
Abstract—ITS architectures encourage integration of
individual intelligent transportation systems into
comprehensive platforms and enable sharing of information
across a wide variety of systems and services. This paper
presents a spatial programming model that has been designed
as part of the iTransIT ITS framework to provide a
standardized way to build value-added transportation user
services and ultimately to deliver contextual transportation
information to users. The spatial programming model is based
on a topographical approach to modeling space that enables
services to use potentially overlapping spatial context to
correlate independently defined distributed information. This
programming model has been evaluated by building a context-
aware service for multi-modal urban journey planning.

I. INTRODUCTION

ntegrating individual intelligent transportation system into
comprehensive platforms is a key challenge faced by

transportation authorities in the provision of transportation
services to users. The use of an Intelligent Transportation
Systems (ITS) architecture encourages structured
development and integration of individual systems [1] that
leads to sharing of information and enables use and re-use of
transportation information that is distributed across various
independent systems. Services providing access to such
transportation data might enable users to retrieve data
ranging from information on places of interest, to prevailing
road weather conditions, to expected journey times, to up-to-
date public transport information. Such services might also
enable suitably privileged users to interact with the
infrastructure, for example, to request a change to a traffic
light or to reserve a parking space.

The basis for the delivery of such context-aware services
and information to users will be a conceptual abstraction for
accessing and correlating the information associated with an
ITS architecture. This paper presents a spatial programming
model designed to provide a standardized way to build
value-added transportation user services that deliver
contextual transportation information derived from
independent systems to users. The spatial programming
supports a topographical location model and provides access
to distributed context information based on potentially
overlapping spatial and temporal aspects.

This enables services to exploit and act upon information

Manuscript received March 20, 2006. The work described in this paper
was partially supported by the Dublin City Council in Ireland.

René Meier, Anthony Harrington, and Vinny Cahill are with the
Distributed Systems Group in the Department of Computer Science at
Trinity College Dublin, Ireland (phone: +353 1 608 1261; fax: +353 1 677
2204; e-mail: {rene.meier, anthony.harrington, vinny.cahill}@cs.tcd.ie).

from a variety of deployed (and novel) systems and services
as well as to share information between them. The spatial
programming model hides the complexity and diversity of
the underlying systems and their data sources and provides
services with a common view on the available information
and its context. For example, a service might use the spatial
programming model to retrieve public transport information,
which might be provided by some underlying system, and
then access relevant weather information provided by
another system using the temporal and spatial context of this
information.

The spatial programming model is part of the iTransIT
ITS framework for integrating individual transportation
systems and related services. The iTransIT framework has
been motivated by the needs of Dublin City and its multi-
layered distributed architecture has been designed to enable
information integration and sharing across independent ITS
and context-aware user services. The iTransIT framework
has been developed in cooperation with the Traffic Office of
Dublin City Council (DCC) in the Republic of Ireland.
Detailed framework (and spatial programming model)
requirements were informed by a comprehensive audit of
existing and planned future intelligent transportation
systems in the Dublin City area.

The proposed spatial programming model has been
realized as part of a proof-of-concept architecture and data
model that captures a variety of real transportation
information derived from systems currently deployed in
Dublin City. This implementation has been evaluated by
building a user service for multi-modal urban journey
planning that exploits information generated by a variety of
underlying heterogeneous systems in a context-aware
manner. The evaluation is based on transportation
information relevant to and derived from a real urban
environment and demonstrates how our programming model
supports user service development and eventually enables
user access to context information.

The remainder of this paper is structured as follows:
Section II introduces the iTransIT framework for integrating
individual transportation systems and related user services.
Section III describes the spatial programming model and
section IV outlines how the spatial programming model
supports transportation user services. Section V presents our
evaluation of this work outlining how the programming
model provides city-wide access to the context information
required by a multi-modal traveler information system.
Finally, section VI concludes this paper by summarizing our
work.

Towards Delivering Context-Aware Transportation User Services
René Meier, Anthony Harrington, and Vinny Cahill

I

Proceedings of the IEEE ITSC 2006
2006 IEEE Intelligent Transportation Systems Conference
Toronto, Canada, September 17-20, 2006

MB6.4

1-4244-0094-5/06/$20.00 ©2006 IEEE 369

II. THE ITRANSIT ARCHITECTURE

As illustrated in Fig. 1, the iTransIT architecture
structures legacy systems, iTransIT systems, and context-
aware end-user applications into three tiers. These tiers
define the relationships between systems and applications
and provide a scalable approach for integrating systems and
their context information as individual components can be
added to a specific tier without direct consequences to the
components in the remaining tiers. The relationships
between systems and applications can be characterized
according to the interaction paradigms that describe the
possible information flows between legacy and iTransIT
systems.

A. Architecture Tiers
The legacy tier provides for the integration of legacy

systems and describes existing as well as future
transportation systems that have not been developed to
conform to the iTransIT system architecture and layered
data model. Such legacy systems often feature a form of
persistent data storage and might include systems for traffic
and motorway management that have commonly been
deployed in many urban environments.

The purpose of the iTransIT tier is to integrate
transportation systems that model spatial information and
implement the spatial application programming interface.
This tier therefore comprises a federation of transportation
systems that implement the spatial data model. The data
model is distributed across these iTransIT systems, with
each system implementing the subset of the overall model
that is relevant to its operation. iTransIT systems maintain
their individual information, which is often gathered by
sensors or provided to actuators, by populating the relevant
part of the spatial data model. However, some of the
information maintained in an iTransIT system specific part
of the data model may actually be provided by underlying
legacy systems. Most significantly, traffic information
captured in this tier is maintained with its temporal and
spatial context; persistently stored data is geo-coded
typically by systems exploiting a database with spatial
extensions.

The systems that may exist in the iTransIT tier can be
classified according to the paradigms they exploit when
interacting with other legacy or iTransIT systems. Such
iTransIT systems may be purpose built and therefore
optimized to accommodate application or user-specific
requirements or may be general purpose. As shown in Fig.
1, the framework may incorporate a general-purpose
iTransIT Management system. The iTransIT Management
system is the canonical application of this domain and is
expected to implement a major part of the spatial data
model. It typically serves as a main repository for geo-coded
data generated and used by connected legacy and iTransIT
systems.

The application tier includes value added services that

provide context-aware user access to and interaction with
traffic information. These services use the distributed data
model and the associated context to access information
potentially provided by multiple systems and might include
a wide range of interactive (Internet-based) and embedded
control services ranging from monitoring of live and
historical traffic information to the display of road network
maps.

Data Flow

Application
Tier

(User
Services)

iTransIT
Tier

(iTransIT
Systems)

Legacy
Tier

(Legacy
Systems)

Geo-Data

Traffic Data

Mgmt.
System

Fig. 1. iTransIT ITS framework overview.

B. Common Spatial Data Model
The spatial data model, common to all iTransIT systems,

is comprised of a set of potentially distributed layers [2] and
represents the central component of these systems.
Individual iTransIT systems implement one or more of these
layers (or parts of layers) and maintain the static, dynamic,
live, or historical traffic data available in a particular layer.
For example, a system might implement a data layer
describing the current weather conditions while another
layer capturing intersection-based traffic volumes might be
maintained by a different system.

Some of the information captured in data model layers
may be generated or used by legacy systems. Such
information is mapped to a legacy system through data
flows. These flows can be described using a set of flow
classes, including event, stream, request/response,
configuration and alarm flows, based on the characteristics
and requirements of communication links provided by the
KAREN framework architecture [3]. Using these
descriptions, individual iTransIT systems implement
interfaces that map specific legacy data to their data layers.
This approach enables the use of communication
technologies that can address the requirements of particular
systems and their respective data flows. The objective of an
iTransIT system might be to handle a certain data subset
efficiently and to provide specific guarantees for the

370

delivery of the data. For example, an iTransIT system may
employ real-time communication technology to connect to a
legacy system that is capable of supporting strong delivery
guarantees.

III. THE SPATIAL APPLICATION PROGRAMMING MODEL

The spatial programming model provides a standardized
way for user services to access and use information and
context that is distributed across independent systems and
related services. The spatial programming model provides
common access to such distributed information based on
overlapping context thereby enabling services (and users) to
exploit and act upon information from a variety of systems.

A. Abstracting Information and Context
The spatial programming model uses a small set of

predefined types for composing information and context, in
which context is any information that can be used to
characterize the situation of an information element [4], to
ensure interoperability between data sets captured across
distributed systems. These types are used to model data sets
and their context according to the different roles data sets
can assume as spatial objects. Spatial objects represent
information as a series of parameters and context as
attributes. Such types are central to providing user services
with a common view on the wide range of information and
the associated context that might be available in an ITS
infrastructure. They hide the complexity and diversity of the
independent systems and data sources comprising such
infrastructures and represent the hooks for information
integration through overlapping context such as space and
time.

Developing such types is non trivial for any programming
model for significant systems and is especially complex for
ITS infrastructures due to the scale and multitude of inter-
relationships that exist between sensors, systems, services,
users, and their data sets. Lehman et al. [5] suggest an
exhaustive ontology for defining how context information
can be shared between applications in augmented areas.
However, based on our experience with the transportation
domain, we have found that a relatively small number of
types suffices to decompose a domain model. Using a small
set of (coarse-grain) types rather than attempting to model
the entire world in detail simplifies management and
maintenance in light of continuously evolving
infrastructures. Novel systems or services are expected to be
modeled using combinations of existing types whereas an
exhaustive model might have to be expanded to capture the
specific characteristics of novel systems.

The types for modeling information and context as spatial
objects currently supported by the spatial programming
model are summarized in Fig. 2. They have been designed
as a series of abstract object types and include three main
types for modeling global information, which are real world,
system and data object, as well as types for modeling

context.
Spatial Object

Identification ObjectLocation Object System Object Real World Object Data Object

Actuator Object Sensor Object

Fig. 2. Information and context abstractions.
The three information types model the different roles that

objects can assume within the spatial programming model.
System objects represent general information describing
software components, including systems and services, while
real world objects represent physical entities. For example,
system objects might capture operational status from a car
parking system or from a journey time estimation service
whereas real world objects might model roads and junctions.
Sensor and actuator objects are specializations of real world
objects and are used for modeling explicit infrastructural
entities for example, detector loops and variable message
signs of a car parking system. Data objects model any static
or dynamic information from systems or services and might
be used to model car parking opening times and rates
charged. Based on an audit of deployed (and planned)
transportation systems and services in the Dublin City area
[6], we found that these categories of information types are
sufficient to cover possible data sets. Novel information can
be integrated using spatial objects composing sets of
parameters that model such data sets.

The main context type of the spatial programming model
is the location object. Location objects are based on a
topographical location model that uses geometry to model
the space occupied or covered by an infrastructural element,
a system or a service. The spatial programming model also
supports temporal context. Temporal context is modeled
implicitly, i.e., incorporated in other information types,
rather than explicitly as a specific object. This enables
information objects to include date and time attributes for
representing their temporal context such as creation time and
temporal validity. And finally, identification objects provide
a type for logical identity, for example, to identify the name
of a system or a service.

B. Modelling Space
The spatial programming model supports a topographical

approach to modelling space. The relevant spatial context of
sensors, systems, services and even users is modelled as a
geometric shape. Individual shapes are defined by a
sequence of coordinates based on a chosen, well-known
coordinate system. These shapes explicitly represent spatial
context derived form the real world. They may reflect the
physical appearances of spatial objects modelling occupied
space or may describe areas of interest that specify the
regions covered by services. For example, a city-wide car
parking system might use the spatial model to define the
physical locations occupied by its car parks whereas a road

371

weather service might use the spatial model to outline the
locations occupied by weather stations as well as the areas to
which reports from individual stations apply.

Using a topographical approach to modeling space
enables systems, services, and applications to independently
define and use potentially overlapping spatial context in a
consistent manner. Unlike topological approaches [7], in
which geographical relationships between spatial objects are
described explicitly, topographical models define
relationships between spatial objects implicitly and without
explicit interactions between objects. The relations between
spatial objects (and ultimately systems and users) are
defined by the position of their respective shape within the
common coordinate system. This is particularly significant
where multitudes of independent systems are distributed
over large geographical areas and direct communication
across systems may be limited or expensive. Applications
using the spatial model can exploit these implicit relations to
link diverse information together for a user specific purpose.
They may access spatially related information for example,
by means of exploiting the distance between shapes or by
exploiting containment and intersection relations. This might
for example enable a vehicle-based information system to
retrieve the exact locations of car parking facilities within a
certain distance from its current location.

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1
DataObject

(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

11

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

SensorObject
(from contextabstractions)

SystemObject
(from contextabstractions)

DataObject
(from contextabstractions)

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

1

1

1

1

LocationObject
(from contextabstractions)

IdentificationObject
(from contextabstractions)

RealWorldObject
(from contextabstractions)

1

1

1

1

1

1

1

1

WeatherData

WeatherStation

11

RoadWeatherSystem

1..n

1

1..n

1

Fig. 3. Modeling a road weather system.
The spatial programming model supports the model for

defining geometric shapes defined by the OpenGIS standard
[8]. Spatial objects can be represented by geometry types
ranging from a point, to a line, to a polygon, to combinations
of polygons. Points might be used to define the location of a
specific traffic signal or an individual user. Individual
polygons might represent the spatial context of a car park or
an area of interest whereas a series of (overlapping)
polygons might be used to compose a spatial model of a
transportation network comprising roads, lanes, and
intersections.

As mentioned above, these geometric shapes are specified
using a common coordinate system. The selection of such a

system depends on the domain for which the spatial
programming model is being realized. Coordinates derived
from third party location sensors, such as Global Positioning
System (GPS) receivers, are mapped onto the chosen
reference system if they are based on another system. For
example, GPS coordinates may need be converted into a
regional reference system chosen for a specific space. The
Irish national grid reference system, a system of geographic
grid references commonly used in Ireland, has been chosen
as the coordinate system in our prototype.

C. Modeling Data
The spatial programming model defines a set of types for

modelling the different roles spatial objects (and the context
information they represent) can assume. Systems and
services model their data using these types and a particular
system may use and combine several types to accurately
capture the roles of individual data sets. The example shown
in Fig. 3, illustrates how a road weather system might use a
system object to model general system data and a set of
sensor objects to model individual weather stations. Each
weather station comprises a location and an identification
object and includes a data object that captures the actual
measurements.

Spatial objects must specialize at least one of our types
for modeling information and context. However, depending
on their role, they may derive from several types. Table 1
summarizes how these types can be combined outlining the
semantics for composing information and context into
spatial objects. As outlined in the real world object row,
Table 1 shows that a real world object must comprise a
location and an identification object and that it may include
a set of data objects and a set of other real world objects.
The compulsory containment of a location object is a
reflection of the fact that real world objects are expected to
model the physical space they occupy. In contrast, system
and data objects may or may not comprise a location object
and such a location object is probably modeling the space to
which a system’s or data object’s information applies. Note
that sensor and actuator objects are specializations of real
world objects that share the same composition semantics.

Table 1. The semantics for composing information and context
types.

System
Object

Real
World

(Sensor,
Actuator)

Object

Data
Object

Loc.
Object

Ident.
Object

System Object 0..n 0..n 0..n 0..1 0..1
Real World
(Sensor,
Actuator)
Object

0 0..n 0..n 1 1

Data Object 0 0 0..n 0..1 0..1

D. Using the Spatial Model
Systems use spatial objects to model their contextual

372

information and implement the spatial application
programming interface to provide pervasive access to these
objects. Each system models the subset of the spatial objects
that is relevant to its respective purpose and context-aware
services exploit the spatial application programming
interface to integrate and share information in a common
way regardless of the specifics of the system implementing a
particular part of the spatial model.

As shown below, the operations of the spatial application
programming interface provide a means for services to
manage, locate and access spatial objects. A set of
operations is available for locating spatial objects using
geometric queries or queries based on parameters of objects.
Geometric queries are based on a geometry class that defines
OpenGIS shapes including points and polygons. Parameter-
based queries use the container class outlined below to
describe the parameter and attribute values of spatial objects.
The parameter class includes native data values and may
include the relevant temporal attributes of data objects. This
class can be used in connections with queries but may also
be used to access the typed parameter and attribute values of
spatial objects. The spatial application programming
interface enables services to locate spatial objects using a
variety of queries ranging from selection based on a
parameter value, to selection based on temporal context, to
selection based on spatial context, to combinations of these.
For example, a weather station may be selected using the
value of a measurement, the temporal occurrence of a
measurement or the location of the station. Such queries
may identify zero, one or more objects. For example,
selecting the bus stops of a certain bus route in a particular
area might identify multiple suitable stops. Spatial objects
are uniquely identified within a given system by a type and
identifier pair. These pairs are typically the result of some
selection operation and may be used to either retrieve or
update the parameters of spatial objects. A service might use
bus stop and identifier pairs to retrieve the addresses and
timetables of previously located stops.

Significantly, the spatial programming model enables a
federation of independent systems to model their respective
information and context locally as spatial objects. Each of
these systems implements the spatial application
programming interface to provide access to its respective set
of spatial objects. This enables services to use, share, locate
and correlate these distributed objects using a common set of
context operations irrespective of the complexities of the
systems accommodating the objects and without the need for
an overall close integration of the systems. This mapping of
the spatial model and its programming interface onto
individual systems therefore provides for context-aware
services in large-scale and heterogeneous environments.
interface S_API {
 void insert(String elementType,
 OrderedParameterValues parValues);
 void remove(String elementType, int id);
 int[] select(String elementType, Geometry loc);
 int[] select(String elementType, String parName,

 Parameter parValue);
 int[] select(String elementType, Geometry loc,
 String parName, Parameter parValue);
 int[] select(String elementType);
 ElementTypeAndId[] select(Geometry loc);
 Geometry select(String elementType, int id);
 void update(String elementType, int id,
 String parName[],
 Parameter parValues[]);
 Parameter[] retrieve(String elementType, int id,
 String parName[]);
}

class Parameter{
 Calendar creationDate;
 Calendar modificationDate;
 Long retrievalLatency;
 Long expectedLifetime;
 Double confidenceLevel;
 String parameterValue;

 Integer getIntegerParameterValue();
 Double getDoubleParameterValue();
 String getStringParameterValue();
 Calendar getDateParameterValue();
…
}

IV. TRANSPORTATION USER SERVICES

The spatial application programming interface exposes
the layered data model to transportation user services
enabling them to access the spatial information that is
relevant to them. Fig. 4 illustrates that such user services
capture the content to be made assessable to the user. This
service content may be derived directly from the spatial
programming interface or may be generated by the service.
Directly derived content represents transportation
information provided by either iTransIT systems or legacy
systems. Such content might include prevailing road
congestion levels and public transport information such as
train timetables and bus locations. Content that is generated
by the service represents the actual value added. The stimuli
for generating this additional content are usually derived, via
spatial programming model, from the underlying systems as
well. For example, a traveler information service might use
information on public transportation in combination with
road network information to plan and route user journeys
between points of interest.

Service Content

Interaction Proxy

User
Service

Spatial-API

Common Data Model

Service Provision

Fig. 4. Building user services.
The content of a service can be delivered to users through

a proxy handling interactions and sessions. Remote access to

373

such a service specific interface may be enabled through
widely used communication technologies for example, based
on CORBA, Web Services, or General Packet Radio
Services (GPRS). Naturally, a specific service may support
multiple (diverse) communication technologies for user
interaction enabling users to access, request, and indeed
provide information using a range of means. For example, a
user might request journey information using either a
handheld device with a wireless connection or a messaging
service on a mobile phone.

V. ASSESSMENT

This section evaluates the spatial programming model for
context-aware user services proposed in this paper. The
main objective of the experiments has been to assess the
feasibility of our programming model providing access to
information generated by a variety of heterogeneous systems
in a context-aware manner. The assessed transportation
service scenario demonstrates that our programming model
enables service and eventually user access to context
information derived from a real urban environment through
correlation of overlapping spatial context. This evaluation
therefore demonstrates that using a spatial programming
model enables the delivery of context-aware services and
information to users.

DataObject

CreationDate : Date
LastModificationDate : Date
RetrievalLatency : Long
ExpectedLifetime : Long
ConfidenceLevel : Double

(from contextabstractions)

Route:
Junction id[]

BusTimeTable
Day : String
Time : Double[]

BusStop
Address : String

Bus
Capacity : Integer
Utilisation : String
TimeToNextStop : Double

Route
Name : String
Route : String[]

1..n

1

1..n

1

1
1

1
1

0..n

1

0..n

1

LocationObject

Easting : Double[]
Northing : Double[]
Description : String

(from contextabstractions)

IdentificationObject

Name : String
Description : String
idTag : Integer
id : String

(from contextabstractions)
RealWorldObject

(from contextabstractions)

1

1

1

1

1

1

1

1

Fig. 5. Spatial objects modeling public transport information.
The scenario has been derived from the requirements of a

smart traveler information service enabling travelers to plan
journeys involving multiple forms of transportation
including walking, public transport, cycling, and private
vehicles thereby bridging the coordination gap between
these modes of transportation by suggesting journey routes
according to traveler preference and availability of
transportation means. The scenario has been assessed using
a prototypical implementation of an iTransIT Management
system as a platform for transportation services. This
Management system implements the spatial application
programming interface and uses spatial objects to model
information concerning a range of transportation systems
currently deployed in Dublin City. The system includes data
layers modeling the road network comprising intersections,

roads, lanes, traffic counts, traffic volumes, and congestions
levels as well as the public transport network consisting of
bus routes, stops, lanes, timetables and bus locations. It also
includes data layers modeling parking information and road
weather data. These layers integrate data provided by a
range of real legacy systems including the main traffic
management system, a public transport information service,
a congestion level application, a road weather service and a
car parking information system. Fig. 5 shows a small set of
the spatial objects modeling these layers that have been
implemented as relational tables in a MySQL database with
spatial extension. The information from these spatial objects
has been provided by the traffic management system, the
public transport information service and by a journey time
monitoring system.

A. The Evaluation Scenario
The evaluation scenario includes a tourist using the

context-aware traveller information service to locate public
transport stations within walking distance of her current
location. The tourist has just visited The Book of Kells
museum at Trinity College Dublin and is about to leave
campus through the Nassau Street gate. She remembers that
she used the number 15 bus to travel from her hotel to the
city centre and would therefore like to locate nearby bus
stops of this route.

She uses a handheld device with wireless service access
to enter her query into the traveler information service,
providing bus route number 15 and 5 minutes walking
distance from her current location as parameters. The service
uses coordinates derived from its GPS receiver (converted
into Irish national grid coordinates) and an average
pedestrian pace of 1.36m/s [9] to define the geometric shape
of the search area. The service then uses the spatial
application programming interface as outlined below to
access the relevant context information.
1 int[] busStopId = sapi.select("BusStop",
 searchArea);
 for (int i = 0; i < busStopId.length; i++) {
2 Parameter busStopName=sapi.retrieve("BusStop",
 busStopId[i],"Name");
3 Geometry busStopLocation =
 sapi.select(“BusStop”, busStopId[i]);
4 Parameter linkToRoute =
 sapi.retrieve("BusStop", busStopId[i],
 "route_autoId");
 int routeId = linkToRoute.getIntegerValue();
5 Parameter routeName = sapi.retrieve("Route",
 routeId, "Name");
6 if (routeName.getStringValue().equals(“15-
outbound”)) ||
 (routeName.getStringValue().equals(“15-
inbound”)) {
7 //use results
 }
 }

The service might use a geometric query to locate all
spatial objects representing bus stops in the give search area
(1) and retrieve the parameters and attributes of these
objects that describe the names and locations of specific bus
stops (2, 3). The service then proceeds to identify the spatial
objects that describe the routes associated with these bus

374

stops. These “links” to route objects are modeled as
parameters that can be retrieved from bus stop objects (4).
They are subsequently used to retrieve the names of the bus
stop routes (5) and information related to the previously
indicated bus route (6) can then be used to advise the user
(7). The results of such a scenario for locating bus stops
within walking distance can be found in Table 2. Bus stops
for both city centre-bound and suburb-bound stops have
been retrieved since the user did not specify her preferences.
Naturally, a traveler information service would display this
information as an overlay to a map of Dublin City rather
than in table form. Such an overlay might include the bus
stop names and the headings of buses. This might further
assist the user in locating and eventually walking to a
convenient bus stop.

Table 2. Locating public transport stations within walking
distance.

Bus Stop Name Route Name
Bus Stop Location
(Irish national grid
coordinates)

Kildare Street 15-outbound (316230.8575, 233593.6385)
Dawson Street
Upper 15-inbound (316063.4310, 233792.1260)

Dawson Street
Lower 15-inbound (316036.3947, 233612.0083)

Suffolk Street 15-inbound (315924.9190, 233981.6965)
Nassau Street 15-outbound (316202.2930, 233883.7390)
College Green 15-outbound (316038.3422, 234186.3123)
This scenario demonstrates how a context-aware user

service might use the spatial programming model to locate
real-world entities in a given area of interest and how it
might exploit explicit associations between spatial objects.
Similar queries can be used by a range of related scenarios.
For example, after selecting a bus stop, the user might wish
to see the relevant timetable for the next hour or might wish
to use the address of her hotel to locate a convenient stop
near her destination and to display the route the bus will
take. Other related scenarios might include retrieving the
congestion levels along the route in order to get an
indication of whether the bus is likely to be on time. Such a
scenario might also be of interest to someone traveling by
car to the airport or to work. These related scenarios have
been implemented but due to space limitations are not
describe in further detail.

This assessment is based on scenarios that access
information integrated in the spatial model through a single
spatial application programming interface. However, a
context-aware user service may concurrently use multiple
spatial application programming interfaces to access spatial
objects in a similar way. The overlapping context of such
distributed spatial objects may be used similarly to correlate
objects. For example, the location of a bus stop available
from one spatial application programming interface might be
used to locate nearby train stations through another
interface.

VI. CONCLUSIONS

This paper presented a programming model for building
value-added transportation services that deliver contextual
information derived from independent systems to users. The
spatial programming model uses a small set of predefined
types to model distributed context information as spatial
objects. This provides a common view on such information
and enables services and ultimately users to exploit, act
upon and share information based on overlapping spatial
and temporal aspects. The spatial programming model
supports a topographical location model in which spatial
context derived form the real world is explicitly represented
by shapes that reflect occupied space or describe areas of
interest. This enables systems distributed over large
geographical areas to independently define and use spatial
context in a consistent manner.

The spatial programming model is part of the iTransIT
framework for integrating individual transportation systems
and services that has been motivated by the needs of Dublin
City. The multi-layered distributed iTransIT architecture
supports a distributed data model in which individual
systems maintain one or more layers of the overall data
model.

The evaluation of the spatial programming model has
been based on a prototypical implementation of an iTransIT
management system that uses spatial objects to model real
information relevant to and derived from a range of
transportation systems currently deployed in Dublin City.
The assessed transportation service scenario demonstrated
that our programming model enables service and eventually
user access to context information derived from a real urban
environment through correlation of overlapping spatial
context. This evaluation therefore demonstrated that using a
spatial programming model enables the delivery of context-
aware transportation services and information to users.

A more substantial iTransIT prototype is currently being
realized incorporating a considerable number of diverse
systems and transportation data sets. This prototype will
enable a further evaluation of the spatial programming
model using a wide variety of transportation service
scenarios that is expected to produce significant results.
Furthermore, Dublin City Council is concurrently evaluating
the iTransIT framework based on its application to real
transportation systems planned for Dublin City.

REFERENCES

[1] J. McQueen and B. McQueen, Intelligent Transportation Systems
Architectures. Boston, USA: Artech House Books, 1999.

[2] R. Meier, A. Harrington, and V. Cahill, "A Framework for Integrating
Existing and Novel Intelligent Transportation Systems," in
Proceedings of the 8th International IEEE Conference on Intelligent
Transportation Systems (IEEE ITSC´05). Vienna, Austria: IEEE
Computer Society, 2005, pp. 650-655.

[3] R. A. P. Bossom, "European ITS Framework Architecture -
Communication Architecture, Annex 1: Supporting Information for
Communications Analysis," vol. D3.3: European Communities, 2000.

375

[4] A. Dey and G. Abowd, "Towards a Better Understanding of Context
and Context-Awareness," in Workshop on The What, Who, Where,
When, and How of Context-Awareness, as part of the 2000
Conference on Human Factors in Computing Systems (CHI 2000).
The Hague, The Netherlands, 2000.

[5] O. Lehmann, M. Bauer, C. Becker, and D. Nicklas, "From Home to
World - Supporting Context-aware Applications through World
Models," in Proceedings of Second IEEE International Conference on
Pervasive Computing and Communications (Percom'04). Orlando,
Florida: IEEE Computer Society, 2004, pp. 297-308.

[6] R. Meier, A. Harrington, and V. Cahill, "Audit of ITS Applications
and Services in Dublin City," Trinity College, Dublin, Ireland, Dublin
City Council iTransIT Deliverable, August 2004.

[7] M. Bauer, C. Becker, and K. Rothermel, "Location Models from the
Perspective of Context-Aware Applications and Mobile Ad Hoc
Networks," Personal and Ubiquitous Computing, vol. 6, pp. 322-328,
2002.

[8] Open GIS Consortium Inc, "OpenGIS Simple Features Specification
for SQL, Revision 1.1," OpenGIS Project Document 99-049, 1999.

[9] T. F. Fugger, B. C. Randles, A. C. Stein, W. C. Whiting, and B.
Gallagher, "Analysis of Pedestrian Gait and Perception–Reaction at
Signal-Controlled Crosswalk Intersections," National Research
Council, Washington, D.C, USA, Transportation Research Record
1705 TRB 00-1439, 2000.

376

