
Wireless Communication Using Real-Time Extensions to the Linux
Network Subsystem

Barbara Hughes and Vinny Cahill
Distributed Systems Group,

Department of Computer Science, Trinity College, Dublin, Ireland
{barbara.hughes, vinny.cahill}@cs.tcd.ie

Abstract
 Timely wireless communication is essential to
allow real-time mobile applications, e.g.,
communication between mobile robots and inter-
vehicle communication to be realized.

The current IEEE 802.11 ad hoc protocol is unable
to provide real-time communication guarantees due to
its underlying contention-based MAC layer. Our
current research is addressing the implementation of a
time-bounded MAC protocol as a layer above 802.11.
The implementation of a timely MAC protocol requires
predictable and deterministic behavior at the device
driver level, currently unavailable in the Linux
operating system.

This paper describes real-time extensions to the
Linux operating system to provide real-time
guarantees at the device driver level. To our
knowledge, we are the first to implement a real-time
ORiNOCO driver for real-time Linux. In addition we
provide a low-level evaluation of the timeliness of
packet transmission achievable using IEEE 802.11.

1. Introduction

With increased research in ad hoc networks in
recent years new application domains such as
communication between mobile robots, inter-vehicle
and vehicle-to-roadside communication have evolved.
Timely wireless communication is essential to allow
applications in these domains to be realized.

The IEEE 802.11 wireless standards are dominant
in the wireless local networking community today, and
recent surveys suggest that IEEE 802.11 standards
(particularly g), will dominate the WLAN roadmap for
years to come. [1]. The current IEEE 802.11 wireless
ad hoc protocol adopts a contention-based approach to
medium-access control (MAC). A carrier sense
multiple access and collision avoidance (CSMA/CA)
mechanism and a random back-off scheme are used to

reduce MAC contention and packet collisions.
However, due to the underlying contention-based
MAC layer the possibility of packet collisions is not
eliminated. Thus, IEEE 802.11 is unable to guarantee
timely access to the wireless medium critical for real-
time communication.

Timely communication requires a real-time MAC
layer, such as TBMAC[2]. TBMAC is a medium-
access control protocol based on TDMA for dynamic
but predictable slot allocation. TBMAC provides, with
high probability, time-bounded access to the wireless
medium to mobile hosts in a multi-hop ad hoc network.
Our objective is to support real-time by implementing
TBMAC as a layer above IEEE 802.11.

TBMAC synchronizes access to the wireless
medium, but implementing the TBMAC protocol
requires real-time behavior at the Linux device driver
level. Standard Linux device drivers exhibit
unpredictable and non real-time behavior due to
interrupt handling, task scheduling and memory
management in the Linux operating system. A
prerequisite for a timely wireless MAC protocol is a
timely Linux device driver.

In this paper we describe the implementation and
evaluation of a real-time extension to the standard
Linux ORiNOCO device driver and network
subsystem., to provide real-time guarantees at the
device driver level. To our knowledge, we are the first
to implement a real-time ORiNOCO driver for real-
time Linux and to provide a low-level evaluation of the
timeliness of packet transmission achievable using
IEEE 802.11. Our real-time wireless driver is an
important basis upon which real-world, timely
medium-access control protocols may be implemented
and against which results, previously available in
simulation only, may be evaluated.

The remainder of this paper is structured as
follows: Section 2 describes the motivation, design and
implementation of the real-time extension to the
standard Linux network subsystem and ORiNOCO

drivers. Section 3 presents an evaluation of the real-
time drivers using real-world experiments and section
4 describes our future work, the implementation of the
TBMAC protocol using the real-time drivers available.
Finally, Section 5 concludes this paper.

2. Design and implementation of real-time

ORiNOCO drivers
2.1. Unpredictability of standard Linux drivers

Standard Linux device drivers were designed for a
general purpose operating system where the timeliness
of interrupt servicing, task prioritization and memory
management, essential for real-time applications, are
not provided. To achieve real-time behavior extensions
must be implemented in the standard Linux operating
system.

RTAI provides hard real-time capabilities in a
Linux environment [3]. RTAI falls into the category of
a hybrid operating system (RTOS) where the general-
purpose operating system (e.g. standard Linux kernel
device drivers) has control of most hardware resources
but it is subject to the control of a deterministic hard
real-time operating system (RTAI). The central idea of
RTAI is that a RTOS can run alongside Linux and
provide real-time capabilities, with the assumption that
Linux does not divert critical hardware events or
interrupts from the RTOS (as would occur using
standard Linux device drivers), as it is these events that
will dictate the timeliness of the system. The extent to
which these real-time capabilities are realized and
available depend on both the design of the real-time
application, e.g., incorporating predictability and
timeliness, and the level of integration with RTAI
(RTAI-compliance [3]), e.g., the exclusive invocation
of RTAI system operations and primitives.

Real-time behavior requires real-time design at all
layers of the system architecture. For example, RTAI-
compliant and non-interruptible interrupt service
routines (ISRs) at the device driver level, coupled with
real-time tasks, guaranteed to execute with the highest
task priority, for real-time processing at the application
layer. With these design considerations in mind and
coupled with a brief overview of the operation of the
standard Linux network subsystem, i.e., the
combination of device dependent network drivers and
device independent network kernel modules, it is clear
that real-time behavior is not supported.

Network drivers transmit and receive packets
asynchronously to/from the outside world. A loaded
network driver, i.e., available for invocation, inserts a
struct net_device data structure for each newly
detected device into a global list of known available
devices. The detected network device is initialized,
e.g., pointers to device specific open,

hard_start_xmit etc. functions are populated with
device dependent references, prior to device
registration in the Linux kernel.

Each packet handled by the kernel, throughout the
Linux network subsystem, is contained in a
socket_buffer structure (struct sk_buff), which is
allocated dynamically, using dev_alloc_skb when
required for either packet transfer or reception. For
example, in Figure 1, the resolved device dependent
hard_start_xmit expects a successfully allocated
socket_buffer containing the physical packet as it
should appear on the media, complete with
transmission-level headers.

int (*hard_start_xmit) (struct sk_buff
*skb, struct net_device *dev);

Figure 1: Generic function protoype in the
net_device structure

The successful allocation of a socket_buffer is
critical for all network operations, directly impacting
the predictability of both packet transmission and
reception.

Dynamic allocation, although catering for a change
in memory requirements during execution, introduces
the critical situation where memory requests cannot be
satisfied by the residual memory available, leading to
unpredictable execution. For example, the worst-case
scenario for packet transmission is that the failure to
allocate a socket_buffer leads to a failure of the
complete packet transfer.

General-purpose operating systems adopt a
demand-paging approach to memory management [4].
However, demand paging is non-deterministic, for
example, requiring access to disk, and thus is not
suitable for real-time processing. The development of a
real-time Linux network driver requires real-time
memory management for the allocation of
socket_buffers, and thus a fundamental change to the
standard Linux network subsystem. Furthermore,
investigating the design and implementation of one of
the standard wireless network device drivers, the
ORiNOCO driver, raises some issues about the real-
time capabilities of the Linux network drivers in
general.

To guarantee timely interrupt servicing, interrupts
must be serviced in a real-time context, i.e., interrupts
must be diverted first to RTAI by registering a real-
time handler, to ensure predictable and guaranteed
response times, and forwarded to Linux, i.e., by the
standard Linux interrupt dispatcher, if Linux is also
expecting the interrupt. Thus to achieve predictable
and deterministic interrupt handling in the ORiNOCO
driver all interrupts serviced must be diverted to RTAI
in this manner. Another potential source of

unpredictability throughout the ORiNOCO network
driver is that ISRs, e.g., orinoco_ev_rx(), are
executed with interrupts enabled, with the implication
that a context switch may occur during critical
interrupt servicing, potentially leading to unpredictable
delays for required real-time processing.

Providing real-time capabilities to the standard
Linux network subsystem requires a fundamental
amendment to the core functionality, and behavior, of
the subsystem, i.e., the allocation and management of
the socket_buffer structure. The use of, and
interface with, the socket_buffer structure is
omnipresent throughout the network subsystem. Thus,
amending the socket_buffer structure has
widespread consequences and cannot be treated in
isolation. Furthermore, to guarantee predictability
throughout the network subsystem real-time
considerations must be implemented at both the kernel
network modules and the low-level kernel network
drivers.

The real-time network subsystem must co-exist
with the standard Linux network subsystem, i.e.,
predictability and determinism must be guaranteed to
real-time network drivers without hindering the
operation of the standard Linux network subsystem.

Our real-time network subsystem, RT-WLAN,
utilizes a real-time socket_buffer abstraction,
(RTsocket_buff), with a new memory management
module, (MemoryManager), and real-time
network_device (RTnet_device), to address real-
time design issues design in the standard Linux kernel
network modules. The real-time design issues raised at
the network device driver level are addressed in the
RTorinoco real-time wireless driver.

2.2. Implementation

The RT-WLAN network subsystem is encapsulated
in a number of hierarchical layers implemented as
kernel level modules. The RT-WLAN hierarchy is
illustrated in Figure 2. The interactions between the
real-time modules and amendments made to support a
real-time network subsystem, are described in this
section.

The rtcomm module is at the core of RT-WLAN
and is responsible for providing predictable
socket_buffer allocation and management
(RTSocket_Buff), the initialization and management
of a real-time net_device abstraction
(RTDeviceWrapper) and an encapsulation of real-
time versions of standard Linux network modules, e.g.,
RTNetworkInit, the real-time version of
</drivers/net/net_init.c>.

rtcomm

RT Device

Drivers

net

RTNetworkInit

alloc_net_dev

alloc_etherdev

RTDeviceWrapper

RTreadMessage

RTsendMessage
RTnetif_rx

RTreleas eMessage

RTstartReceive

RTstopReceive
RT socket_buff

RTdev_alloc _skb

RTskb_put
RTkfree_skb

M emoryM anager

init_obj _list

get_object_list

free_obj_list_item

ExecuteRTDriver

initRTskb()

sendMessage / readMessage

Initialise modules -
setup socket buffers
 - free object list for

send/receive

RTorinoco_cs

RTorinoco

RTorinoc o_xmit

RTorinoc o_ev_rx

get/return from the
available skb list

allocate
transmit/receive skb

allocate
transmit/receive skb

set up Ethernet
device

Figure 2: Interaction between modules in RT-
WLAN

The provision of predictable socket_buffer
allocation is achieved using the interaction between the
MemoryManager and RTSocket_Buff modules.
Real-time memory management design must guarantee
that memory is available and maintained in physical
RAM. To achieve this, the MemoryManager
modules creates a static pool of RTsocket_buff
structures1 implemented as a fixed size, doubly linked-
list which is guaranteed to remain in scope until
explicitly removed. A call to RTdev_alloc_skb(),
invokes the utility methods of the MemoryManager
module to perform bounded traversal of the
socket_buffer list, to locate and allocate an
available item. The RTSocket_Buff module
provides the real-time socket_buffer interface to
all other modules in RT-WLAN.

A real-time network device, RTnet_device,
structure encapsulates and extends the standard Linux
net_device structure, with the real-time versions of
the standard net_device services, for example,
device register and unregister, as provided by
the module RTDeviceWrapper. In a supplementary

1 RTSocket_Buff is the real-time module and
RTsocket_buff the real_time version of sk_buff.

role, RTDeviceWrapper provides an interface to send
and read wireless packets from the real-time device
driver, RTorinoco, illustrated in Figure 3.

int RTsendMessage(char *buffer, int
size);
RTsocket_buff* RTreadMessage(void);

Figure 3: Real-time packet send/read function prototypes

As previously mentioned, the socket_buffer
structure, or in this case, the real-time equivalent
RTsocket_buff, is the unit of packet exchange for all
transfers to/from a network device. Thus, prior to any
interaction with the RTOrinoco driver, the generic
data packet, identified in Figure 3 by buffer, must be
transformed to a RTsocket_buff structure.

Real-time packet transfer using RTsendMessage
encapsulates the allocation and population of a
RTsocket_buff structure, using the
RTSocket_Buff module interface, and initiates the
packet transfer to the wireless card, in this case the
invocation of the RTorinoco_xmit function, the
header of which is shown in Figure 4.

RTorinoco_xmit(struct RTsocket_buff * skb
, struct RTnet_device * rtndev).

Figure 4: Real-time version of orinoco_xmit()

RTorinoco_xmit, is the real-time wireless interface
for packet transfer and expects (and invokes) real-time
network subsystem and RTAI primitives only.

In the standard Linux ORiNOCO driver, packet
transfer from the wireless card is initiated upon
reception of an orinoco_ev_rx interrupt notifying
packet availability at the wireless interface. The packet
payload is extracted and placed in a
socket_buffer which is subsequently added to a
queue of pending packets scheduled for future
notification to higher layers, using the netif_rx
interface of net_device. Real-time packet reception
must not only remove the non-deterministic
socket_buffer allocation, but must also eradicate
the unpredictability of the pending packet notification,
for an undetermined time in the future.

Substituting the dependency on standard
socket_buffers with the real-time equivalent
RTsocket_buff removes one source of
unpredictability. Implementing a real-time version of
netif_rx would eradicate the other. The
RTDeviceWrapper module provides an interface to
RTnetif_rx, the real-time netif_rx. Using this
interface, a real-time memory pool, representing the
pending packets, is maintained and immediate

notification of packet availability is made to the higher
layers.

The rtcomm module not only encapsulates the core
functionality of the standard Linux network subsystem,
but also provides an abstraction of the real-time
semantics to layers above, i.e., application layer, and
below, i.e., the network device driver. The lowest layer
in the RT-WLAN subsystem is the real-time network
device driver, encompassing the RTorinoco_cs,
RTorinoco and RThermes modules.

An initial requirement for the real-time network
drivers was to remove all dependencies on the standard
network subsystem, i.e., by substitution with the real-
time equivalent from rtcomm. In addition, specific
amendments were necessary to the low-level semantics
of both RTorinoco_cs and RTorinioco to achieve
real-time behavior.

Timely interrupt servicing is a critical concern in a
real-time network device driver. RTAI provides the
required real-time guarantees by diverting the interrupt
handling to RTAI and then Linux, or more precisely in
this case, to PCMCIA. To achieve interrupt diversion
as described, RTAI requires the specification and
implementation of a real-time interrupt handler for the
specific IRQ, which was implemented in this case in
RTorinoco_cs. Once this interrupt handler is
registered, as illustrated in Figure 5, any interrupts for
which this interrupt handler is registered will be
available to RTAI prior to PCMCIA.

retval=rt_request_global_irq(ndev->irq,
orinoco_irq_handler) ;

Figure 5: Example of RTAI interrupt handler
specification

Additional modifications were made to the
RTorinoco module. For example, to guarantee ISRs
execute in a real-time context, i.e., with interrupt
disabled, and to provide RTAI-compliance throughout
the module, i.e., RTAI versions of the standard Linux
synchronization and coordination primitives used only.
The latter modification was implemented throughout
the real-time network drivers.

Situated directly above rtcomm, is the net layer,
acting as the mediator between the application layer
and the rtcomm module. The net layer, or more
explicitly the RTCommWrapper module, provides a
simple abstraction of the packet send and read interface
of rtcomm to the application layer. The creation,
manipulation and destruction of thread-safe real-time
tasks are the critical real-time issues at the application
layer. The behavior, e.g., periodicity, and operation of
the real-time tasks are dependent on the requirements
of the application. An example of packet transmission
using the RT-WLAN network system is illustrated in

Figure 6, and described as follows. A real-time task,
executing with the highest priority, invokes the
sendMessage interface of the RTCommWrapper at the
net layer, with a generic data buffer representing the
packet payload. sendMessage in turn invokes
RTSendMessage, of rtcomm, where the generic
packet payload is inserted into a real-time
socket_buffer. This socket_buffer is passed to
RTorinoco_xmit, invoked from within
RTSendMessage, for the low-level packet transmission
by RTorinoco. The socket_buffer, with transmission-
level headers added, is queued in the network device
queue for transfer to the wireless card, where using
IEEE 802.11 contention for the wireless medium, prior
to packet transfer is started.

rtcomm

net
RT task

RTCommWrapper

sendMessage

readMessage

RTDeviceWrapper

RTSendMessage/RTReadMessage

RTnetif_rx

RTsocket_buff

RTNetworkInit
RTEthernet

Memo ryManager

RTorinoco

RTorinoc o_xmit/RTorinoco_ev_rx

RTorinoc o_ev_alloc

RTorinoco_ev_tx

sendMessage

readMessage

Figure 6: Packet transfer using RT-WLAN

The standard Linux network susbsystem, by design
(e.g., dynamic memory allocation) and implementation
(e.g., non real-time interrupt servicing), does not
provide predictable and deterministic behavior. To
introduce real-time behavior requires amendments
throughout the network subsystem, which lead to our
real-time network subsystem, RT-WLAN.

With the implementation of the RT-WLAN
subsystem, we have the ability, for the first time, to
provide real-time behavior in the wireless 802.11
network driver. In the next section we evaluate the
predictability of the real-time drivers using real-world
experiments.

3. Evaluation
3.1. Experimental setup
3.1.1. Experimental environment.
Our evaluation is based on experiments performed
using two Lucent ORiNOCO 11Mbit/s Gold cards
executing the real-time RTorinoco network drivers and
interfacing with RT-WLAN kernel modules. The RT-

WLAN network subsystem was run on two Pentium III
notebooks with 1 Gigahertz, 512K L2 cache, 256MB
RAM with PCMCIA wireless cards. Each notebook
ran an identical version of the Red Hat Linux 7.3
operating system with the kernel 2.4.20 patch and the
RTAI release version 3.0 applied.

We chose three different physical environments for
our experiments to ascertain the influence that the
environment, and particularly wireless interference and
contention, exhibits on the results achieved. The
environments selected were as follows:

 Outdoor, open space
We selected a large open space area2, free
from physical obstacles, such as buildings and
trees, and with a low probability of wireless
interference.

 Indoor, home environment
Our first indoor environment exemplifies a
typical home environment, which may exhibit
some wireless interference due to the
existence of other wireless devices, e.g.,
wireless phones, typically found in the home.

 Indoor, office environment
Our second indoor environment was chosen to
exhibit a high probability of wireless
contention. The location chosen was a
computer science laboratory within range of
other wireless networks and devices.

3.1.2.Metrics for 802.11 packet transmission
Throughout our experiments, all wireless packets

are broadcast and all timing considerations are over
one hop only. Using IEEE 802.11b, an ACK is not
expected for broadcast transmissions and thus is not
included in our benchmark calculations for packet
transmission in the following section. Furthermore, our
ORiNOCO cards, have RTS/CTS switched off,
fragmentation disabled, maximum retry attempts
limited to 4 and transmit broadcasts at an implicit
maximum bit rate of 2Mb/s. The packet size for all
experiments is 74 octets, with a fixed number of
packets (1000) transmitted at a user-defined rate. The
percentage of packets dropped is also analyzed, and
discussed separately. Each experiment commences
with one wireless host, the originator, transmitting a
packet. The other wireless host receives, processes and
replies with an amended packet. The experiment
completes when the originator has processed the
returned packet.

There were two main objectives of our real-world
experiments. The first was to provide low-level timing
analysis for all stages of packet transmission using
Lucent ORiNOCO Gold cards, to the best of our

2 Located at North Bull Island, Co. Dublin, Ireland.

knowledge, previously unavailable. Our second
objective was to evaluate the predictability available in
the real-time network device driver, the calculation of
which is described in the next section.

3.1.3 Critical phases of packet transmission- latency
The critical stages for timing analysis in wireless
packet transmission are illustrated in Figure 7. In RT-
WLAN, packet transmission is initiated with the
invocation of sendMessage, symbolized by Tstart. The
packet is transferred to the RTorinoco device driver
queue, implemented in software, with Tqueued denoting
when the packet has been queued. The interval
between Tqueued and Tstart is the software latency
incurred to transfer a packet to the device driver queue.
Using RT-WLAN we expect a predictable software
latency, regardless of the external physical
environment or rate of packet transmission.

Tstart Tqueued Tev_alloc Tev_tx

Non -interruptible context NIC buffer clearing time

Ttrans_total

Packet has left

card

Figure 7: Timed actions in the packet transmission
process

Following the transfer of the packet to the device

driver queue, the latency incurred is either by
firmware, i.e., the transfer of the packet to the physical
wireless card, or, the 802.11b PHY communication
latency, i.e., packet transfer using contention-based
MAC. Both the firmware and communication latency
are not within software control. The successful
completion of each stage is notified via interrupts,
which, using RT-WLAN, we service using the real-
time interrupt handler, and record the time at which the
interrupts occur. Transfer to the wireless card is
denoted by Tev_alloc and from the wireless card over the
air, by Tev_tx..

Throughout our experiments, our objective is to
achieve a predictable software latency and to provide
timing analysis of the firmware and communication
latency of 802.11b, the granularity of which has not
previously been available.

Due to the dominance of the IEEE 802.11 PHY
communication latency in the latency for packet
transmission, it is necessary to calculate lower time-
bounds for the size of packets and equipment,
regardless of the environment, used in our experiments.

As discussed in [5], the PLCP preamble used in the
IEEE 802.11b PHY is 144 bits and the PLCP header is
48 bits, both of which are transmitted at 1Mbps. Thus
the PLCP overhead is 192 µs. The time for a data
frame with l octet payload to be transmitted over IEEE
802.11b PHY at rate r (Mbps) is

Tdata(l,r) = tPLCPOverhead + ((l + 28) . 8)/ r
= 192 + (((l + 28) . 8)/ r (µs) (1)

The time for data frame transmission in our
experiments is 488 µs. In IEEE 802.11b, a random
back-off interval is introduced to reduce the probability
of collisions. In our experiments, and using the
equations from [5], minimum packet transmission
delay in a contention-free environment, with a first
back-off interval of 0, is 538µs The maximum random
back-off interval, on the first transmission attempt, is
620µs. Thus, a successful first transmission attempt,
i.e., with no collisions, may occur anywhere up to the
upper bound of 1158µs, for our experiments. We use
these theoretical time bounds to compare with our
actual results.

3.2. Analysis of timed packet transmission

We start our evaluation by presenting some
benchmark results, obtained in a low-contention,
open-space environment with a packet transmission
rate of 20ms. This periodic transmission rate is
significantly greater than the expected round trip time
(RTT), for the packet, i.e., the time for a transmitted
packet to reach a receiver and a reply to reach the
packet originator. Thus, this experiment exhibits a low
probability of contention both in the environment and
in the rate of packet transmission.

The average software latency achieved in this
environment is illustrated in Figure 8. The average
software latency, i.e., Tqueued, is 384 µs, with less than
0.4% of the packets transmitted in the sample space
deviating from this average by more than 30µs. Thus,
we consider 384µs, as the average software latency
achievable using RT-WLAN. If the software latency is
predictable, we expect our other experiments to
exhibit approximately the same software latency,
regardless of the contention in the physical
environment or the rate of packet transmission.

Latency to Queue (500) (s20ms) BI

330000

340000

350000

360000

370000

380000

390000

400000

410000

420000

430000

440000

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Packets sent

T
(n

s
)

Series1

Figure 8: Benchmark software latency in RT-WLAN

The next stage of packet transmission is packet
transfer to the physical wireless card and the latency
incurred is attributed to the firmware. In this
experiment the average firmware latency (i.e., the
duration between the Talloc interrupt and the time the
packet was queued on the network device, or Talloc -
Tqueued, is 120µs. and less than 0.2% deviate from the
average by +50µs. The results of this experiment are
illustrated in Figure 9.

ev_alloc notification (500) (s20ms) BI

0

50000

100000

150000

200000

250000

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Packets sent

T
(n

s
)

Series1

Figure 9: Firmware latency using RT-WLAN

Up to this stage, all packet transmission latencies
have been incurred due to internal processing, to queue
and then to transfer the packet to the wireless card. The
next stage, packet transmission using IEEE 802.11b
PHY, is the first point at which external factors
influence the communication latency achievable, and is
directly related to the utilisation of the wireless
medium within the transmission range. A graph of the
communication latency is illustrated in Figure 10.

Latency for ev_tx notification (500) (s20ms) BI

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243 254 265 276 287 298 309 320 331 342 353 364 375 386 397 408 419 430 441 452 463 474 485 496

Packets sent

T
(n

s
)

Series1

Figure 10: Communication latency for IEEE 802.11b

The average communication latency, i.e., the time
for a packet queued in the wireless card to be
successfully transmitted, is 604µs. As discussed
previously, the time-bounds for successful packet
transfer in our experiments range from 538µs to
1158µs. Using these values, it is assumed that those
packets experiencing a communication latency greater
than the upper bound were delayed, for example, due
to contention for the wireless medium in the
transmission range. In this experiment, 0.2% (i.e., 1
packet) experienced a delay greater than 1158µs,
confirming the close to contention free status of our
open space environment. In addition, 100% of the
packets were transmitted successfully, and the average
round trip time was measured as 2493µs.

The total send latency, Ttrans_total, encapsulates the
processing latency (software and firmware) and the
communication latency (of IEEE 802.11 PHY).
Ttrans_total terminates when RTorinoco_ev_tx interrupt
is received to notify that the packet has successfully
left the wireless card. In this experiment, the average
Ttrans_total is 1108µs, with less than 0.8% of successfully
transmitted packets deviating from this average by
more than 300µs. It is interesting to note that the
average achieved for total send latency, is still less
than the upper bound for first attempt packet
transmission communication latency, using IEEE
802.11b in a contention free environment. From these
results it is clear that the random back-off interval is
the dominant factor. It is observed that an “unlucky”
choice of back-off interval (i.e., close to aCWmax[5],),
will significantly increase the latency for packet
transmission, possibly unnecessarily if contention is
low. Given these results, an observation may be made
that the dynamic adaptation of the bounds of the back-
off interval to reflect the environment, e.g., gradually
increasing the back-off interval if collisions are
frequently occurring, would be beneficial for reducing
communication latency in general. However, this

proposal would still not provide the predictability
required for real-time communication.

To analyse the predictability achieved using RT-
WLAN, and to further investigate the influence of the
environment on firmware and communication latency,
we performed our packet transmission experiment in
each of our selected environments, at increasing rates
of transmission, i.e., attempting to increase the
probability of packet collisions. The results of these
experiments are summarised in Table 1, for
transmission rates of 5ms and 3ms. An interesting
observation to be made from these results is that the
worst-case software latency has remained within 6µs of
the benchmark time-bound. Thus, predictable software
latency is achievable regardless of the degree of
contention in the physical environment.

Table 1: Average results for timed packet transmission at
5ms and 3ms

Latency to
measure

Average
5ms (BI)

Average
5ms (H)

Average
5ms (W)

Tqueued 387µs 387µs 388µs
Talloc 122µs 121µs 121µs
Tev_tx 647µs 644 µs 665µs
Ttrans_total 1157µs 1151µs 1174µs
TRTT 2595µs 2594µs 2612µs
Latency to
measure

Average
3ms (BI)

Average
3ms (H)

Average
3ms (W)

Tqueued 389µs 390µs 388µs
Talloc 124µs 122µs 128µs
Tev_tx 635µs 635 µs 654µs
Ttrans_total 1149µs 1148µs 1170µs
TRTT 2587µs 2600µs 2634µs

The result for communication latency, i.e., the Tev_tx
value, is also of interest. It is not surprising that the
communication latency in our indoor, office
environment with a transmission rate of 3ms, exhibits
the greatest deviation from the average in the
benchmark case, by approximately 55µs. What is not
clear from the average result alone is that 2.5% of
packet transmissions experienced a communication
latency greater than 1158µs, exhibiting that wireless
interference is evident in this environment. The worst-
case communication latency in this indoor experiment
was a substantial 2185µs, a value that includes multiple
back-off and retransmission attempts to avoid
contention for the wireless medium.

Wireless interference in the physical environment
is one probable source of contention another is the high
probability of forced contention and collision between
the transmission of packetN and the reply of packetN-1,
or indeed any previous packet, at this high rate, i.e.,
3ms, of packet transmission. Using the benchmark

results obtained and referring to the calculation of the
upper bound on successful first attempt packet
transmission of 1158µs, it is clear that forced
contention is occurring.

The average accumulated benchmark software and
firmware latency, per transmission, is 504µs, i.e., (384
+ 120)µs. Thus, the maximum successful first attempt
total packet transfer latency, i.e., Ttrans_total, could reach
1662µs, i.e., 1158µs + 504µs, for each transmitting
wireless host. Thus, given the original send invocation
was started at 0µs, the upper bound on the return
packet reaching the originator, with successful first
attempt transmission by both wireless hosts, is after
3324µs has elapsed, i.e., after the start of the next
packet transfer at the originator, at 3000µs. In this case,
packet transmission and reply have overlapped in time.
Thus, if there is any wireless interference in the
physical environment, evidence in our indoor office
environment, causing additional back-off and
retransmission attempts, the probability of original and
reply packets being delayed and consequently
overlapping in time and contending for the wireless
medium, is even greater.

We target this behaviour explicitly in our next set
of experiments. We increased the transmission rate
even further, i.e., to 1.5ms, to observe the impact on
wireless medium contention. The results achieved at
1.5ms transmission rate are illustrated in Table 2.

 Table 2: Average results for timed packet transmissions
at 1.5ms

Latency to
measure

Average
1.5ms (BI)

Average
1.5ms (H)

Average
1.5ms (W)

Tqueued 388µs 388µs 388µs
Tev_tx 900µs 897 µs 940µs
Ttrans_total 1148µs 1144µs 1183µs
TRTT 3096µs 3107µs 3132µs
% dropped 82 82 83

Again, an initial observation is the predictability of
the results for the software latency, i.e., within 4µs of
the benchmark results, highlighting that increased
transmission rates do not influence the real-time
behaviour of the software latency.

The most obvious influence of the change of
transmission rate is, unsurprisingly, on the
communication latency Tev_tx, which has increased by
approximately 300µs on average, with a worst-case
increase of 340µs, again as exhibited in the indoor,
office environment. The results for Ttrans_total, are also
significant, with an average in the three environments
of 1157µs. Given the periodic transmission rate of
1500µs in these experiments, it is obvious that packet
transmission and reply are highly likely to overlap in
time, increasing the contention for the wireless

medium, potentially for every reply packet, leading to
random back-off, transmission retry attempts and
finally dropped packets. As illustrated in Table 2, the
forced contention in this experiment has lead to a
startling rate of packets dropped, with 82% of packets
dropped even in the open space experiments. Given the
rate of dropped packets deviates by only 1%,
throughout the different physical environments, it is
clear that the forced contention for the wireless
medium introduced at this rate of transmission, is the
primary cause rather than external environmental
influence.

In the 3ms experiments, although wireless
contention lead to increased communication latency,
no packets were dropped, with 100% successful packet
transmissions achieved. Thus, between a 3ms and
1.5ms transmission rate, the time-bounds of the
wireless device, i.e., the firmware latency, and the
semantics of contention-based IEEE 802.11 medium-
access, e.g., the random back-off intervals, play an
increasingly critical role on the predictability of packet
transmission, with the result that any contention for the
wireless medium, (regardless of the physical
environment) may contribute to packet loss.

The objective of our final set of experiments was to
analyze the impact of an additional participating
wireless host, with identical software and hardware, in
the shared transmission range. As per the previous
experiments, one wireless host was designated as the
packet transmission originator, with the other two
receiving, processing and replying with an amended
packet. The experiments complete when the originator
has processed the returned packet. An experimental run
encompasses 100 packet transmissions from the
originator.

The results obtained, for each receiving wireless
host, are illustrated in Table 3, and relate to a 20ms
transmission rate in our indoor, home environment.

Table 3: Average results for multi-node packet
transmission at 20ms

Latency to
measure

Average
HostA

Average
HostB

Tqueued 393µs 397µs
Tev_tx 573µs 579µs
Ttrans_total 1198µs 1211µs
TRTT 2825µs 2797µs
% dropped 4 76

Analyzing these results the predictability and

scalability of the software latency is again evident. The
most significant result is the high percentage of
dropped packets, particularly in relation to HostB. Our

future work will investigate further this bias towards
one specific host, whereas our current analysis
discusses the general cause for high packet loss in this
experiment.

Our multi-node experiments were executed at a
20ms packet transmission rate, which as identified
previously, is significantly greater than the expected
worst-case round trip communication time. At a 20ms
transmission rate we do not expect forced contention
between packet transmission and reply, as described in
our 1.5ms experiments.

The source of packet loss in this experiment is
directly related to the inclusion of an additional
participating wireless host in the transmission range. A
typical scenario is as follows: the originator transmits a
packet every 20ms. Both receiving wireless hosts
receive, process and attempt to reply, with a high
probability of directly contending for the wireless
medium. Following the maximum number of retry
attempts has been reached, the packet is dropped. Thus,
in this experiment packet loss is due solely to the
contention-based medium-access wireless ad hoc
protocol of IEEE 802.11.

Observing the results achieved, the addition of one
wireless host has caused non-deterministic packet
transfer and significant packet loss, highlighting the
scalability issues prevalent with any contention-based
MAC protocol. From these results alone it is clear that
the contention-based IEEE 802.11 MAC protocol is
not suitable for predictable, and therefore real-time,
communication in wireless ad hoc networks, even of
limited density.

The objectives of our experiments were to evaluate
the predictability of the RT-WLAN network subsystem
and provide low-level timing analysis of each of the
stages of packet transmission. From the granularity of
the timing analysis, it is clear that predictable software
latency, regardless of the physical environment and
packet transmission rate, has been achieved. What has
also become evident is the extent to which the physical
environment, the utilization of the wireless medium
and the network density, influences the communication
latency, directly related to the contention-based IEEE
802.11 MAC protocol.

Removing unpredictable wireless contention from
packet transmission, i.e., a real-time medium-access
protocol, would provide the predictability required for
real-time wireless communication. We discuss our
current and future work on the implementation of a
real-time MAC protocol in the next section.

4. Future work
Predictable medium-access implies contention for

the medium is removed. Our medium access control
protocol, TBMAC [16], provides, with high
probability, time bounded access to the wireless
medium to mobile hosts in a multi-hop ad hoc network.
Our current and future work is to implement TBMAC
as a layer above IEEE 802.11 using our real-time
network subsystem, to provide time-bounded wireless
communication.

The TBMAC protocol is based on time division
multiple access with dynamic but predictable slot
allocation. To reduce the probability of contention
between mobile hosts, the geographical area occupied
by the mobile hosts is statically divided into a number
of cells in a similar approach to [6]. Each cell is
allocated a particular radio channel to use. Each mobile
host is required to know its location (using GPS) and
from this which cell it is in and what radio channel to
use to communicate with other mobile hosts in the cell.

Similar to the IEEE 802.11 standard, the TBMAC
protocol divides access to the wireless medium within a
cell into two distinct time periods:
• Contention Free Period (CFP)
• Contention Period (CP)
Both the CFP and the CP are divided into a set of slots.
A CFP followed by a CP constitute a round of the
TBMAC protocol. Dividing access to the medium into
these two well-known time periods requires the clocks
of all the mobile hosts in the network to be
synchronized (e.g., each host using a GPS receiver
[7]).The critical point for real-time communication is
that once a mobile host has been allocated a CFP slot, it
has predictable access to the wireless medium until it
leaves the cell or fails. Mobile hosts that do not have
CFP slots allocated to them contend (similarly to IEEE
802.11) with each other to request CFP slots to be
allocated to them in the CP.

Further discussion of the operational modes of
TBMAC, i.e., the impact of empty or non-empty cells,
and the derivation of the time-bound and associated
probability of slot allocation are beyond the scope of
this paper, but are available in [8].

The TBMAC protocol has been implemented by
extensive simulation using ns2[9]. However, a real-
world implementation has never been possible, given
the reliance on the unpredictable standard Linux
network subsystem. A first step towards a real-world
implementation of TBMAC is a predictable real-time
network subsystem, which we now have available
using RT-WLAN. The next step is to provide real-time
wireless medium-access by implementing a real-world
version of the TBMAC protocol, using RT-WLAN, as
a layer about IEEE 802.11

5. Conclusion
Real-time wireless communication requires

predictable and guaranteed latency at all phases of
wireless packet transmission. In this paper we
discussed our design, implementation and evaluation of
RT-WLAN, our real-time Linux network subsystem.
Furthermore, using RT-WLAN we presented timed
packet transmission, the granularity of which has not
been previously available. Future work includes
implementing a real-time MAC layer above IEEE
802.11, to provide predictable access to the wireless
medium, essential for real-time communication.

Acknowledgements. The work described in this
paper was partly supported by the FET programme of
the Commission of the European Union under research
contract IST-2000-26031 (CORTEX).

References

[1] J. Yee, ""The 802.11g reality drives 802.11a's future

dominance"," Portable Design, 2004.
[2] R. Cunningham and V. Cahill, ""Time bounded Medium

Access Control for Ad Hoc Networks"," presented at Principles
of Mobile Computing (POMC'2002), Toulouse, France,
October 30-31, 2002.

[3] P. Mantegazza, E. Bianchi, M. Angelo, D. Beal, and K.
Yaghmour, ""DIAPM RTAI Programming Guide 1.0","
September, 2000.

[4] A. Rubini and J. Corbet, "Linux Device Drivers", 2nd ed:
O'Reilly & Associates, June, 2001.

[5] A. Jain, D. Qiao, and K. G. Shin, ""RT-WLAN: A Soft Real-
Time Extension to the ORINOCO Linux Device Driver","
presented at 14th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC2003),
Beijing, China, September 7-10, 2003.

[6] A. Konstantinos, ""Space-Time Division Multiple Access
(STDMA) and Coordinated Power-Aware MACA for Mobile
Ad Hoc Networks"," presented at IEEE Symposium on Ad Hoc
Wireless Networks (SWAN01), San Antonio, Texas., 2001.

[7] P. Verissimo, L. Rodrigues, and A. Casimiro, ""Cesiumspray :
a precise and accurate global time service for large-scale
systems"," Journal of Real-Time Systems, vol. 12, pp. 243-294,
May, 1997.

[8] R. Cunningham, ""Time Bounded Medium Access Control for
Ad-Hoc Networks"," PhD. Thesis, University of Dublin, Trinity
College., October, 2003.

[9] K. Fall and K. Varadhan, "The ns manual": The VINT Project,
UCB, LBL,USC/ISI and Xerox PARC,
http://www.isi.edu/nsnam/ns/doc, April, 2002.

