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Abstract 

Mechanical forces acting on the bones during growth affect their final shape and strength. 

Mechanoregulation of bone growth may be recognised in embryogenesis, and also in the 

adaptation of the adult skeleton to changes in mechanical loading. Mechanoregulatory responses 

for tissues have arisen during evolution, but does evolution give rise to responses that produce 

optimal skeletal phenotypes? In this paper, we investigate the emergence of an optimal 

mechanoregulation response in a population.  

 By combining equations describing long bone growth with a genetic algorithm to 

describe evolutionary change, we created a computational model to simulate the evolution of 

mechanoregulation in bone growth. A population of individuals is created where each individual 

is assigned a diploid gene set which controls the growth and remodelling of the bone. At maturity, 

each bone is assessed and its ‘fitness’ calculated; fitness is quantified as bone strength relative to 

bone mass. The simulation continues for many generations, and includes mutations and a varying 

environment. The genes present in the population are tracked and the evolution of parameters 

governing mechanoregulation is calculated.  

 The results indicate that a population may converge to one bone growth algorithm but, 

more usually, a range of mechanoregulation algorithms for different individuals will persist after 

many generations. Even if the population converges to one mechanoregulation law, convergence 

to the ‘optimum’ bone was never found. Although many researchers propose that natural 

selection has pushed skeletal structure towards an optimum, our computational model suggests 

that this is unlikely to be the case.  

 

Keywords: Mechanoregulation algorithms; Bone growth; Optimality; Modelling evolution; 

Genetic algorithm. 
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1. Introduction 

The development, growth, and remodelling of skeletal structures is a highly regulated process 

beginning with mesenchymal stem cell condensations in the early embryo and finishing with the 

homeostatic skeleton of the adult. It is widely accepted that both genetic and epigenetic factors 

determine the final shape and strength of the skeleton, and many authors have specifically 

proposed an epigenetic role for mechanical forces (Pauwels, 1941; Thompson, 1917; Wolff, 

1892). Equations have been proposed to describe how mechanical forces modulate growth where 

a mechano-biological growth rate is superimposed on a baseline biological growth rate (Carter 

and Beaupré, 2001). Since the final skeletal structure is partly determined by mechanobiological 

growth, the mechanoregulatory responses that produce fitter skeletal structures should come to 

the fore in a population (Prendergast, 2002). Alexander (1981) investigated the most economical 

possible design for a bone of specified strength, and found that there exists an optimum ratio of 

inner to outer bone radii for strength with lightness. Currey and Alexander (1985) propose similar 

optimal ratios, assuming that the bones are designed to have a minimum mass to perform a 

particular function. At present, simulations of the growth and adaptation of skeletal structures are 

based on deterministic growth laws where the possible variation in the population is not included 

(van der Meulen and Huiskes, 2002). 

 Biomechanical modelling of bone growth and adaptation was presented by Cowin and 

Hegedus (1976) who proposed an open system in which the rate of change of bone mass was 

related to mechanical strain. Skalak et al. (1982) later formulated a continuum model of growth. 

Carter et al. (1987) proposed bone remodelling was targeted to produce a homeostatic level of an 

‘effective stimulus’ and Huiskes et al. (1987) proposed that the process of bone remodelling was 

an adaptation that returned the strain energy density in the tissue to a homeostatic value. Bone 

growth models incorporating both biological and mechanobiological influences have been 

proposed by van der Meulen et al. (1993), for modelling the cross-sectional growth of long bones, 
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and by Stevens et al. (1999), for modelling endochondral growth using a finite element model. An 

alternative approach is that remodelling of bone is in response to microdamage (Martin, 2000), 

either to regulate microdamage to a homeostatic level (Prendergast and Taylor, 1994) or as the 

stimulus for the activation of the coupled responses of osteoclast and osteoblast cells (Huiskes et 

al., 2000). Recently, the molecular genetics of bone growth and development has received much 

attention to identify, for example, the genes that influence bone mineral content (Karasik et al., 

2002), bone geometry (Klein et al., 2002; Turner et al., 2004), or lead to bone disorders such as 

osteoporosis (Peacock, 2002), and osteopetrosis (de Vernejoul and Benichou, 2001). Experiments 

with embryos have established the importance of genes such as Indian hedgehog (Long et al., 

2004; Vortkamp et al., 1996), parathyroid hormone-related protein (Lanske et al., 1996) and 

fibroblast growth factors (Deleziode et al., 1998; Deng et al., 1996) for bone growth and 

development. While the size and mineral content of a bone are influenced by the processes of 

bone remodelling, it is probable that genes exist with the sole function of controlling bone 

response to mechanical loading, (i.e. mechanosensitive genes, Carter et al., 1998). Despite recent 

advances in the molecular biology of bone, the heritability and variance of the genes controlling 

bone growth and development remain as yet unknown (Boyce at al., 1999). 

We propose to create a model to simulate how mechanoregulation of bone growth is 

subject to selection pressures during evolution. To do this a genetic algorithm is used which 

relates the differential equation describing growth to a simplified representation of the genome.   

The simulation should give outputs describing the population genetics of bone growth and 

remodelling, i.e. the variance present in a population, and how or why this variation arose, or is 

maintained, through processes such as recombination through reproduction, changes in the 

external environment (de Jong and Gavrilets, 2000), genetic mutations (Waxman and Peck, 

2003), and migration and random drift (Marroig and Cheverud, 2004; Tufto, 2000). The specific 

aim is to investigate whether or not changes in mechanoregulatory response can occur during 

evolution and, if so, how would this help us to better represent the adaptive behaviour in the 
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individual skeleton. In particular, will all individuals in a modelled population reach a 

biomechanical optimum? 

2. Methods 

2.1 Model genome and its relationship to the growth law 

Computational simulations are used to investigate the mechanoregulation of bone growth and 

development in a population over many generations. The bone growth model employed was 

proposed by van der Meulen et al. (1993). It simulates the growth of the cross section of a long 

bone from an embryonic bone collar to maturity, where the rate of bone apposition or deposition 

tr&  is equal to the sum of the baseline biological rate br& and the rate due to mechanobiological 

effects  as defined in equation 1. mr&

mbt rrr &&& +=  (1) 

The baseline biological rate is a decaying exponential function of time that decays to 

approximately zero by six years, as defined in Eqn. 2. 

t
b er 9.0−= β&  (2) 

where br& is the baseline rate magnitude and ß is the initial rate magnitude, taken as 10 μm/day in 

this model. The rate due to mechanobiological effects is dependant on the daily stress stimulus ψ, 

where the rate of change of radius due to mechanobiological effects is defined in Eqn. 3.  

)( ASm cr ψψ −=& , (3) 

where  is the rate of bone apposition or resorption on either the inside (endosteal) or outside 

(periosteal) surfaces of the bone due to mechanobiological effects, ψ is the daily stress stimulus, 

ψAS is the attractor state (or desired level) stimulus on the bone, and c is a growth rate constant.  

The daily stress stimulus (ψ) denotes the mechanical stimulus to which the bone is exposed, and 

is calculated based on the number of cycles of a load, the tissue level effective stress and an 

empirical stress exponent (van der Meulen et al., 1993). The constant c is in fact a time constant, 

mr&
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which will affect how quickly the bone reacts (via apposition or resorption) to the stresses placed 

upon it. A higher value of c will lead to more expansion and thus a thinner bone. Through the rate 

constant c, the variation and convergence of the population is assessed. 

 We propose that the magnitude of c is determined as follows: a diploid gene set is defined 

for each individual, taking a finite number of loci, in this case five as shown in Fig. 1. A 

simulation commences with the selection of 50 random numbers to form the gene pool; no new 

genes can be created except by mutation. The genes making up the gene set are numbers in the 

interval 0 to 1, although genes greater than 1.0 may result from mutations. Each locus is filled 

with a gene selected at random from the subsection of the gene pool allocated to that locus (i.e. 

the gene pool is divided into 5 sets of 10 genes, one set per locus). The c value is determined by 

the sum of the average of the genes at the 5 loci of gene sets a and b; 

                                                                  )
2
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+
=
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where n is the number of genes, and gia and gib are genes from the a and b gene sets at locus i (as 

shown in Fig. 1). The genes have no dominance, therefore the effect of having genes g1g2 is 

midway between the effects of having genes g1g1 and genes g2g2 (Hartl and Clark, 1997), i.e. 

co-dominance is assumed. 

Using Eqn. (3) and Eqn. (4), a mechanobiological growth law is derived from the diploid 

gene set. Using this law, the bone of each member of the population is grown as described below. 

The fitness of each individual is assessed when they reach maturity, taken to be 20 years in this 

model. For the bone of a mammal, it is important to minimise mass, as heavy bones are more 

expensive to maintain. It is also important to minimise the maximum stress the bone is subjected 

to (in order to avoid breakage of the bone), which will be the periosteal stress, assuming the bone 

is in torsion. We use stress/mass as a measure of fitness, such that the bone with the minimum 

value of τmax/mass will be at an optimum. The lower the maximum stress on the bone, the less 

likely it is to fail. Therefore, the lower the τmax/mass, the fitter the bone.  Individuals are selected 
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for recombination according to their fitness relative to the rest of the population. For a population 

of p individuals, a number x is calculated such that , and the population is arranged in an 

ordered list such that the least fit individual is first and the most fit last. If j is the position in the 

list, each individual is assigned a probability of selection of j/x. The probabilities of selection for 

all individuals sum to one, and a number line is divided up in proportion to these probabilities, 

where the least fit individual will occupy a region of size 1/x on the number line, and the most fit 

will occupy a region of size p/x. A random number between 0 and 1 is obtained, and the 

individual located at the space on the number line corresponding to this random number is 

selected for recombination. In this way, fitter individuals are favoured, while unfit individuals 

still have a chance of being chosen for recombination, and an element of randomness is still 

maintained in the selection process.  

∑
=

=
p

i
ix

1

 Once an individual has been selected for recombination, a ‘germ’ or haploid gene set is 

obtained from the genes of the ‘parent’. The genes in the haploid germ are taken at random from 

the parent. Two parents are selected to form one child, as shown in Fig. 2.  

 

2.2 Mutations 

Mutations take the form of randomly halving or doubling the value of the gene to be mutated. 

Each gene has a 10-5 chance of being mutated (Roberts and Pembrey, 1985), and the mutations 

take place after the creation of a new gene set.  

  

2.3 Epigenetic variation 

The van der Meulen et al. (1993) model uses an age-dependant loading moment to simulate the 

loading history for an individual bone as shown in the mean curve in Fig. 3. This moment was 

obtained from human body weight during growth (McCammon, 1970), and it was assumed that 

torsional moments and body weight would scale similarly with age (van der Meulen et al., 1993), 
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to give a plot of age versus applied torsional moment. Differences between individuals’ nutrition, 

climate and exercise levels will result in a range of loading moments, and to account for this, an 

envelope of ±10% was plotted about the mean curve, as shown in Fig. 3. Each individual is 

assigned a moment-age curve at random from within this envelope. 

 

2.4 Varying selection strength 

Changes in lifestyle (Ruff et al., 1984) or changes in the environment (Raup, 1986) can cause the 

demands and/or fitness criteria on a bone to change. We include this in our model, where the 

effect of shifts in the environmental conditions can be investigated by varying the strength of 

selection cyclically. A high value for the strength of selection results in a competitive 

environment in which a high fitness conveys a significant reproductive advantage, whereas a low 

selection strength results in a more equal environment, where having an efficient bone conveys a 

less significant advantage. In the simulations where a variable selection force is used, the strength 

of selection is varied cyclically between 1.0 and 0.5, where the value is changed by 0.1 every ten 

generations.  

 

2.5 Implementation 

A gene pool is created and a population of n = 1000 individuals is initialised by assigning each 

individual a gene set. An environment is created, where the initial strength of the natural selection 

force is specified. In the next stage, mechanobiological laws are applied to grow each bone in the 

population to maturity. An individual’s growth is determined by their gene-set and by the loading 

conditions applied. Parents are determined based on the relative fitness, or viability, of the 

individuals in the population, and the selection of parents is influenced by the current strength of 

the selection force, which can vary over time. Once a new generation has been created using the 

genes of the parent generation, the old generation is removed from the simulation. The passage of 

genes can be observed and analysed through generations.  The simulation is run for 1,000 
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generations, equivalent to 20,000 years, as each generation is assessed and culled at 20 years of 

age. One iteration entails the growth, reproduction and death of one generation. The steps 

involved in one iteration are illustrated in Fig. 4. The model is implemented in Java™, 

http://java.sun.com, using techniques adapted from genetic algorithms, as described by Holland 

(1975). 

3. Results 

3.1 Behaviour of the bone growth model 

The magnitude of the growth rate constant c, as given in Eqn. (4) affects the final shape of the 

bone at 20 years, where higher values of c result in a bone with greater periosteal and endosteal 

radii and correspondingly thinner cortical thickness. The constant c is a time constant, and the 

higher the c value, the quicker the bone will react to stresses by increasing its radii. 

 Assuming that every bone is grown with the same mean moment curve (Fig. 3), an 

optimal bone, (i.e., the lowest τmax/mass value at maturity) is created if c = 1.29, see Fig. 6. 

Therefore, under average loading conditions a mechanoregulation rule with c = 1.29 will give the 

highest probability of survival. However, the loading conditions applied to the growing bone will 

affect its growth and resultant shape. We found that applying a lower torsional moment results in 

increased fitness with increasing c, and applying a higher moment leads to a decreased fitness 

with increasing c, as shown in Fig. 7. 

 

3.2 Behaviour of the evolution simulation

Four kinds of simulation were performed:  

 Test 1) basic simulation,  

 Test 2) simulation including mutations,  

 Test 3) simulation including varying selection strength,  

 Test 4) simulation including both varying selection strength and mutations.  
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Each test was repeated twice (Run A and Run B) with the same initial gene pool and population 

configuration; the two runs could be expected to give different results because of the randomness 

of recombination. This duplication enabled us to analyse the effects of the processes occurring 

within the simulation, independently of the initial conditions. Therefore each series had eight 

simulations consisting of  two runs (Runs A and B) of each of the four tests listed above, and the 

complete series was repeated four times for four different initial gene pools (Gene-pools 1-4). 

Therefore 32 simulations were performed altogether. 

The evolution of the gene values and the corresponding c values were recorded for each 

individual throughout the simulation. These parameters can be used to compute variance (or lack 

thereof) in the population as evolution progresses. There are two possible final outcomes for each 

test: convergence to a single value of c, or non-convergence where c is multi-valued in the 

population and there are many genes. Therefore convergence implies that every individual in the 

population has the same gene set after 1000 generations whereas non-convergence implies that 

variance is present in the population. If the population converges, only 5 genes will be left in the 

gene pool, i.e. each of the 5 genes occupies the same locus for every gene set, where the gene is 

replicated twice. In the case of non-convergence, more than 5 genes will be present in the gene 

pool, and a range of c values will exist. It was found that some simulations converged whereas 

others did not; furthermore convergence did not occur to the same c value, nor did convergence 

occur to the optimal value of c=1.29, see Table 2. 

 

3.1.1 Detailed test results 

Test 1: Basic simulation 

A basic simulation involves initialising a population and running the model without any genetic 

mutations or changes in the strength of the selection force. A basic simulation does however, like 

all of the simulations, include the epigenetic variation in applied loading. The initial population 

configuration has a large impact on determining the outcome of this particular simulation, 
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because when two simulations were run with identical initial population configuration, the 

simulations could either both converge or both maintain variation, i.e. non-convergence occurs 

for both Run A and Run B in Gene-pool 1 whereas convergence occurs for both Runs A and B in 

Gene-pools 2, 3, and 4. In Run A of Gene-pool 1, a total of 13 genes still remain in the gene pool 

after 1000 generations, see Fig. 8 (a), giving rise to a range of c values from c = 1.105 to c = 

1.585 (Fig. 8(b)). It is important to note that in those cases where convergence occurs in both runs 

A and B, the populations do not converge to the same c value. For example, for the populations in 

Gene-pool 2, Run A converges to c = 1.415 whereas Run B converges to 1.39. Although the 

populations have both converged, they have different final gene pool configurations, which give 

rise to different c values. Fig. 9(a) shows the gene structure and Fig. 9(b) shows the c value for 

one of these converged simulations, i.e. Gene-pool 2, Run A. 

 

Test 2: Simulation including mutations 

This test includes random mutations at the rate of 10-5 per gene per recombination. It was found 

that variation often remains in a population, but also that convergence can sometimes occur. 

When we ran two tests with the same initial population in Gene-pool 3, we saw that the 

population for Run A converged whereas the population in Run B maintained variance after 1000 

generations. Therefore, unlike the situation with the basic simulation alone, the initial population 

configuration does not determine whether a population will converge or not. This means that the 

random processes contained within the simulation have a significant impact on the outcome. 

However, one feature remains the same as the basic simulation: if two tests within the same 

Gene-pool converge (e.g. Gene-pools 1, 2 and 4), then they converge to different c values (see 

Table 2). 
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Test 3: Simulation including varying selection strength 

In this test, the strength of the selection force is varied cyclically throughout the course of the 

simulation. Where two tests were performed with the same initial population configuration, one 

of the tests converged (Gene-pools 1 and 2), while the other maintained variation. Therefore, we 

found that the population can either converge or maintain variation after 1000 generations and, 

similar to the Mutations test, the outcome is not determined by the initial population 

configuration. In Gene-pool 3, the populations converged to different c values, while in Gene-

pool 4, variation was found in both populations after 1000 generations. However, a different gene 

pool was maintained by the populations in Runs A and B in Gene-pool 4, and therefore a different 

spread in c values.

 

Test 4: Simulation including varying selection strength and mutations 

The fourth and final type of test includes both varying selection strength and mutations. Once 

again, we found that if two tests are run with the same initial population configuration, the 

population can either converge or maintain variation in the gene pool; this occurred in Gene-pools 

2 and 3 (Table 2). In Gene-pool 1, both populations maintained variation, while in Gene-pool 4, 

both populations converged, but to different values of c. Looking closer at the nature of this 

difference,  Gene-pool 2, Run A converged to a gene pool of only 5 genes, which gave rise to a 

single c value of 1.115 (Fig 10(a) and Fig. 10(b)). However, Gene-pool 2, Run B maintained 

many genes (Fig. 11(a)) giving rise to a wide distribution of bone growth rate constants (Fig.11 

(b)).  

 

3.1.2 Gene Frequency Data 

The passage of each gene in the gene pool may be tracked throughout the simulation to obtain 

gene frequency graphs. Since there are 1000 individuals in the population, and each individual 

has 10 genes (5 diploid loci), each of the 5 genes will have a frequency of 2000 when dominant in 
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the population.  If a population converges, it is possible to see that most of the genes gradually 

decrease in frequency to zero, while 5 genes rise slowly to total dominance in the population. For 

Gene-pool 2, Run A, as previously described, convergence to a single c value occurs. This 

convergence is reflected in the gene frequency data, where 5 genes can be seen rising in 

frequency until they reach dominance at 850 generations (Fig. 12). Gene-pool 2, Run B 

maintained variance in the population after 1000 generations and this can be seen in the gene 

frequency data, where a large number of genes are still present in the gene pool after 1000 

generations and only 2 genes are approaching dominance (Fig. 13). 

 

4. Discussion 

The results obtained suggest that the processes of natural selection will not optimize the 

mechanoregulation of growth within a population. Therefore a biomechanically optimal bone will 

not be grown. The bone growth rate constants listed in Table 2 show that many of the populations 

converged to a c value far from the optimum value of 1.29; therefore, this model would suggest 

that natural selection does not even guarantee that mechanoregulation will converge so that bones 

will grow to some near-optimal state. Another interesting aspect to the results is that the 

populations often do not converge to one single value for c, but instead maintain a range of values 

after 1000 generations. Therefore, if the model is accepted, these results demonstrate that 

variance can exist among the parameters governing mechanoregulation during growth. In the four 

types of tests we carried out, there was no test that consistently either converged or maintained 

variation, and so it is impossible to predict the result until a test is run. For the basic simulation 

(no mutations and no shifts in external environment), we found that the initial population 

configuration has a significant impact on the final result, as simulations run with the same initial 

population gave the same result, i.e., either convergence or maintenance of variation. However, 

although they gave the same outcome in respect of convergence vs. non-convergence, they did 
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not yield the same final gene pool, and therefore the resultant populations were still different. For 

the other three tests (mutations, varying selection strength, varying selection strength including 

mutations), we found that the random evolutionary processes determine the results because, even 

when two tests of the same type were run with the same initial population configuration, the tests 

often displayed different final results, with one test converging and the other maintaining 

variation. In addition, if two tests of the same type and initial configuration both converged, they 

would converge to different c values, giving, in effect, mechanoregulation algorithms for bone 

growth. 

 As with any model, a number of necessary simplifications have been included. Firstly, 

the bone growth model is rudimentary in that only cross-sectional growth of circular sections is 

considered. Secondly, the fitness of the bones is judged based on τmax/mass, where the stress is 

calculated based on the maximum torsional moment applied. If other loads, such as axial or 

compressive loads were also included, it is likely that a different bone shape would be optimal, 

and therefore there would be a different optimal value of c. Currey and Alexander (1985) 

examined several different modes of failure for long bones (such as buckling, fracture etc.), and 

discovered that different theoretical optimal bone shapes exist for different failure modes. 

However, introducing a more complex loading would not change the effects of the processes 

contained within the model, nor the nature of the results obtained. Thirdly, with a computational 

model, it is impossible to replicate the complexity of the human genome, and our representation 

of the genes as numbers having linear effect is obviously simplistic. Also, it is possible that a 

gene set of only five diploid genes is too limited, and that a larger gene set would allow more 

recombinations and mutations to occur and therefore individuals might have a better chance of 

reaching an optimum. However, our knowledge of the genes that impact on bone growth and 

remodelling, although much advanced, is still incomplete (Boyce et al., 1999) and it is not known 

yet exactly how many genes impact on bone growth and remodelling (Gilbert, 2000). Finally, not 

every detail of population genetics has been included in the model; for example, epistemic 
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interaction between the loci of the gene sets, or dominance of certain genes. Nonetheless, as it 

stands, the genetic part of the model includes many realistic features, such as a diploid 

recombination, co-dominance of alleles, frequencies of mutations, and interaction between the 

genotype and the environment. A varying environment is also representative of the real situation. 

 Although some aspects of the model are simplistic, it does represent the main features of 

molecular genetics relevant to the question posed in the introduction. For example,  

(i) Genes for recombination are selected at random from the parent chromosomes. This 

occurs if the genes in question are not on the same chromosome, but located on 

several different chromosomes, which has been shown to be the case for the genes 

that influence bone mineral density (BMD) in humans (Karasik et al., 2002), and 

bone geometry in mice (Klein et al., 2002; Turner et al., 2004). It is therefore 

acceptable to assume that the genes influencing bone growth are on different 

chromosomes, and this assumption is reflected in the model.  

(ii) We use a mutation rate of 10-5 per gene, which corresponds to the rates of between 

10-5 and 10-6 new mutations per gene per recombination suggested by Roberts and 

Pembrey (1985).  

(iii) A ±10% variation in applied torsional moment is applied to the population. In the age 

vs. weight data of McCammon (1970), a standard deviation of roughly 10% is 

present for many of the early years, which shows that ±10% is a good approximation 

for loading variability, as the loading is assumed to scale to weight vs. age data (van 

der Meulen et al., 1993). This variation represents the influence that environmental 

variation can have on the growth of a bone, such as the studies effects of nutrition 

(Kriegl et al., 2004), climate (Kobliansky et al., 2000; Pearson, 2000), exercise levels 

(Bass et al., 2002; Duncan et al., 2002), and a host of other environmental influences. 

Despite the importance of epigenetic factors, genetic factors are still considered to be the 

most important influence on bone formation. Slemenda et al (1996) investigated genetic effects 
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on femoral neck geometry and bone mineral density using a twin study, where the heritability of 

bone mineral density, centre of mass and resistance to forces of the femoral neck were estimated 

as 0.72, 0.70, and 0.94 respectively. This quantity can be calculated by graphing the fitness of the 

offspring versus that of their parents, and measuring the slope of the line. A sample graph used to 

calculate the heritability is shown in Figure 14. The 10% loading moment variation included in 

our model gives rise to a heritability of approximately 0.68, which means that roughly 68% of the 

phenotypic characteristics will be attributable to genetic influences, while the other 32% of 

effects observable in the phenotype are attributable to the external environment. Therefore, the 

heritability of the genes in our model of 68% corresponds well to the experimentally calculated 

values for the heritability of the bone mass density and centre of mass of the femoral neck as 

detailed above and it provides a corroboration of our model. 

The simulation has elements in common with that of Siegal and Bergman (2002), who 

model an evolving developmental-genetic system. Their model suggests that canalization may 

occur as a result of developmental processes even without the influence of stabilizing selection. 

Canalization, as described by Waddington (1975) is the buffering of animal development such 

that, in the face of genetic and environmental perturbations, the optimum end result is still 

produced. In the results presented, none of the populations converge to the optimum 

mechanoregulatory response that would grow the fittest structure; that is to say they do not 

converge to c = 1.29.  This outcome seems to contradict the well known optimality assumption, 

which is stated by Emlen (1987) as “the phenotype(s) characterizing the best adapted individuals 

possible in a population comes to dominate that population”. Lewontin (1987) suggests that 

historical accidents of environmental fluctuation and genetic drift are responsible for shaping a 

species, rather than optimality. Our simulations would seem to support the view that optimization 

never takes control over the random elements and therefore that optimum structures are not 

evolved. Bagge (2000, citing Roesler, 1987) states that, although bone has often been considered 

an optimal structure under the given loading conditions, bone cannot immediately attain an 
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optimum structure under a varying load, because of the slow speed of adaptation. However, 

Bagge (2000) does assume that bone adaptation is an optimization process, and that the bone 

seeks to reach an optimal internal structure, but this is not what we have found with our model. 

Instead, we have found that, due to combinatorial aspect of the genetic processes acting during 

evolution, the algorithms governing bone growth and development would not optimise the 

skeleton – instead non-optimal structures are formed.  

Archaeological data can give useful information on the adaptation of bones. Ruff and 

Hayes (1983) demonstrate that modern femoral cross-sections are more cylindrical in shape than 

samples from the Pecos Pueblo femora (dating from between 1300-1650 A.D.), and suggest that 

this difference could be due to changes in loads, although they do admit that this is a tentative 

hypothesis. Could the genes governing bone formation and remodelling have shifted, even in the 

last 500 years, to influence this change in shape? Examination of fossils has shown that there is a 

difference in the rates of bone remodelling between Pleistocene groups (1.8 million to 11,000 

years ago) and the Pecos Pueblo population (Abbott et al., 1996). The study showed that the later 

Pleistocene members of the genus Homo had greater bone mass, less bone turnover and smaller 

osteons than recent population, and this implies that bone remodelling laws have not remained 

constant over time, but are subject to selection pressures and consequently evolve in the same 

way as the skeletal structures themselves. 

We conclude that the variation of mechanoregulation response within a population is 

dependant on the random evolutionary processes contained in the model, such as epigenetic 

variation and recombination. By exploring the mechanoregulation algorithms within a population, 

we would hope to better understand the remodelling response of the individual and its 

relationship to their genes, so as to better predict the effects of mechanical stimulation on bone 

growth and development, and in clinical procedures. Although limited by the simplicity of 

computational models relative to the complexity of skeletal growth, the model, we believe, does 
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demonstrate that evolution with a finite number of genes can cause mechanoregulation to be 

trapped in far from equilibrium optimal states (Weinans and Prendergast, 1996). 

In conclusion, we have simulated the evolutionary change in ontogenetic 

mechanoregulation. We predict that changes in mechanoregulation response occur, which 

indicates that is it possible that variation can exist among the parameters governing the 

mechanoregulation of bone growth, remodelling, and adaptation in extant populations. This result 

would suggest that non-deterministic equations should be used when modelling bone growth or 

remodelling, such as in the patient-specific analysis of skeletal responses due to bone disease or 

surgery. However, perhaps the most significant result is that convergence to the optimum 

mechanoregulation equation was not found and this implies that sub-optimal bone phenotypes 

always occurred in the population. 
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Figure Headers 

Figure 1: Diploid gene set. Each number is assigned from the 50 numbers constituting the gene 

pool. 

Figure 2: Recombination 

Figure 3: Torsional moment applied to simulation over lifetime of bone with 10% Variation 

Figure 4: Schematic of Computational Implementation 

Figure 5: Effect of varying c on the growth of a bone. The bones shown were grown with the 

same mean loading curve. 

Figure 6: Stress/Mass, or fitness values, for bones grown with varying values of c 

Figure 7: Effect of 10% variation in applied torsional moment on Stress/Mass 

Figure 8(a): Gene values for population after 1000 generations (basic simulation, Gene-pool 1, 

Run A) 

Figure 8(b): c Values for population after 1000 generations (basic simulation, Gene-pool 1, Run 

A) 

Figure 9(a): Gene values for population after 1000 generations (basic simulation, Gene-pool 2, 

Run A) 

Figure 9(b): c Values for population after 1000 generations (basic simulation, Gene-pool 2, Run 

A) 

Figure 10(a): Gene values for population after 1000 generations (varying selection strength + 

mutations, Gene-pool 2, Run A) 

Figure 10(b): c Values for population after 1000 generations (varying selection strength + 

mutations, Gene-pool 2, Run A) 

Figure 11(a): Gene values for population after 1000 generations (varying selection strength + 

mutations, Gene-pool 2, Run B) 

Figure 11(b): c Values for population after 1000 generations (varying selection strength + 

mutations, Gene-pool 2, Run B) 
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Figure 12: Gene frequency data (varying selection strength + mutations, Gene-pool 2, Run A) 

Figure 13: Gene frequency data (varying selection strength + mutations, Gene-pool 2, Run B) 

Figure 14: Sample heritability graph (for one recombination). Heritability is calculated from 

slope of linear trend- line of average parental fitness vs. offspring fitness  
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Tables 

Table 1: Effect of varying strength of selection on probabilities of selection for a population of 

four individuals 

Table 2: Test results of Gene-pools 1-4, including c value if population has converged. Within 

each Gene-pool, all of the four tests (Basic, + Mutations, + Varying Selection Strength, 

+ Varying Selection Strength + Mutations) are performed with the same initial gene 

pool and initial population configuration. 
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Probability of Selection Individual 1 Individual 2 Individual 3 Individual 4 
Selection Strength = 1 0.1 0.2 0.3 0.4 
Selection Strength = 0.5 0.175 0.225 0.275 0.325 
 
Table 1: Effect of varying strength of selection on probabilities of selection for a population of four 
individuals 
 
 
 
 
 
 
Test Run Gene-pool 1 Gene-pool 2 Gene-pool 3 Gene-pool 4 

A 
 

Non-convergence 
 
 

Convergence to 
c=1.415 
 

Convergence to 
c=1.37 
 

Convergence to 
c=1.195 
 

Basic 

B Non-convergence Convergence to 
c=1.39 

Convergence to 
c=1.365 

Convergence to 
c=1.22 
 

A 
 
 

Convergence to 
c=1.43 
 

Convergence to 
c=1.285 
 

Convergence to 
c=1.225 
 

Convergence to 
c=1.365 
 

+ Mutations 

B Convergence to 
c=1.37 

Convergence to 
c=1.105 

Non-convergence Convergence to 
c=1.475` 
 

A Convergence to 
c=1.255 
 

Convergence to 
c=1.405 
 

Convergence to 
c=1.355 
 

Non-convergence 
 
 

+ Varying Selection 
Strength 

B Non-convergence Non-convergence Convergence to 
c= 1.305 

Non-convergence 

A Non-convergence 
 
 

Convergence to 
c=1.115 
 

Convergence to 
c=1.47 
 

Convergence to 
c=1.335 
 

+ Varying Selection 
Strength + 
Mutations 

B Non-convergence 
 

Non-convergence 
 

Non-convergence 
 

Convergence to 
c=1.275 
 

Table 2: Test results of Gene-pools 1-4, including c value if population has converged. Within each Gene-
pool, all of the four tests (Basic, + Mutations, + Varying Selection Strength, + Varying Selection Strength 
+ Mutations) are performed with the same initial gene pool and initial population configuration. 
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Figure 1: Diploid gene set. Each number is assigned from the 50 numbers constituting the gene pool. 
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Figure 2: Recombination 
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Figure 3: Torsional moment applied to simulation over lifetime of bone with 10% Variation 
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Figure 4: Schematic of Computational Implementation 
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Figure 5: Effect of varying c on the growth of a bone. The bones shown were grown with the same mean 
loading curve. 
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Figure 6: Stress/Mass, or fitness values, for bones grown with varying values of c when mean 
torsional moment is applied, as shown in Fig.3
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Figure 7: Stress/Mass, or fitness values, for bones grown with varying c, when the mean moment, 
the mean-10% and the mean+10% are applied. The middle curve is the same as the curve shown 
previously in Fig. 6. 
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Basic Simulation (Gene-pool 1, Run A): Gene Values
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Figure 8(a): Gene values for population after 
1000 generations (basic simulation, Gene-pool 
1, Run A) 

Figure 8(b): c Values for population after 1000 
generations (basic simulation, Gene-pool 1, Run 
A) 
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Basic Simulation (Gene-pool 2, Run A): Gene Values
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Figure 9(a): Gene values for population after 
1000 generations (basic simulation, Gene-pool 
2, Run A) 

Figure 9(b): c Values for population after 1000 
generations (basic simulation, Gene-pool 2, Run 
A)
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Varying Selection Strength + Mutations 
(Gene-pool 2, Run A): Gene Values
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Figure 10(a): Gene values for population after 
1000 generations (varying selection strength + 
mutations, Gene-pool 2, Run A) 

Figure 10(b): c Values for population after 1000 
generations (varying selection strength + 
mutations, Gene-pool 2, Run A) 
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Varying Selection Strength + Mutations 
(Gene-pool 2, Run B): Gene Values

0.105 0.221

0.513
0.5650.002

0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

Fr
eq

ue
nc

y

 Generation 999

Varying Selection Strength + Mutations 
(Gene-pool 2, Run B): c Values

1.43
1.411.285

0
5

10
15
20
25
30
35
40

0 1 2 3 4

Fr
eq

ue
nc

5

y

 Generation 999

Figure 11(a): Gene values for population after 
1000 generations (varying selection strength + 
mutations, Gene-pool 2, Run B) 

Figure 11(b): c Values for population after 1000 
generations (varying selection strength + 
mutations, Gene-pool 2, Run B) 
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Varying Selection Strength + Mutations (Gene-
pool 2, Run A): Gene Frequency Data
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Figure 12: Gene frequency data (varying selection strength + mutations, Gene-pool 2, Run A) 
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Varying Selection Strength + Mutations (Gene-
pool 2, Run B): Gene Frequency Data
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Figure 13: Gene frequency data (varying selection strength + mutations, Gene-pool 2, Run B) 
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Heritability Graph
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Figure 14: Sample heritability graph (for one recombination). Each point represents the fitness of the 

offspring versus the averaged fitness of the two parents for a sample generation. Heritability is calculated 

from the slope of the line through the points.  
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