
A standards-based architecture for Grid Service Management

Keith Rochford, John Walsh, Eamonn Kenny, Brian Coghlan
Computer Architecture Group, Trinity College Dublin, Ireland

keith.rochford@cs.tcd.ie, john.walsh@cs.tcd.ie, eamonn.kenny@cs.tcd.ie, coghlan@cs.tcd.ie

Abstract

Managing the availability of services is an essential
task in ensuring the availability of a grid infrastructure.
This project aims to take the next step in the monitoring
and management of grid computing systems by develop-
ing a standards-based distributed control plane for grid re-
sources and middleware components. While many existing
projects focus on the monitoring of grid resources and in-
frastructures, they make little or no provision for the active
or pro-active management operations required to ensure the
availability of the infrastructure.

This solution employs web service technologies with the
intention of producing an extensible body of work that might
be applied to a range of grid projects and middlewares.
With the emergence of meta-grids and the increasing impor-
tance of grid middleware interoperability, the acceptance
and adoption of standard interfaces will become an impor-
tant step in the development of future grid components.

1. Introduction

The area of grid computing is currently attracting a
considerable amount of attention from a large number
of research and development groups. This has led to
many projects adopting different approaches to satisfy com-
mon requirements, often re-inventing or rehashing existing
work[27]. The resulting lack of standards has resulted in
a variety of tools which cannot easily be combined or ex-
tended to form more complete management solutions. It is
not possible for developers or administrators to easily com-
bine the best features of each into a system that satisfies
their individual needs.

One lesson that the developers and operators of grid in-
frastructures might learn is derived from the integration dif-
ficulties experienced within the telecommunications sector:
they should differentiate their offerings based on service
rather than technology. The increasingly important subject
of interoperability is often hampered by each project devel-
oping their own specific means of achieving a given goal.

With this in mind it seems appropriate to investigate and
evaluate standard tools and mechanisms for data communi-
cations and representation when designing or planning any
contribution to the field.

In this paper we provide an overview of one such stan-
dard and present an implementation of a grid service man-
agement tool based upon it. The requirement for this system
has grown out of our research into grid monitoring, and the
desire to ease the day-to-day administration of the infras-
tructure, whilst increasing its availability and speeding the
response to security events.

In the interest of simplicity, we will define service man-
agement as the ability to exercise a degree of control over
the status and availability of a service running on a remote
host. In addition, it should be possible to query the status of
a given service and request a list of managed services from
a given resource.

The system presented in this paper is an enabling tech-
nology of Grid4C (Grid Foresee), our grand vision of
a Command and Control system for grid infrastructures.
Grid4C will bring together monitoring and status informa-
tion from a variety of sources along with a distributed con-
trol plane based upon this work, and make it available to
human and machine operators for rich interactive or au-
tonomous control. In addition to a monitoring and admin-
istrative tool, it is envisaged that Grid4C will provide a De-
cision Support System for members of a Grid Operations
Team.

The design and implementation of this system has been
motivated by the activities of the Grid-Ireland operations
team and so we now describe the context within which this
work has taken place.

1.1. Context

Grid-Ireland is a managed layer providing grid services
above the Irish research network. It allows researchers to
share computing and storage resources using a common in-
terface, and facilitates international collaboration by link-
ing Irish sites to into European grid infrastructures being
developed under such EU projects as EGEE[6], LCG[10],

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

CrossGrid[4], and int.eu.grid[9].
The Grid-Ireland operations centre is based at Trinity

College Dublin and is staffed by members of our research
group. Among its responsibilities is the deployment and
maintenance of an homogeneous core infrastructure[17]
comprised of grid gateways. Installed at each site, these
gateways provide a point of access both for external grid
users to gain access to the site resources and local site users
to gain access to remote grid resources.

The gateway[15] provides the essential functionality of
a grid site, thus freeing site administrators to concentrate on
the management of their own resources. The gateways are
remotely managed by the operations centre. Local cluster
administrators need not concern themselves with the pro-
vision of grid services as these are an integral part of the
deployed gateways. Resources at a site remain under the
control of the site administrators who are free to manage as
they see fit, without having to concern themselves with the
finer details of grid integration.

Thus the core infrastructure of grid gateways remain the
responsibility of the operations team. The ensuing possi-
bility of homogeneity of this core infrastructure presents a
number of opportunities to the users, grid operators and the
site administrators. These include:

• Minimizing the proportion of software components
that need to be ported to non-reference platforms.

• Maximizing the availability of the infrastructure while
reducing the effort required for software deployment.
The common software and hardware components fa-
cilitate centralised management and push-button trans-
actional deployment of middleware components[18],
guaranteeing uniform responses to management ac-
tions.

• Decoupling of grid infrastructure and site manage-
ment. The fact that the site resources and the grid in-
frastructure are independent of each other allows for
variation in design, deployment, and management.

• The installation of heterogeneous site resources based
on non-reference architectures is also supported. In
order to support a wide range of connected resources,
the operations team carryout porting of the necessary
middleware components[22].

Each grid gateway is composed of a set of seven machines:
a firewall, an install server, a compute element (CE), a stor-
age element (SE), a user interface (UI), a test worker node
that is used for gateway testing, and optionally a network
monitor. In general these are implemented as virtual ma-
chines on one physical host. All sites are identically config-
ured with grid software based on gLite3.

1.2. Aims

1.2.1 Ease of use

The grid service management solution should provide an in-
tuitive and relatively transparent interface, readily accessi-
ble to the members of an operation team. The client compo-
nents should be designed in such a way that they might eas-
ily be incorporated into a variety of user interfaces, includ-
ing mobile, web-based, and advanced visualisation tools.

1.2.2 Flexibility

While the system described here illustrates the function of
service management, the underlying architecture should be
readily extensible to support a variety of administrative op-
erations. Through the use of a plug-in architecture and
standards-based interfaces it should be possible to extend
and customise the control infrastructure to meet specific
needs. Similarly, it should be possible to develop custom
control interfaces provided all security concerns are satis-
fied.

1.2.3 Performance

Execution of management operations should occur in near
real-time and provide adequate feedback regarding their
progress or output. Due to the administrative function of
the system, it must be robust and resilient. Efforts should
be made to ensure its availability irrespective of the status
of other resources within the administrative domain. In or-
der to function as a control plane, it should be independent
of its managed resources, fast, reliable and ’always-on’. In
addition, the design must aim to minimise the impact of the
management system on the normal operation of the man-
aged resources.

1.2.4 Security

Since the proposed system is to be capable of executing
tasks normally carried out only by users with administra-
tive priviledges, security is very obviously of utmost impor-
tance. Invocation of the management web services must be
restricted to authorised users or processes and all communi-
cation should take place over secure channels.

1.2.5 Minimal site-specific configuration

In order to facilitate deployment and administration, it
should be possible to define a generic set of operations to
be supported by the system for each of the resource types
at each of the intended target sites. For example, the prop-
erties and operations defined for a Compute Element, such
as querying current jobs or starting the resource allocation

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

manager, are likely to differ little from site to site. It should
therefore be possible to deploy a largely pre-configured sys-
tem with minimal reconfiguration and automatic detection
of configuration variables where possible. Where possible,
deployment via a fabric management system should be sup-
ported.

2. Related Work

While much work has been done in the area of Grid
monitoring, few projects have attempted to close the control
’loop’ by providing interfaces to rectify detected anomalies
or reconfigure components. One promising early work is
the C.O.D.E.[24] project developed for the NASA Informa-
tion Power Grid. Unfortunately this project pre-dated much
of the work on Web Service and management standards and
the control functionality was never fully implemented.

With evolution towards grid middlewares exposing func-
tionality via Web Services[21][25], the management of
these services has become an increasingly important and
active research topic[26][12][19]. However, few of these
works take into account the requirements for managing
’legacy’ grid services, i.e. non Web Service based, or their
hardware platforms via standard Web Services interfaces.

We are concerned not only with the management of the
grid software, but also of the physical hardware resources
comprising our gateways. We present an architecture which
leverages the benefits of agent based design [13][20] and
allows the monitoring and management of ’legacy’ grid
services via a standards-based Web Service interface. Al-
though this architecture could, and most probably will be
extended to monitor and control Grid functionalities ex-
posed via Web Services, we consider this a separate prob-
lem domain for which there are more relevant management
standards such as the Web Service Distributed Manage-
ment: Management Of Web Services (MOWS)[5]. Based
on our proposed architecture, we present a concrete, ex-
tensible implementation of a grid management tool that at-
tempts to build on established work and contribute to future
development by promoting the use of standard interfaces.

3. Architecture

In this section, we describe the architecture of of the ser-
vice management system at a high level so that the basic
building blocks can be seen clearly without implementation
details intruding.

The architecture of this system employs a multi-tier ap-
proach. A client/server architecture exists between the oper-
ations centre and the sites comprising the managed hosts or
entities. Within the sites, a second hierarchy exists where
incoming requests or operations are routed to the relevant
request handlers on the managed entities.

Due the fact that the managed resources often reside
within remote administrative domains, over which the grid
operations team have little control, our architecture em-
ploys a single management server deployed to each site.
This server acts as a gateway to the management endpoints
within the site, in addition to containing middle tier logic
such as the scheduling of service checks, persistence of
event information and policy decision logic. This single
point of presence allows us to limit the control traffic into
and out of the site to known ports (HTTPS) on a single ma-
chine rather than requiring direct network access to each of
the managed entities. This approach also allows the soft-
ware deployed to each of the managed entities to be rela-
tively lightweight as it need only to communicate with the
local management server rather than supporting an entire
web services stack.

The software components deployed to each managed en-
tity are responsible for implementing the interfaces exposed
via the web services on the management server. In this re-
spect, much of the web service logic is composed of proxy
objects responsible for routing the requests to their corre-
sponding control elements on the managed entities.

The core components of the architecture, as illustrated in
figure 1, include the following:

• Management Clients - Standalone or embedded com-
ponents, capable of invoking the management capa-
bilities exposed via Management Servers. These are
typically executed within the systems of the operations
centre. Mobile clients will also be investigated.

• Management Servers - A single management server is
deployed to each site with the primary responsibility of
exposing the management capabilities of the resources
within that site or domain as web service endpoints.
Additional functions include the scheduling of mon-
itoring and administrative tasks, persistence of event
information and in the case of autonomous control, the
role of a Policy Decision Point.

• Control Elements - These are the lightweight com-
ponents deployed to each of the managed resources.
They provide a control interface to the resource and
implement the logic defined in the services exposed
via the Management Servers. Operations requested of
the Control Elements may be used to monitor or alter
some property of the resource.

• Final Elements - Using terminology borrowed from the
field of process control, the Final Elements are the low-
est level components of the architecture. Residing on
the managed resources and accessed via the Control
Element, Final Elements are used to sense state and
perform action operations on the resource. They are

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

Figure 1. Architectural overview of control backplane.

implemented as plug-in objects and can be either self-
contained or rely on some proprietary local application
programming interface such as the Intelligent Power
Management Interface from Intel. Examples of final
elements might include:

– Service Check - used to determine the status or
availability of grid services

– Service Control - used to alter the state of a given
service

– Network control - Control over network inter-
faces and traffic. These might for example be
used to ’quarantine’ problematic hosts

– Hardware Management - user to expose hard-
ware management functions via the secure web
service interface, e.g. power cycling resources

– Job Execution - execute grid jobs such as those
designed to evaluate performance and availabil-
ity

– Job Management - provide remote control over
local job schedulers, e.g. the removal of ’stuck’
jobs

– Access Control - interface to user authorisation
components

– Resource Control - more coarse grained control
over the state or availability of the resource

4. The role of WSDM

The increasing complexity of computer networks and in-
frastructures has led to many operations teams struggling to

deal with the additional overhead involved in their moni-
toring and management. This has led resource providers to
provide monitoring and management tools intended to ease
the burden of the deployment and maintenance of their sys-
tems. However, in heterogeneous environments, either soft-
ware or hardware, the integration of these tools can become
troublesome in itself. Operations staff may be forced to use
multiple systems and manually aggregate or correlate infor-
mation across them in order to aquire the necessary repre-
sentation of system state. The use of proprietary interfaces
and persistence models without common standardised inter-
faces limits the possibility of managing the components of
heterogeneous systems in a truly cohesive manner.

One possible solution to these integration and inter-
operability problems is the Web Services for Distributed
Management[5] (WSDM) standard from the Organisation
for the Advancement of Structured Information Standards
(OASIS). WSDM defines standard mechanisms for the rep-
resentation of, and access to, resource management inter-
faces implemented as Web Services. In addition, it defines
how web services themselves may be managed as resources.
The standard defines two specifications; WSDM: Manage-
ment Using Web Services (MUWS) and WSDM: Manage-
ment of Web Services (MOWS). Mechanisms are defined
for identifying, inspecting, and modifying characteristics of
resources, thus ensuring the interoperability of management
tools and management resources from different vendors or
development groups.

Rather than being designed from the ground up, WSDM
incorporates elements of numerous existing Web Service
technologies, including WS-RF, WS-Notification and WS-
Addressing. By employing web services, WSDM inherits
essential distributed computing functionality, interoperabil-

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

ity and implementation independence.

4.1. The WSDM development model

While WSDM defines the interfaces and the reference
implementation provides the necessary infrastructure, the
creation of the custom manageability capabilities that will
be exposed via WSDM if left to the developer of the re-
source management solution. These capabilities, com-
prising data and operations, are the fundamental building
blocks of resource management endpoints. Developers cre-
ate WSDL files that define the web service interface, and
must include one port type for the resource that includes all
the resources’ public operations that a client would need in
order to inspect and manipulate it.

In addition to custom capabilities defined for a particu-
lar resource, the WSDM specification includes a number of
standard capabilities, these include:

• Identity - The only required capability, used to differ-
entiate among resources. This capability contains ex-
actly one property, ResourceID, which is unique to the
resource.

• Description - The list of captions, descriptions and ver-
sion information used to provide a human readable
identity for the resource.

• Metrics - Defines how to represent and access infor-
mation about a specific property as well as the current
time on the resource.

• State - Defines how to change the state of a resource
according to a specific state model

• Operational Status - Defines three status levels for a
resource (available, unavailable and unknown) along
with status change events.

• Advertisement - A standard event to be generated
when a new manageable resource is created.

Other features of the WSDM standard that are of particular
interest to our application include Relationships and Notifi-
cations.

4.1.1 Relationships

WSDM defines interfaces which can be used to query a
manageable resource about the relationships in which it par-
ticipates. In our application these might be used to arrange
the manageable resources into groups based, for example,
on their location or their resource type.

4.1.2 Notifications

WSDM also defines an extensible XML event format that
defines a set of data elements allowing different types of
management information to be transmitted, processed, cor-
related, and interpreted across different products and plat-
forms using different technologies. Each WSDM capabil-
ity has a corresponding WS-Notifications topic which can
be used to identify and categorize capability-specific noti-
fications such as property change events or state transition
topics.

5. Implementation

5.1. Overview

Our system has been developed in Java using Apache
Muse[1], a reference implementation of the WSDM spec-
ification. The Muse endpoints are deployed within an
Axis2[3] SOAP engine on the management servers de-
ployed to each site. Communications within each site, be-
tween the Management Server and a Control Element, are
carried out using XML-RPC[2] with two-way authentica-
tion over SSL. Once the management server is in place and
the Control Elements are installed and configured on the re-
sources to be managed, the system makes the management
functions provided by the Final Elements available to autho-
rised users via web services interfaces compliant with the
WSDM standards. The management server provides a sin-
gle point of entry to administer the resources within its site.
One of the advantages of using this reference implementa-
tion is that it includes Web Service Notification specifica-
tions which can be used to construct an event driven com-
munication model for our management infrastructure. In
our implementation, the WSDM Status capability of a man-
aged resource is often representative of the logical value
of a number of lower states. For example the status of a
resource might only be set to Available following the suc-
cessful start-up of all its services and the verification of its
availability via a local or remote sensor. If this value is sub-
sequently changed either by a local or remote process, all
parties that had subscribed to the topic for that capability
will be automatically notified via a property change event.

Figure 2 shows a more detailed architecture of the con-
trol and management system.

5.2. The Control Element & Final Elements

The Control Element is implemented as an XML-RPC
server along with a set of request handlers. Examples of
these request handlers include Final Element Managers, re-
sponsible for maintaining a list of registered Final Elements
and triggering their execution in response to requests, and

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

Figure 2. Architecture of remote management capabilities.

Server Managers, responsible for more generic resource
management operations such as start and stop, etc.

The Control Element performs a similar duty to the Man-
agement Server, albeit on a smaller scale, in that it provides
a single point of access to the management functions of
a resource. The advantages of this architecture include a
smaller footprint on the managed resource, a single location
for authentication and authorisation, and a more straightfor-
ward usage model. A Final Element may be addressed in
the form resource.requesthandler.element although a num-
ber of XML-RPC client objects have been written to encap-
sulate and simplify this functionality. Objects wishing to in-
voke some operation on the Control Element can simply in-
stantiate one of these client objects and use methods such as
resource.stop, resource.getServiceStatus(serviceName), or
resource.executeFinalElement(elementName).

The term Final Element is used to describe a component
that performs the duties of a sensor, actuator or both. They
are the last elements in the chain of command and constitute
the bridge between the control system and the managed re-
source. The Final Elements are implemented as java objects
implementing a specific interface allowing them to be easily
’plugged-in’ to the control hierarchy. Typically the output
of the operations supported by the final elements is in XML
form. Final Elements can be self-contained Java objects, in-
clude some functionality native to the resource platform, or
make use of an existing application programming interface.
One example of using Final Elements as wrapper objects is
described in [23], this illustrates how the extensive range of
sensors developed for the Nagios project can be exploited

from a Java based monitoring application.

5.3. The Management Server

The Management Server can be hosted on any machine
capable of running a servlet container provided it has the
necessary network access to the Control Elements within
its domain and also to the external control clients. For this
reason, the Management Server would typically be installed
as part of the site gateway. The WSDM management end-
points reside within an Axis container on this Management
Server. These make the control functionality offered by
the Control Elements available to the Control Clients via
the published web interfaces. These interfaces make use of
both standard and custom capabilities. Since the managed
resources would typically not reside on the same host as
the Management Server, capability proxy objects are em-
ployed to route the web service requests over XML-RPC to
the Control Elements on the target resource.

5.4. The Control Client

Currently the Control Clients are invoked using
command-line tools. More complex graphical interfaces are
under development. Using the WSDL that defines the man-
agement endpoint, and the wsdl2java tool included in the
Muse distribution, it is possible to automatically generate
client code which can be used to invoke the operations de-
fined in the WSDL. It is then relatively straightforward to

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

create user interface code to invoke management operations
without having to write code at the web services layer.

5.5. Security

Since security is of critical importance in this applica-
tion it is incorporated on several levels. All traffic between
the Control Client and the Management Servers takes place
over HTTPS connections with client and server authenti-
cation. Further security is provided at the web services
layer using Apache Rampart[11]. Within a remote manage-
ment domain, all traffic between the Management Server
and Control Elements takes place using XML-RPC over
SSL. The XML-RPC servers are also secured using access
control lists which typically only allow their operations to
be available to the local Management Server. In addition,
in the Grid-Ireland case, because the gateways are imple-
mented as virtual machines upon a physical host running
Xen [14], the physical host communications represent an
out-of-band control plane. This adds greatly to the control
plane’s security. In the event of a total failure of the physical
host, a further secure out-of-band control plane is available
using the host’s remote management hardware, which em-
ploys IPMI[8].

6. Testing

This software is deployed and undergoing testing on
a fully functional replicated grid environment [16] at the
Grid-Ireland operations centre. Following further devel-
opment, testing and security evaluation, the solution will
be deployed across the production Grid-Ireland infrastruc-
ture. It is becoming an integral component of our operations
strategy.

6.1. Performance

While there is some overhead incurred through the use of
SOAP messages, security mechanisms, and the routing of
requests from the Management Servers to the Control Ele-
ments, we feel that the benefits of the web service technolo-
gies and the reduced deployment effort justify the expense.
Preliminary tests of the management operations show re-
sponse times well within acceptable boundaries.

6.2. Scalability

It is expected that the architecture will scale favourably
due to the devolution of much of the management function-
ality to the Management Servers and managed resources.
The majority of the message sizes between the control
clients and the managed resources will be relatively small,

and multi-threaded request handlers within the Control El-
ements will serve to reduce execution overheads.

7. Use cases

• Service Outages - Upon receiving notification of a
failed service on one of the grid gateways, a member of
the operations team can use a Control Client to restart
the service via one of the user interfaces. The Con-
trol Client will issue a service management request to
the Control Element on the resource hosting the failed
service,

• Managing batch queues - The system could be used
to exercise control over the batch processing queues
connected to the Compute Element at the grid site. An
example of this would be the removal of ’stuck’ jobs
from a queue. A job may appear to be ’stuck’ if the
Worker Node on which it was executing hangs and the
job status is not updated by the queue manager

• Security Events - In the event of an security incident or
notification of a security flaw in the grid middleware,
the operations staff can shut down or quarantine the
relevant elements ’at the touch of a button’.

• Automatic service recovery - This system facilitates
the creation of automated processes that can subscribe
to status events and upon certain notification, execute
pre-defined service recovery operations in order to at-
tempt to return the system to an operational state. The
processes would then request a service check operation
to verify that the service was restored. If the service
was not restored, an alternative operation might be at-
tempted or failing that, an event would be generated to
escalate the alert to a member of the operations team.

8. Conclusions

In this paper we have presented a number of motivations
for the adoption of standards-based development practices.
Following a brief description of one such standard, Web
Services for Distributed Management, we described a pro-
totype implementation of a grid service management tool,
Grid4C, using that standard. This is now an open source
project[7].

The system we have presented illustrates how the use
of lightweight components deployed to each of the man-
aged resources within a site can be used to provide a single
point of access to resource management. We believe that
this solution is an optimal configuration allowing the use
of WSDM for fabric management without the necessity of
deploying a web services container to each of the managed
resources. We have also illustrated how this single point

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

of access is particularly important on an infrastructure such
as ours, where a large proportion of the managed resources
reside within networks beyond our control.

Although there is a learning curve associated with the
adoption of any new technology, the use of standard inter-
faces will result in software components that can be more
easily integrated into existing environments. With move-
ment towards service oriented architectures, where users
will piece together solutions to meet their needs, the flex-
ibility offered by the use of common interfaces will be crit-
ical.

9. Future Work

While the system described in this paper forms the basis
of a useful tool in it’s own right, there is considerable scope
for further work.

Here, we have limited our discussion to the use of
[WSDM]MUWS for the management of resources and net-
work services. With the migration to grid middleware
technologies based on web services, there is considerable
scope for investigation into how [WSDM]MOWS capabil-
ities might be incorporated into such grid services so that
standards-based manageability can be natively supported.

Continued development of the components of the
Grid4C system is expected in addition to further work in
the areas of autonomic control, policy based management
and event persistence. The use of visualisation tools as user
interfaces to the control system, along with the development
of mobile clients, will be actively investigated.

References

[1] The apache muse project.
[2] Apache xml-rpc.
[3] Axis2 - apache webservices project.
[4] Crossgrid.
[5] Defining a web services architecture to manage distributed

resources.
[6] Enabling grids for e-science (egee).
[7] Grid4c - command and control for grids.
[8] Intelligent platform management interface.
[9] Interactive european grid project.

[10] Lhc computing project lcg.
[11] Rampart : Ws-security module for axis2.
[12] S. Albayrak, S. Kaiser, and J. Stender. Advanced grid man-

agement software for seamless services. Multiagent Grid
Syst., 1(4):263–270, 2005.

[13] J. Cao, D. Spooner, J. D. Turner, S. Jarvis, D. J. Kerbyson,
S. Saini, and G. Nudd. Agent-based resource management
for grid computing. In CCGRID ’02: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing
and the Grid, page 350, Washington, DC, USA, 2002. IEEE
Computer Society.

[14] S. Childs, B. Coghlan, D. O’Callaghan, G. Quigley, and
J. Walsh. Deployment of grid gateways using virtual ma-
chines. In P. M. Sloot, A. G. Hoekstra, T. Priol, A. Reinefeld,
and M. Bubak, editors, Advances in Grid Computing - EGC
2005, LNCS3470, Amsterdam, The Netherlands, February
2005. Springer.

[15] S. Childs, B. Coghlan, D. O’Callaghan, G. Quigley, and
J. Walsh. A single-computer grid gateway using virtual ma-
chines. In Proc. AINA 2005, pages 761–770, Taiwan, March
2005. IEEE Computer Society.

[16] S. Childs, B. Coghlan, D. O’Callaghan, G. Quigley,
J. Walsh, and E. Kenny. A virtual testgrid or how to replicate
a national grid. In Proceedings of the EXPGRID workshop
on Experimental Grid testbeds for the assessment of large-
scale distributed applications and tools, Paris, June 2006.

[17] B. Coghlan, J. Walsh, and D. O’Callaghan. Grid-ireland
deployment architecture. In P. M. Sloot, A. G. Hoekstra,
T. Priol, A. Reinefeld, and M. Bubak, editors, Advances in
Grid Computing - EGC 2005, LNCS3470, Amsterdam, The
Netherlands, February February, 2005. Springer.

[18] B. Coghlan, J. Walsh, G. Quigley, D. O.Callaghan,
S. Childs, , and E. Kenny. Transactional grid deployment. In
M. Bubak, M. Turala, and K. Wiatr, editors, Proc. Crakow
Grid Workshop (CGW’04), pages 363–370, Cracow, Poland,
December 2004. Academic Computer Centre CYFRONET
AGH.

[19] K. Czajkowski, A. Dan, J. Rofrano, S. Tuecke, and
M. Xu. Agreement-based grid service management (ogsi-
agreement), 2003.

[20] I. Foster, N. Jennings, and C. Kesselman. Brain meets
brawn: Why grid and agents need each other, 2004.

[21] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The phys-
iology of the grid: An open grid services architecture for
distributed systems integration, 2002.

[22] E. Kenny, B. Coghlan, J. Walsh, S. Childs, D. O’Callaghan,
and G. Quigley. Autobuilding multiple ports of comput-
ing nodes for grid computing. In Cracow Grid Workshop
(CGW’05), Cracow, Poland, November 2005.

[23] K. Rochford, B. A. Coghlan, and J. Walsh. An agent-based
approach to grid service monitoring. In Proc. International
Symposium on Parallel and Distributed Computing (ISPDC
2006), July July, 2006.

[24] W. Smith. A system for monitoring and management of
computational grids. In ICPP ’02: Proceedings of the 2002
International Conference on Parallel Processing (ICPP’02),
page 55, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

[25] M. Theimer, S. Parastatidis, T. Hey, M. Humphrey, and
G. Fox. An evolutionary approach to realizing the grid vi-
sion, 2006.

[26] H.-L. Truong, R. Samborski, and T. Fahringer. Towards a
framework for monitoring and analyzing qos metrics of grid
services. In E-SCIENCE ’06: Proceedings of the Second
IEEE International Conference on e-Science and Grid Com-
puting, page 65, Washington, DC, USA, 2006. IEEE Com-
puter Society.

[27] S. Zanikolas and R. Sakellariou. A taxonomy of grid mon-
itoring systems. Future Gener. Comput. Syst., 21(1):163–
188, 2005.

Sixth International Symposium on Parallel and Distributed Computing (ISPDC'07)
0-7695-2936-4/07 $20.00 © 2007

