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Abstract-Programming Wireless Sensor Network
(WSN) applications is known to be a difficult task.
Part of the problem is that the resource limitations of
typical WSN nodes force programmers to use relatively
low-level techniques to deal with the logical concurrency
and asynchronous event handling inherent in these
applications. In addition, existing general-purpose, node-
level programming tools only support the networked
nature of WSN applications in a limited way and result
in application code that is hardly portable across different
software platforms. All of this makes programming a
single device a tedious and error-prone task.

To address these issues we propose a high-level pro-
gramming model that allows programmers to express
applications as hierarchical state machines and to handle
events and application concurrency in a way similar to
imperative synchronous languages. Our program execution
model is based on static scheduling what allows for
standalone application analysis and testing. For deploy-
ment, the resulting programs are translated into efficient
sequential C code. A prototype compiler for TinyOS has
been implemented and its evaluation in described in this
paper.

I. INTRODUCTION

Finding a suitable set of programming abstractions
that address the specific nature of WSN applications is
currently an active research topic. Many approaches have
been proposed in the literature and they can be roughly
grouped in to two categories: macroprogramming, where
the operation of the whole network is defined as a single
program, see for example [1], [2], and node-centric
programming, a more traditional approach where the
focus is on the behaviour of a single sensor node. Our
programming model falls into the second category.
The severely constrained resources of a typical WSN

node prohibit the use of traditional, high-level pro-
gramming models, and features like automatic garbage
collection or full-featured object orientation are out of

reach of WSN application programmers. On the other
hand, WSN applications, due to their concurrent nature,
where hardware events may arise asynchronously in an
unspecified order require more suitable programming
tools than classical programming languages such as
C/C++ or Java.

Currently the most popular WSN software develop-
ment platform is TinyOS, an event-driven, lightweight
sensor-node operating system written in the nesC [3] pro-
gramming language. TinyOS applications are partitioned
into modules which are wired together using bidirec-
tional interfaces and communication between the mod-
ules is asynchronous, which means that time-consuming
interface method calls are split (so called, split-phase
execution) into an invocation part, a command call, and
an acknowledgement part, an event notification. Building
programs from chains of calls and callbacks, which is the
essence of any event-driven programming framework,
can be a very difficult and error-prone exercise for non-
trivial programming tasks as discussed in [4].

Other node-centric programming frameworks that
avoid the event-driven programming model focus on
different aspects of WSN application development.
They include resource-optimised operating systems that
offer traditional multi-threaded programming environ-
ments with blocking system calls for hardware access
(e.g., [5]), virtual machines [6] for easier node repro-
gramming that provide a low-level intermediate language
which hides the split-phase execution model, or a higher-
level approach [4] where applications are composed of
hierarchical state machines and split-phase execution is
avoided by defining application states and input/output
actions.
The contribution of this paper is thus threefold. Firstly,

we propose a high-level programming model that struc-
tures event handling through the use of a fine-grained
concurrency operator in a similar way to imperative
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synchronous languages [7]. In this model split-phase
execution is avoided and programs are hierarchically
composed of states that are treated as computational
routines rather than sets of program variable values.
Secondly, we give a precise program execution model
that defines the semantics of the programming model
and, as opposed to the rigorous semantics of synchronous
languages, allows program execution on highly resource-
constrained computing platforms. Thirdly, we show how
such a programming model can be layered on top of
a wide range of event-driven middleware and operating
systems.
The paper is organised as follows: we start by describ-

ing the program execution model in Section II while
the application programming model is introduced in
Section III. In Section IV we show how the programming
model can be integrated with existing event-driven sys-
tems and in Section V we present a prototype compiler
implementation for our model designed for the TinyOS
platform. We investigate the applicability of our model
by analysing properties of the code generated by the
compiler in Section VI. We conclude the paper with
Discussion, Related Work and Summary sections.

II. PROGRAM EXECUTION MODEL

A. Concurrency
The essential characteristic of our execution model

is suppression of the split-phase program execution
scheme. This means that all time-consuming hardware
or operating system (OS) calls, which from now on will
be referred to as event calls, are blocking. Since being
blocked while awaiting for an event call to complete
would render an application non-responsive for arbitrar-
ily long periods of time, some form of parallelism and
resumption from such situations needs to be provided.
For that purpose, inspired by imperative synchronous
languages such as [7], we use the concurrency operator
[... 11 ...] which we allow to be freely nested and mixed
with other constructs of the programming model in order
to syntactically structure event handling code. The gen-
eral intuition behind its operation is simple: a statement

[AI B] is interpreted as A and B executing in parallel
and we refer to both statements A and B as threads
of this operator. Parallel operators can have an arbitrary
number of threads.

To allow for parallel execution of program fragments
while keeping in mind the highly-constrained resources
of WSN nodes we use static program scheduling. This
means, in particular, that the execution order of all
concurrently running parts of the program is determined

at compilation time. Hence programs can be regarded as
deterministic given that the order in which event calls
are completed is set. We divide, therefore, all statements
of the model with regards to their behaviour during
concurrent execution into two categories: atomic and
non-atomic.

Non-atomic statements include all event call state-
ments plus a special statement yield. Upon execution,
they act as points of thread interleaving (as in cooperative
multithreading models) and we assume that event calls
can take an unbounded amount of time to complete
whereas the yield statement, generally speaking, com-
pletes shortly after it is executed. We can decompose,
therefore, the execution of non-atomic statements into
two independent operations: the invocation and the com-
pletion, and say that thread interleaving always takes
place after such statement has been invoked and before
it has completed. Intuitively, non-atomic statements are
introduced to model split-phase execution since at the OS
level event calls are often composed of two activities, i.e.,
call invocation and OS notification (a callback). In the
case of the special-purpose yield statement no action is
taken during its invocation and completion.

Atomic statements, on the other hand, include all other
statements of the model. They are executed sequentially
and without interruption until a non-atomic statement is
encountered which, in turn, is invoked and the control
is passed to another thread or to the OS. When the
non-atomic statement completes the thread is resumed
and continues execution. In order to define the complete
program scheduling scheme we need to specify how
parallel operators are executed. We say that:

1) The parallel operator executes all its threads in a
round-robin manner according to the order of their
declaration in the program.

2) The execution of threads proceeds in steps: atomic
statements are executed until a non-atomic one is
encountered. This statement is then invoked, the
thread is suspended and control is passed to the
next thread of the operator (if there is any).

3) A thread resumes execution when it receives con-
trol and its previous non-atomic statement has
completed.

4) The parallel operator terminates when all its
threads terminate or when it is interrupted.

This procedure is applied recursively when parallel oper-
ators are nested. To make it clearer we use the following
example where statements Ai are atomic and E =

{Ei, E,}, F = {Fi, F,} are two event calls with their
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invocation and completion components respectively:

AO; [Al; B; A2 A3; [A4 A5; F; A6] A7]

The execution order of the program is the following:

A0, A1, Ej, A3, A4, A5, Fj, Ec, A2, Fc, A6, A7.

Atomic statements will be executed until a non-atomic
one is encountered. This means, in particular, that any
infinite loop consisting only of atomic statements will
not be suspended preventing other threads from further
execution. The yield statement has been included in the
model to provide a way of handling such situations.
This statement is used simply to allow a thread to be
suspended in cases where no event call is to be made and
it completes in the next step of the thread's execution.
Situations potentially leading to infinite atomic loops can
be statically detected by the compiler and a warning can
be issued.

Communication between threads can be realised
through the use of local variables. This, however, could
possibly result in race conditions but, on the other hand,
this is not likely since threads are interleaved only at
precisely defined points (non-atomic statements) and
shared variable access is always realised as an atomic
statement. Static program scheduling allows us to also
detect the possibility of concurrent access to the same
OS resource. For that, we define a device as a group
of event calls related to the same underlying OS or
hardware component and we prevent any two threads
running in parallel from making event calls to the same
device. The code snippet below shows how the above
definitions work in practice.
1 TOS_Msg *msg = next_buffer(0), *send_buf;
2 int n=0;
3 [
4 while (true)
5 request msg->data[n++] = Sensor.data;
6 request Timer.start(150);
7 }

8 1

9 while (true)
10 if (n==10) {
1i send_buf msg;
12 msg = next_buffer(msg);
13 n=0;
14 emit Radio.message(send_buf);
15 }

16 else yield;
17 ]

In this example one thread is periodically querying
a sensor and the other one is sending this data out on
the radio when ten readings have been taken; Sensor,
Timer and Radio are devices that define data, start and

message event calls respectfully (we omit parentheses
with event calls that carry no parameters). Additionally,
our programming model distinguishes between two types
of event calls: incoming, which result in the application
receiving some data, and outgoing, which only transfer
data from the application to an underlying OS compo-
nent. We use the emit and request keywords respectively
to specify them in programs. Also, note that if the 16th
line were removed the second thread would block the
whole application infinitely.

B. Interruption

The need for terminating an activity in progress often
arises in the domain of embedded systems and is even
more common in the case of networked embedded sys-
tems such as wireless sensor networks where messages
from network neighbours cause a node to abandon its
current task and proceed to another one. For instance, in
the code example from the previous section one might be
interested in adding another thread that is waiting for a
particular radio message in order to stop sensor sampling
and initiate a sensor calibration routine.

In our execution model, interruption is realised by
breaking the execution of the whole parallel operator
thus stopping all its threads. Such an action might lead,
however, to inconsistencies. If a thread was interrupted
while waiting for an event call to complete, this event
call would not have a chance to be handled by the appli-
cation. Moreover, if the same event call was attempted
again immediately after the thread was interrupted, the
underlying OS component might still be processing the
previous invocation resulting in unpredictable behaviour.
In order to prevent such situations the compiler reserves
a flag (one bit) for each event call used in the program
to decide at runtime weather a given call has completed.
With this information two types of actions are taken upon
executing an event call that is still in progress:

. late synchronisation - completion of the previous
call is awaited and, as soon as this happens, the
new call is invoked.

. event call cancellation - if the event call has been
defined (see section IV) as capable of being can-
celled, an appropriate OS call is made to do so and
the new call is invoked immediately.

Our programming model defines a number of con-
structs that are able to interrupt the execution of parallel
operators and they all share the same behaviour, i.e.,
the interruption takes place immediately after they are
executed. One of them is the classic exception raising
statement (we use the raise keyword), which together
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with the try/catch block can be used as a universal way
of stopping activities in progress. The following code
presents a situation in which the application is constantly
monitoring the radio for heart-beat messages from a
nearby node. If no message is received for more than
1.5s an action is performed. The example shows also a
general way of implementing watchdogs in our model.
Note also, that the timer event call must be capable of
being cancelled in order for the code to work.
1 while (!finish){
2 try{
3 [

request Radio.heartbeatMsg;
raise HeartBeat;

request Timer.start(1500);
raise Timeout;

}

catch
catch

Timeout {finish
HeartBeat {}

true;}

III. PROGRAMMING MODEL

WSN applications due to their networked nature are

often best expressed in terms of states and transitions
between them, e.g., [8]. Therefore, inspired by the STAT-
ECHARTS [9] formalism, we propose that applications be
hierarchically composed of states. We distinguish two
kinds of states: basic states and conglomerates of states
which we call superstates. The state hierarchy is con-

structed in a bottom-up manner, firstly, by composing su-

perstates from basic states. Then, subsequent superstates
are built from other basic states and superstates. The
top-most state in the hierarchy is called the application.
Figure 1 graphically presents an example application
main which consists of a basic state S and a superstate
super_st which, in turn, is a composition of two basic
states P and Q.

Basic states, as opposed to in STATECHARTS or other
similar formalisms, such as [4], are defined as ongoing
activities. These activities can be thought of as classical
imperative programming functions that can make use

of the constructs presented in Section II and that do
not return any values. Superstates can also be thought
of as ongoing activities but, in contrast to basic states,
these activities are expressed in terms of the way the
states that comprise them are composed. Thus, basic
states and superstates can be viewed as different levels
of granularity describing the same thing, i.e., application
activity.

State transitions can be triggered only from within
basic states and are explicitly specified using the moveto

main

Fig. 1. Graphical representation of the example superstate definition.

statement. This statement interrupts in the same sense
as the raise statement, therefore, all threads that might
possibly be running at the time of its execution are
stopped and the application proceeds to the next state
(basic or not). Below we present an example basic
state in which the application is periodically sampling
a sensor. When the sampled values exceed a certain
threshold, a transition is made to the state in which object
tracking is performed. At the same time the application
is waiting for a radio message from another node that
forces it to abandon object detection and calibrate its
sensor.
I state detect_obj{
2 [
3 int val;
4 while (true)
5 request val Sensor.data;
6 if (val > THRESHOLD) moveto track_obj;
7 request Timer.start(50);
8 }

9 11
io request Radio.recalibrationMsg;
11 moveto sensor-calibration;
12 ]

13 }

There are essentially two ways of building superstates:
by composing states sequentially or in parallel. In order
to specify parallel state composition the parallel operator
is used and individual states of the composition are
treated as separate threads of the operator. The execution
scheme of the operator remains the same as presented in
the previous section. We also allow superstates to declare
local variables to provide means of communication be-
tween their constituent states.

For the sake of code modularity, we define super-
states as separate and independent entities that can
be tested and analysed on their own. This approach,
however, results in two important limitations. Firstly,
no direct transition can be made from a superstate to
a state defined in another superstate because this state
would have to be explicitly referenced contradicting
code modularity. Secondly, for the same reason local
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variables of a superstate cannot be accessed from within
other superstates. In order, however, to allow transitions
between separate superstates we use named terminal
states. Terminal states can be declared in a superstate
and when transitioned to, transfer control to another state
defined in a different superstate. The mapping between
terminal and non-terminal states is done statically. The
following code shows how this is done for the example
superstate definition presented in Figure 1. The body of
the superstate main only declares the state super_st while
mapping, at the same time, its terminal state T to main's
local state S. The superstate super_st is defined separately
as a parallel composition of two basic states P and Q.
Note that upon transition from state P to T state Q is
interrupted.
1 superstate main{
2 initial state S{
3 while (true)
4 if (condition) moveto super_st;
5 else /* do something else *7
6 }

7 superstate super_st{
8 super_st.T >S;
9 }

10 }

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

superstate super_st{
terminal T;
int val=O; /* a superstate variable */
I
state P{

/* do something */
moveto T;

I
state Q{
while (true)

emit Actuator.doSomething(val++);
I

}

IV. INTEGRATION WITH EXISTING EVENT-DRIVEN
SYSTEMS

Devices, as we mentioned in Section II, define points
of contact between applications and the operating sys-
tem. Event calls are meant to abstract away the three
general communication schemes that are used to ex-
change information between applications and the OS:
a single OS function call, a function-callback pair and
a single callback invocation (e.g., an interrupt handler).
Our model does not try, however, to completely hide the
operating system from applications. In order to achieve
resource efficiency and generality of our approach we
closely relate event calls to the semantics of exposed

OS interfaces. This means, in particular, that we want
applications that are designed for a given OS to use its
data types so we do not need to introduce any addi-
tional data translation layer. Although it may seem that
applications are not portable across operating systems,
this is true only to some extent. Using our model, one
can build applications on top of almost any operating
system (OS calls must not be blocking), middleware or
software library and this fact allows us to pass the task
of providing a unified WSN application programming
interface to the underlying software layers.
We expect, generally speaking, the information re-

quired to integrate our programming model with a given
operating system to come from two sources. Firstly, the
compiler needs to have certain knowledge about the
target execution platform and secondly, all other informa-
tion regarding the mapping of particular OS components
to their abstract application representations (such as radio
messages, sensors or actuators) has to be specified as
event calls and devices in the application code. Event call
and device definitions are, therefore, mixtures of abstract
concepts that belong to the programming model and of
OS specific information interpreted by the compiler in
the context of the target execution platform.
A device definition, specifies, apart from its event

calls, the name of the OS component to which it maps.
This name, depending on the compilation target, can
refer, for example, to a C header file, a Java class or a
TinyOS component, and the compiler needs to be able to
recognise this object. Initialisation, starting and stopping
(for hardware components) routines can be specified in
the same way for a given device and the meaning of
these definitions will be relative to the OS component
to which they refer. We divide abstract OS components
into subunits that we call modules. In reality, modules
that comprise a component might correspond to different
interfaces that this component exposes (as in Java or
TinyOS) and that information can be important for the
compiler to properly translate event calls that correspond
to particular parts of the modules.

Each event call may specify, therefore, the module
to which it belongs, the name of the OS function and
the callback that comprise it, as well as, its cancellation
routine. Event call parameters, however, are not speci-
fied. Instead, they are meant to be the same as those of
the related OS function (if the event call specifies it).
Additionally, incoming event calls need to specify what
will be regarded as their return value and a callback
return expression may need to be provided in cases
where it is required by the OS API.
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The OS integration scheme allows specification of
erroneous event call conditions so that appropriate error
handling code can be generated. We confine event call
error checking to two cases. First, the invocation part
(OS function call) may generate an error condition. This
condition can be signalled at the OS level through the
OS function call's return value or a value of a particular
system error-status variable or function. Secondly, the
failure information might be signalled by the OS at the
time of event call completion by means of the callback
parameters or by other means, as described before. In
both cases the condition, expressed in terms of the host
OS API, can be specified. Programmers can check in the
application code for event call failure using the iferror
keyword in the following way:
emit Radio.message(msg)

iferror <error handling code>;

Below we present a device definition that specifies
two event calls (one incoming and the other outgoing).
The event call definitions specify how sending and
reception of a particular radio message is mapped to
appropriate TinyOS components, interfaces and methods.
The outgoing event defines a split-phase communication
scheme whereas the incoming one receives data from the
OS through a callback named sendDone and uses the m
callback parameter as the return value to be transferred
to the application. Note that all double-quoted strings are
TinyOS specific.
1 device Radio{
2 component = "GenericComm";
3

}

emit message{
module = "SendMsg[APP_MSGI";
function = "send",

iferror = "{return}==FAIL";
callback = "sendDone",

iferror "success==FAIL",
return "success";

}
request message{

module = "ReceiveMsg[APP_MSGI";
callback "receive",

return "im",
eventval = "Im";

}

V. IMPLEMENTATION

Our programming model has been implemented as

a combination of the ANSI C programming language
and the concepts described in previous sections. The
prototype implementation is based on the idea presented
in [10] where the authors show how lightweight threads

state S{
int x=1;
yield;
x++;

I

int state_S(S data *data){
BOOL finished=FALSE;
switch(data->PC_O){

case 0:
data->x=1;
data->PC 0=1;
break;

case 1:
data->x++;
finished = TRUE;

I
if (finished) return 0;
else return 1;

I

Fig. 2. A simplified translation of a single state example application.

can be realised in a generic way using C switch state-
ments and a set of preprocessor macros, as well as, how
they can be used in application development. The pro-
totype compiler generates ready-to-compile NesC code
that can be immediately compiled and installed on the
motes.
The implemented static scheduling scheme is based

on reentrant functions and nested switch statements to
represent application states and specify program execu-
tion order. Translated programs are therefore sequential
and they are executed as follows. The execution of the
whole application proceeds in steps and each application
step consists of progressing execution of all threads
running at the time by one thread step (as described in
Section II). After a single application step has been done,
the program is re-run (its task is posted for execution at
the TinyOS level). A simplified translation of a single
application state is exemplified in Figure 2.
A parallel operator with n threads is translated into n

switch statements (similar to the one from the example)
and they are executed one after another. Nesting of the
operator is realised as nesting of the switch statements.
For each thread a single byte of memory is used to store
its instruction pointer. A thread instruction pointer pool
is used to lower the memory usage for cases where a
number of parallel operators is placed in sequence (not
nested). A single byte of memory is consumed in such
cases. Additionally, the result of each split-phase event
call is buffered and the application reads it in the next
execution step.
Our compiler groups and externalises local state vari-

ables making it possible to reuse this memory, since
sequential state composition results in exactly one state
being executed at a time. This is in contrast with,
for example, event-based frameworks where memory
assigned to variables used across a number of function-
callback calls cannot be easily recovered. State memory
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reuse, however, has not been implemented in the current
version of the compiler, neither were many other code
optimisations that we envision. The future work involves
experimenting with alternative thread implementations,
for instance, to avoid program structuring with switch
statements and isolate all atomic parts of the program
into separate functions that are then chained together
with event handlers with the help of a simple scheduler.
With this approach applications would not need to be
continuously checking for event call completion but
rather rely on the OS to trigger further execution when
an event call completes.

VI. EVALUATION

The evaluation of a programming model is always a
difficult task because its main contributions cannot be
easily quantified. However, in the domain of Wireless
Sensor Networks properties of the code generated by
programming tools are often crucial to decide about the
applicability of these tools. In this section we use the size
of compiled program binary code as the main evaluation
criteria for our programming model. We use TinyOS as
a point of reference, firstly, because it allows for efficient
and compact implementations and secondly, because it
is becoming a standard WSN application development
tool that many researchers are familiar with. We base
our analysis on the binary code size because this metric
shows the exact memory cost of a given program and we
aim at showing the real applicability of our approach.
There is, however, a difficulty stemming from the fact
that our model offers a completely different program-
ming paradigm than that of TinyOS and the criteria for
comparing two different implementations of the same
program might be questioned. This is why we focus on
comparing implementations of some general program-
ming patterns rather than of arbitrary programs. Also,
as an additional means of illustration, we implement in
our programming model an object tracking application
and a set of example programs that are distributed with
TinyOS.
The goal of this section is to show that applications

written in our model are realistic, i.e., they can be run
on the existing mote platforms and that compiler optimi-
sation might further improve our results. The prototype
compiler under evaluation is by no means efficient. We
have implemented only basic optimisations and there is
still a large space for further improvement.

In order to compare the performance of our program-
ming model with TinyOS, we evaluate implementations

of four general behavioural patterns that can be found in
many WSN applications:

1) Parallel composition - a popular example might
be sampling a number of different sensors at
the same time. Often all these logically parallel
operations need to finish before a move to a
next application state can be made (a synchroni-
sation point). A minimal TinyOS implementation
involves invoking n different actionsi, one after
another, and synchronising their callbacks on a
single integer variable.

2) Sequence of operations - very often applications
perform a sequence of steps that involve interacting
with hardware and the order of these operations
is strict, for example, sensor calibration needs to
be done before measurements are taken or the
ordering of radio message exchanges in a net-
work protocol. A typical TinyOS implementation
sequences event calls by invoking the next action
in the sequence from the callback of the previous
action.

3) Splitting lengthy operations - a technique that
allows to split time-consuming computational op-
eration into parts so they do not block the proces-
sor for too long. TinyOS does that by partitioning
such operations into tasks which are queued in the
appropriate order.

4) Event loop - is a pattern where an application
waits for a fixed number of events (e.g., ten sensor
samples) and then proceeds to another task, e.g.,
sending the samples out over the radio. In a
typical TinyOS implementation a counter is used
to track the number of action-callback invocations
and the next action in the sequence of invocations
is executed from the previous callback.

The experiments were performed with the TinyOS 1.1.15
package installed on the Redhat 9 operating system.
The programs were compiled for the Mica2 mote family
and successfully run on the motes. Figure 3 shows the
resulting binary code sizes of the first three behavioural
patterns implemented in TinyOS and in our model. The
results for the Event Loop pattern are presented in
Table I (only a single experiment was performed be-
cause increasing the number of loop repetitions involved
changing only a single boolean condition). These results
show the differences in the cost of program structuring
according to the above patterns, since all data-related

'To avoid confusion, TinyOS' commands and events will be
referred to in this section as actions and callbacks.
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Our model TinyOS
Application Name ROM RAM ROM RAM
Blink 1636 50 1518 49
CntToLeds 1868 53 1678 51
Sense 3948 109 3688 102
CntToRfm 10820 452 10712 448
CntToLedsAndRfm 11052 453 10904 448
RfmToLeds 10520 399 10356 390
OscilloscopeRF 12358 526 11752 510
Surge 16924 1937 16570 1929
Tracking application 14304 557

TABLE II
CODE SIZES OF THE IMPLEMENTED EXAMPLE APPLICATIONS.

2 3 4 5 6 7
Number of steps

Fig. 3. Binary code size of TinyOS and our mod
of the first three behavioural patterns.

Our Model TinyOS
ROM RAM ROM RAN
718 27 580 23

TABLE I
BINARY CODE SIZE OF TWO IMPLEMENTATION

LoOP BEHAVIOURAL PATTERN

code was exactly the same in both im
As can be seen, adding threads increasc
code size by a constant factor. The currer
compiler introduces 16 bytes of progranr
head per thread compared to the TinyOS i
Additionally, a single byte of RAM men
each thread's instruction counter and in
first three behavioural patterns our mod
tions use only a single byte of RAM mel
their TinyOS counterparts. The results fc
behavioural patterns also show linear gro
size (the small variation in the case of the
was caused by some difficult to explai
optimisations). This fact is important, b
that more complex programs can be tra
of running them on hardware-constraine

These results, however, should not b(
general conclusions on the performance (

ming model. They rather show certain p
code that can be generated from it. Ou

flJ- model features concepts that are not present in TinyOS
such as, for example, error handling or interruption

_ _
9 1 0

which add to the total program size when used. Also,
8 9 10 all incoming event calls statically buffer the data which

is transferred from the OS to the application. On the
[el implementations other hand, state management and synchronisation that

need to be manually implemented in case of all non-
trivial TinyOS applications reduce the differece in code

4I size. Table II gathers the results for a number of example
applications that are included in the TinyOS 1.1.15 pack-
age. To make the results comparable, the same data types

ES OF THE EVENT and variables were used in both implementations. In the
case of the Surge application we had to additionally
write a TinyOS wrapper module that hid all protocol
configuration details behind a single TinyOS interface
because Surge uses a multi-hop routing component and

iplementations. its configuration lies outside of the scope of our pro-
zs the compiled gramming model.
it version of the We have also implemented a simple tracking appli-
i memory over- cation in our model. The operation of the algorithm is
implementation. depicted in Figure 4 and it proceeds as follows: after
nory is used for performing hardware initialisation (calculation of the
the case of the mean signal strength) all sensor nodes begin listening
[el implementa- for a presence of an object (moving average of the
mory more than last five light sensor readings is used and the object
)r the other two is an artificial light source). The node whose detection
)wth in the code threshold is exceeded becomes a local group leader
z second pattern claiming to be the closest node to the object. It starts
n gcc compiler sending out periodic heart-beat messages that contain
ecause it shows the object's signal strength. Upon reception of such a
tctable in terms message, nearby nodes enter the alert state, sample their
d sensor nodes. sensors at higher frequency and send aggregates of these
e used to draw values to the leader. A node that senses a stronger signal
of our program- than the current leader takes on his role and becomes
roperties of the the new leader while the previous leader enters the alert
r programming state (we did not secure the algorithm against the case
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0

New leader

Got better signal

Fig. 4. An example of a simple tracking application.

of multiple leaders but the algorithm always stabilised
when the object moved closer to one of the nodes).

Each state of the algorithm was directly translated
to an application state in our model, Leader and Alerted
states were implemented with three threads each while
the DetectingObjects state declared two threads. Also, the
implemented application is full-proof in the sense that all
possible state transitions are accounted for (for example,
when alerted nodes miss two consecutive heart-beat
messages from the current leader they trigger election of
a new one). The resulting code size for this application
is presented in Table II. A TinyOS version of this
application was not implemented to avoid bias.

VII. DIscusSION

As time progresses, the wide spread adoption ofWSN
technology will require establishing reliable program-
ming abstractions, middleware and code libraries. This
software base will act as a component base upon which
new WSN applications will be built. In this paper, we
show that a general high-level application programming
model which can be layered on top of many different
software components, as opposed to blurring the bound-
ary between the application and the OS, is realistic in the
domain of wireless sensor networks. At the current stage
we focus mostly on reusing event-based software, firstly,
because currently the most popular WSN software devel-
opment platform (i.e., TinyOS), for which the majority
of novel tools are written, is event-based and secondly,
because writing low-level software in the event-based
manner results in more compact and faster code.

Separating application code from the underlying OS
or library components allows, on one hand, for code
portability, but on the other, it allows the application code
to be analysed independently. The second argument is
even more important because the constrained resources
of WSN nodes and the usually difficult maintenance of

once deployed sensor networks require WSN software
to be both efficient and as predictable as possible.

Applications written in our programming model,
thanks to the static scheduling technique, can be trans-
lated to sequential code. This is particularly important
property because no threading support is needed from
the underlying OS. Sequential programs are much easier
to debug and analyse since OS scheduling decisions need
not be taken into consideration. We envision, therefore,
our compiler generating code for a number of target
platforms including, in particular, a simulation frame-
work. Network-level simulation and debugging would
be much more tractable since OS and the environment
interfere with application's behaviour only when event
calls are executed. Note that this is in contrast to, for
example, simulating TinyOS applications [11] since they
are often so closely entangled with the rest of the OS
components that the whole OS and the application need
to be simulated together.

VIII. RELATED WORK

Our work has been initially influenced by imperative
synchronous languages such as Esterel [7] that impose a
rigorous mathematical execution model in which time
progresses in discrete instants and events are treated
as abstract signals that are instantaneously broadcast
to all threads in their scope. Although very successful
in critical embedded system development Esterel has
been reported [12] to generate code that is not always
linear in the size of its original specification. Another
synchronous language that provides a mix of various
formalisms, including state machines and object orien-
tation is presented in [13] but, although very versatile,
it is still a fully-featured synchronous language so the
code efficiency question arises. In [14] the authors
propose a language for embedded hardware/software
system programming that introduces a process-network-
like programming model and programs are translatable to
a fast sequential C code. The language targets, however,
hardware/software co-design and does not, therefore,
support in any way the networked nature of WSN
applications.

Within the Wireless Sensor Network domain, [4] pro-
poses a state-driven model for WSN application devel-
opment. Their model, however, makes "purely sequen-
tial parts of the program flow [...] tedious", which is
not the case for our model. A number of event-driven
programming frameworks such as [15]-[17], as well as,
some more traditional approaches like [5], [18] where the
classical thread-based model with independent threads
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communicating with the OS kernel through blocking
system calls have been proposed. The drawbacks of
event-driven programming models have been presented,
e.g., in [4], whereas the classical threaded model does not
support the specifics of WSN application development.
A state-driven model was proposed by [19]. Their

system, however, is mostly inspired by tracking appli-
cations and focuses on providing them with a suitable
set of networking abstractions. In addition, execution of
programs written in the model is event-based. A different
WSN programming approach is presented in [20] where
physical-world objects are specified in a special language
and user computation is executed in an object's proxim-
ity, as determined by the object tracking middleware.
The applicability of this work is confined therefore to
the domain of applications related to object tracking.
Another application programming paradigm that is also
based on states is presented in [21]. The authors focus
on an algorithm that allows to automatically notify
applications about program state changes according to
externally defined configurations. Their work can be
regarded as complementary to ours since we focus on the
application layer. It would be interesting to investigate
the possibility of integration of these two approaches.

IX. SUMMARY

We have presented a general-purpose and high-level
WSN application programming model that hides the
split-phase program execution scheme and provides pro-
grammers with a fine-grained concurrency model to
structure event handling. In this model, applications are
hierarchically composed of states and a precise appli-
cation execution model is defined in such a way that
static scheduling techniques can be used to generate
efficient sequential programs that can also be tested and
analysed on their own. A general method for integrating
applications written in the programming model with
event-based operating systems and middleware has been
developed.
We implemented a prototype compiler for the model

and we showed that our model, despite being high-level,
can be compiled to efficient code that can be run on the
currently available mote platforms. The future work will
include optimising the compiler and experimenting with
large-scale network simulation of applications written in
the model.
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