
objects and are used for modeling explicit infrastructural 
entities for example, detector loops and variable message 
signs of a car parking system. Data objects model any static 
or dynamic information from systems or services and might 
be used to model car parking opening times and rates 
charged. Based on an audit of deployed (and planned) 
transportation systems and services in the Dublin City area 
[6], we found that these categories of information types are 
sufficient to cover possible data sets. Novel information can 
be integrated using spatial objects composing sets of 
parameters that model such data sets. 

The main context type of the spatial programming model 
is the location object. Location objects are based on a 
topographical location model that uses geometry to model 
the space occupied or covered by an infrastructural element, 
a system or a service. The spatial programming model also 
supports temporal context. Temporal context is modeled 
implicitly, i.e., incorporated in other information types, 
rather than explicitly as a specific object. This enables 
information objects to include date and time attributes for 
representing their temporal context such as creation time and 
temporal validity. And finally, identification objects provide 
a type for logical identity, for example, to identify the name 
of a system or a service. 

B. Modelling Space 
The spatial programming model supports a topographical 

approach to modelling space. The relevant spatial context of 
sensors, systems, services and even users is modelled as a 
geometric shape. Individual shapes are defined by a 
sequence of coordinates based on a chosen, well-known 
coordinate system. These shapes explicitly represent spatial 
context derived form the real world. They may reflect the 
physical appearances of spatial objects modelling occupied 
space or may describe areas of interest that specify the 
regions covered by services. For example, a city-wide car 
parking system might use the spatial model to define the 
physical locations occupied by its car parks whereas a road 
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weather service might use the spatial model to outline the 
locations occupied by weather stations as well as the areas to 
which reports from individual stations apply. 

Using a topographical approach to modeling space 
enables systems, services, and applications to independently 
define and use potentially overlapping spatial context in a 
consistent manner. Unlike topological approaches [7], in 
which geographical relationships between spatial objects are 
described explicitly, topographical models define 
relationships between spatial objects implicitly and without 
explicit interactions between objects. The relations between 
spatial objects (and ultimately systems and users) are 
defined by the position of their respective shape within the 
common coordinate system. This is particularly significant 
where multitudes of independent systems are distributed 
over large geographical areas and direct communication 
across systems may be limited or expensive. Applications 
using the spatial model can exploit these implicit relations to 
link diverse information together for a user specific purpose. 
They may access spatially related information for example, 
by means of exploiting the distance between shapes or by 
exploiting containment and intersection relations. This might 
for example enable a vehicle-based information system to 
retrieve the exact locations of car parking facilities within a 
certain distance from its current location. 
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Fig. 3.  Modeling a road weather system. 
The spatial programming model supports the model for 

defining geometric shapes defined by the OpenGIS standard 
[8]. Spatial objects can be represented by geometry types 
ranging from a point, to a line, to a polygon, to combinations 
of polygons. Points might be used to define the location of a 
specific traffic signal or an individual user. Individual 
polygons might represent the spatial context of a car park or 
an area of interest whereas a series of (overlapping) 
polygons might be used to compose a spatial model of a 
transportation network comprising roads, lanes, and 
intersections. 

As mentioned above, these geometric shapes are specified 
using a common coordinate system. The selection of such a 

system depends on the domain for which the spatial 
programming model is being realized. Coordinates derived 
from third party location sensors, such as Global Positioning 
System (GPS) receivers, are mapped onto the chosen 
reference system if they are based on another system. For 
example, GPS coordinates may need be converted into a 
regional reference system chosen for a specific space. The 
Irish national grid reference system, a system of geographic 
grid references commonly used in Ireland, has been chosen 
as the coordinate system in our prototype. 

C. Modeling Data 
The spatial programming model defines a set of types for 

modelling the different roles spatial objects (and the context 
information they represent) can assume. Systems and 
services model their data using these types and a particular 
system may use and combine several types to accurately 
capture the roles of individual data sets. The example shown 
in Fig. 3, illustrates how a road weather system might use a 
system object to model general system data and a set of 
sensor objects to model individual weather stations. Each 
weather station comprises a location and an identification 
object and includes a data object that captures the actual 
measurements. 

Spatial objects must specialize at least one of our types 
for modeling information and context. However, depending 
on their role, they may derive from several types. Table 1
summarizes how these types can be combined outlining the 
semantics for composing information and context into 
spatial objects. As outlined in the real world object row, 
Table 1 shows that a real world object must comprise a 
location and an identification object and that it may include 
a set of data objects and a set of other real world objects. 
The compulsory containment of a location object is a 
reflection of the fact that real world objects are expected to 
model the physical space they occupy. In contrast, system 
and data objects may or may not comprise a location object 
and such a location object is probably modeling the space to 
which a system’s or data object’s information applies. Note 
that sensor and actuator objects are specializations of real 
world objects that share the same composition semantics. 

Table 1.  The semantics for composing information and context 
types.

System 
Object

Real
World

(Sensor,
Actuator) 

Object

Data
Object

Loc.
Object

Ident.
Object

System Object 0..n 0..n 0..n 0..1 0..1 
Real World 
(Sensor,
Actuator) 
Object

0 0..n 0..n 1 1 

Data Object 0 0 0..n 0..1 0..1 

D. Using the Spatial Model 
Systems use spatial objects to model their contextual 
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information and implement the spatial application 
programming interface to provide pervasive access to these 
objects. Each system models the subset of the spatial objects 
that is relevant to its respective purpose and context-aware 
services exploit the spatial application programming 
interface to integrate and share information in a common 
way regardless of the specifics of the system implementing a 
particular part of the spatial model. 

As shown below, the operations of the spatial application 
programming interface provide a means for services to 
manage, locate and access spatial objects. A set of 
operations is available for locating spatial objects using 
geometric queries or queries based on parameters of objects. 
Geometric queries are based on a geometry class that defines 
OpenGIS shapes including points and polygons. Parameter-
based queries use the container class outlined below to 
describe the parameter and attribute values of spatial objects. 
The parameter class includes native data values and may 
include the relevant temporal attributes of data objects. This 
class can be used in connections with queries but may also 
be used to access the typed parameter and attribute values of 
spatial objects. The spatial application programming 
interface enables services to locate spatial objects using a 
variety of queries ranging from selection based on a 
parameter value, to selection based on temporal context, to 
selection based on spatial context, to combinations of these. 
For example, a weather station may be selected using the 
value of a measurement, the temporal occurrence of a 
measurement or the location of the station. Such queries 
may identify zero, one or more objects. For example, 
selecting the bus stops of a certain bus route in a particular 
area might identify multiple suitable stops. Spatial objects 
are uniquely identified within a given system by a type and 
identifier pair. These pairs are typically the result of some 
selection operation and may be used to either retrieve or 
update the parameters of spatial objects. A service might use 
bus stop and identifier pairs to retrieve the addresses and 
timetables of previously located stops. 

Significantly, the spatial programming model enables a 
federation of independent systems to model their respective 
information and context locally as spatial objects. Each of 
these systems implements the spatial application 
programming interface to provide access to its respective set 
of spatial objects. This enables services to use, share, locate 
and correlate these distributed objects using a common set of 
context operations irrespective of the complexities of the 
systems accommodating the objects and without the need for 
an overall close integration of the systems. This mapping of 
the spatial model and its programming interface onto 
individual systems therefore provides for context-aware 
services in large-scale and heterogeneous environments. 
interface S_API { 
  void insert(String elementType, 
              OrderedParameterValues parValues); 
  void remove(String elementType, int id); 
  int[] select(String elementType, Geometry loc); 
  int[] select(String elementType, String parName, 

               Parameter parValue); 
  int[] select(String elementType, Geometry loc, 
               String parName, Parameter parValue); 
  int[] select(String elementType); 
  ElementTypeAndId[] select(Geometry loc); 
  Geometry select(String elementType, int id); 
  void update(String elementType, int id, 
              String parName[], 
              Parameter parValues[]); 
  Parameter[] retrieve(String elementType, int id, 
                       String parName[]); 
}

class Parameter{ 
  Calendar creationDate; 
  Calendar modificationDate; 
  Long retrievalLatency; 
  Long expectedLifetime; 
  Double confidenceLevel; 
  String parameterValue; 

  Integer getIntegerParameterValue(); 
  Double getDoubleParameterValue(); 
  String getStringParameterValue(); 
  Calendar getDateParameterValue(); 
…
}

IV. TRANSPORTATION USER SERVICES

The spatial application programming interface exposes 
the layered data model to transportation user services 
enabling them to access the spatial information that is 
relevant to them. Fig. 4 illustrates that such user services 
capture the content to be made assessable to the user. This 
service content may be derived directly from the spatial 
programming interface or may be generated by the service. 
Directly derived content represents transportation 
information provided by either iTransIT systems or legacy 
systems. Such content might include prevailing road 
congestion levels and public transport information such as 
train timetables and bus locations. Content that is generated 
by the service represents the actual value added. The stimuli 
for generating this additional content are usually derived, via 
spatial programming model, from the underlying systems as 
well. For example, a traveler information service might use 
information on public transportation in combination with 
road network information to plan and route user journeys 
between points of interest. 

Service Content 

Interaction Proxy 

User
Service 

Spatial-API 

Common Data Model 

Service Provision 

Fig. 4.  Building user services. 
The content of a service can be delivered to users through 

a proxy handling interactions and sessions. Remote access to 

373



such a service specific interface may be enabled through 
widely used communication technologies for example, based 
on CORBA, Web Services, or General Packet Radio 
Services (GPRS). Naturally, a specific service may support 
multiple (diverse) communication technologies for user 
interaction enabling users to access, request, and indeed 
provide information using a range of means. For example, a 
user might request journey information using either a 
handheld device with a wireless connection or a messaging 
service on a mobile phone. 

V. ASSESSMENT

This section evaluates the spatial programming model for 
context-aware user services proposed in this paper. The 
main objective of the experiments has been to assess the 
feasibility of our programming model providing access to 
information generated by a variety of heterogeneous systems 
in a context-aware manner. The assessed transportation 
service scenario demonstrates that our programming model 
enables service and eventually user access to context 
information derived from a real urban environment through 
correlation of overlapping spatial context. This evaluation 
therefore demonstrates that using a spatial programming 
model enables the delivery of context-aware services and 
information to users. 
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Fig. 5.  Spatial objects modeling public transport information. 
The scenario has been derived from the requirements of a 

smart traveler information service enabling travelers to plan 
journeys involving multiple forms of transportation 
including walking, public transport, cycling, and private 
vehicles thereby bridging the coordination gap between 
these modes of transportation by suggesting journey routes 
according to traveler preference and availability of 
transportation means. The scenario has been assessed using 
a prototypical implementation of an iTransIT Management 
system as a platform for transportation services. This 
Management system implements the spatial application 
programming interface and uses spatial objects to model 
information concerning a range of transportation systems 
currently deployed in Dublin City. The system includes data 
layers modeling the road network comprising intersections, 

roads, lanes, traffic counts, traffic volumes, and congestions 
levels as well as the public transport network consisting of 
bus routes, stops, lanes, timetables and bus locations. It also 
includes data layers modeling parking information and road 
weather data. These layers integrate data provided by a 
range of real legacy systems including the main traffic 
management system, a public transport information service, 
a congestion level application, a road weather service and a 
car parking information system. Fig. 5 shows a small set of 
the spatial objects modeling these layers that have been 
implemented as relational tables in a MySQL database with 
spatial extension. The information from these spatial objects 
has been provided by the traffic management system, the 
public transport information service and by a journey time 
monitoring system. 

A. The Evaluation Scenario 
The evaluation scenario includes a tourist using the 

context-aware traveller information service to locate public 
transport stations within walking distance of her current 
location. The tourist has just visited The Book of Kells 
museum at Trinity College Dublin and is about to leave 
campus through the Nassau Street gate. She remembers that 
she used the number 15 bus to travel from her hotel to the 
city centre and would therefore like to locate nearby bus 
stops of this route. 

She uses a handheld device with wireless service access 
to enter her query into the traveler information service, 
providing bus route number 15 and 5 minutes walking 
distance from her current location as parameters. The service 
uses coordinates derived from its GPS receiver (converted 
into Irish national grid coordinates) and an average 
pedestrian pace of 1.36m/s [9] to define the geometric shape 
of the search area. The service then uses the spatial 
application programming interface as outlined below to 
access the relevant context information. 
1 int[] busStopId = sapi.select("BusStop", 
                                searchArea); 
  for (int i = 0; i < busStopId.length; i++) { 
2   Parameter busStopName=sapi.retrieve("BusStop", 
                              busStopId[i],"Name"); 
3   Geometry busStopLocation = 
             sapi.select(“BusStop”, busStopId[i]); 
4   Parameter linkToRoute = 
             sapi.retrieve("BusStop", busStopId[i], 
                           "route_autoId"); 
    int routeId = linkToRoute.getIntegerValue(); 
5   Parameter routeName = sapi.retrieve("Route", 
                                  routeId, "Name"); 
6   if (routeName.getStringValue().equals(“15-
outbound”)) || 
       (routeName.getStringValue().equals(“15-
inbound”)) { 
7     //use results 
    } 
  } 

The service might use a geometric query to locate all 
spatial objects representing bus stops in the give search area 
(1) and retrieve the parameters and attributes of these 
objects that describe the names and locations of specific bus 
stops (2, 3). The service then proceeds to identify the spatial 
objects that describe the routes associated with these bus 
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stops. These “links” to route objects are modeled as 
parameters that can be retrieved from bus stop objects (4). 
They are subsequently used to retrieve the names of the bus 
stop routes (5) and information related to the previously 
indicated bus route (6) can then be used to advise the user 
(7). The results of such a scenario for locating bus stops 
within walking distance can be found in Table 2. Bus stops 
for both city centre-bound and suburb-bound stops have 
been retrieved since the user did not specify her preferences. 
Naturally, a traveler information service would display this 
information as an overlay to a map of Dublin City rather 
than in table form. Such an overlay might include the bus 
stop names and the headings of buses. This might further 
assist the user in locating and eventually walking to a 
convenient bus stop. 

Table 2.  Locating public transport stations within walking 
distance.

Bus Stop Name Route Name 
Bus Stop Location 
(Irish national grid 
coordinates)

Kildare Street 15-outbound (316230.8575, 233593.6385) 
Dawson Street 
Upper 15-inbound (316063.4310, 233792.1260) 

Dawson Street 
Lower 15-inbound (316036.3947, 233612.0083) 

Suffolk Street 15-inbound (315924.9190, 233981.6965) 
Nassau Street 15-outbound (316202.2930, 233883.7390) 
College Green 15-outbound (316038.3422, 234186.3123) 
This scenario demonstrates how a context-aware user 

service might use the spatial programming model to locate 
real-world entities in a given area of interest and how it 
might exploit explicit associations between spatial objects. 
Similar queries can be used by a range of related scenarios. 
For example, after selecting a bus stop, the user might wish 
to see the relevant timetable for the next hour or might wish 
to use the address of her hotel to locate a convenient stop 
near her destination and to display the route the bus will 
take. Other related scenarios might include retrieving the 
congestion levels along the route in order to get an 
indication of whether the bus is likely to be on time. Such a 
scenario might also be of interest to someone traveling by 
car to the airport or to work. These related scenarios have 
been implemented but due to space limitations are not 
describe in further detail. 

This assessment is based on scenarios that access 
information integrated in the spatial model through a single 
spatial application programming interface. However, a 
context-aware user service may concurrently use multiple 
spatial application programming interfaces to access spatial 
objects in a similar way. The overlapping context of such 
distributed spatial objects may be used similarly to correlate 
objects. For example, the location of a bus stop available 
from one spatial application programming interface might be 
used to locate nearby train stations through another 
interface.

VI. CONCLUSIONS

This paper presented a programming model for building 
value-added transportation services that deliver contextual 
information derived from independent systems to users. The 
spatial programming model uses a small set of predefined 
types to model distributed context information as spatial 
objects. This provides a common view on such information 
and enables services and ultimately users to exploit, act 
upon and share information based on overlapping spatial 
and temporal aspects. The spatial programming model 
supports a topographical location model in which spatial 
context derived form the real world is explicitly represented 
by shapes that reflect occupied space or describe areas of 
interest. This enables systems distributed over large 
geographical areas to independently define and use spatial 
context in a consistent manner. 

The spatial programming model is part of the iTransIT 
framework for integrating individual transportation systems 
and services that has been motivated by the needs of Dublin 
City. The multi-layered distributed iTransIT architecture 
supports a distributed data model in which individual 
systems maintain one or more layers of the overall data 
model. 

The evaluation of the spatial programming model has 
been based on a prototypical implementation of an iTransIT 
management system that uses spatial objects to model real 
information relevant to and derived from a range of 
transportation systems currently deployed in Dublin City. 
The assessed transportation service scenario demonstrated 
that our programming model enables service and eventually 
user access to context information derived from a real urban 
environment through correlation of overlapping spatial 
context. This evaluation therefore demonstrated that using a 
spatial programming model enables the delivery of context-
aware transportation services and information to users. 

A more substantial iTransIT prototype is currently being 
realized incorporating a considerable number of diverse 
systems and transportation data sets. This prototype will 
enable a further evaluation of the spatial programming 
model using a wide variety of transportation service 
scenarios that is expected to produce significant results. 
Furthermore, Dublin City Council is concurrently evaluating 
the iTransIT framework based on its application to real 
transportation systems planned for Dublin City. 
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