The CanonicalProducer: an instrument monitoring

component of the Relational Grid Monitoring
Architecture (R-GMA)

Rob Byr0m§, Brian Coghlan**, Andrew Cooke*, Roney Cordenonsif, Linda Cornwall¥,
Ari Datta¥, Abdeslem Djaouiﬂ, Laurence Field$, Steve Fisher¥, Steve Hicks$,
Stuart Kenny**, James Magowan!, Werner Nutt*, David O’Callaghan**, Manfred Oevers',
Norbert Podhorszki”, John Ryan**, Manish Soni, Paul TaylorT, Antony Wilson® and Xiaomei Zhu®
*Heriot-Watt, Edinburgh, UK fIBM Hursley Laboratory, UK ¥Queen Mary, University of London, UK $PPARC.
UK YRutherford Appleton Laboratory, UK ISZTAKI, Hungary **Trinity College Dublin, Ireland

Abstract— We describe how the R-GMA (Relational Grid
Monitoring Architecture) can be used to allow for instrument
monitoring in a Grid environment. The R-GMA has been
developed within the European DataGrid Project (EDG) as a
Grid Information and Monitoring System. It is based on the
Grid Monitoring Architecture (GMA) from the Global Grid
Forum (GGF), which is a simple Consumer-Producer model.
The special strength of this implementation comes from the
power of the relational model. It offers a global view of the
information as if each Virtual Organisation had one large
relational database. It provides a number of different Producer
types with different characteristics; for example some support
streaming of information. We describe the R-GMA component
that allows for instrument monitoring, the CanonicalProducer.
We also describe an example use of this approach in the European
CrossGrid project, SANTA-G, a network monitoring tool.

Index Terms— Grids, Instrument Monitoring, Grid Monitoring
Architecture, Grid Information and Monitoring Systems, R-
GMA, CanonicalProducer, SANTA-G

I. THE R-GMA
The Grid Monitoring Architecture (GMA) [2] of the Global
Grid Forum (GGF), as shown in Figure 1, consists of three
components: Consumers, Producers and a directory service,
which in the R-GMA is referred to as a Registry).

Producer
%
e
o
i,
Transfer B e
Data ~ istr
o Registry
e
N
o9 -
oot
Y e
Consumer
Fig. 1. Grid Monitoring Architecture

In the GMA Producers register themselves with the Registry
and describe the type and structure of information they want to
make available to the Grid. Consumers can query the Registry
to find out what type of information is available and locate Pro-
ducers that provide such information. Once this information

is known the Consumer can contact the Producer directly to
obtain the relevant data. By specifying the Consumer/Producer
protocol and the interfaces to the Registry one can build inter-
operable services. The Registry communication is shown on
Figure 1 by a dotted line and the main flow of data by a solid
line.

The current GMA definition also describes the registration
of Consumers, so that a Producer can find a Consumer. The
main reason to register the existence of Consumers is so that
the Registry can notify them about changes in the set of
Producers that interests them. Although the GMA architecture
was devised for monitoring, the R-GMA uses it as a basis for
a combined information and monitoring system. The case for
this was argued in [4]; that the only thing which characterises
monitoring information is a time stamp, so in the R-GMA
there is a time stamp on all measurements, saying that this is
the time when the measurement was made, or equivalently the
time when the statement represented by the tuple was true.

The GMA does not constrain any of the protocols nor
the underlying data model, so the implementation of the R-
GMA was free to adopt a data model which would allow the
formulation of powerful queries over the data.

R-GMA is a relational implementation of the GMA, devel-
oped within the European DataGrid (EDG), which harnesses
the power and flexibility of the relational model. R-GMA
creates the impression that you have one RDBMS per Virtual
Organisation (VO). However it is important to appreciate that
the system is a way of using the relational model in a Grid
environment and not a general distributed RDBMS with guar-
anteed ACID properties. All the producers of information are
quite independent. It is relational in the sense that Producers
announce what they have to publish via an SQL CREATE
TABLE statement and publish with an SQL INSERT and that
Consumers use an SQL SELECT to collect the information
they need. For a more formal description of R-GMA see [3].

R-GMA is built using servlet technology and is being
migrated rapidly to web services, specifically to fit into an
OGSA/OGSI [5] framework.

There have so far been defined not just a single Producer but
four different types: a DataBaseProducer, a StreamProducer,
a LatestProducer and a CanonicalProducer. All appear to be

Producers as seen by a Consumer, but they have different
characteristics.

The producers are instantiated and given the descrip-
tion of the information they have to offer by an SQL
CREATE TABLE statement and a WHERE clause express-
ing a predicate that is true for the table. Currently this
is of the form WHERE (column_l=value.l AND col-
umn_2=value_2 AND ...). To publish data, in all but the
CanonicalProducer, a method is invoked which takes the form
of a normal SQL INSERT statement. The CanonicalProducer,
though in some respects the most general, is somewhat differ-
ent due to the absence of a user interface to publish data via
an SQL INSERT statement; instead, it triggers user code to
answer an SQL query. For more detail see Section III.

A Consumer uses the Registry to find out what type of
information is there, and where it is. The R-GMA Registry
stores information about all producers currently available. The
R-GMA, uniquely, includes a mediator (a kind of broker that
is hidden behind the Consumer interface) specifically to make
the R-GMA easy to use. The mediator knows that Producers
are associated with views on a virtual data base. Currently
views have the form:

SELECT * FROM <table> WHERE <predicate>

This view definition is stored in the Registry. When queries
are posed by a Consumer, the Mediator uses the Registry to
find the right Producers and then combines information from
them.

II. R-GMA ARCHITECTURE

R-GMA is currently based on Servlet technology. Each
component has the bulk of its implementation in a Servlet.
Multiple APIs in Java, C++, C, Python and Perl are available
for user code to communicate with the servlets. The R-GMA
makes use of the Tomcat Servlet container. Most of the R-
GMA code is written in Java and is therefore highly portable.
The only dependency on other EDG software components is
in the security area.

Figure 2 shows the communication between the APIs and
the Servlets. When a Producer is created its registration details
are sent via the Producer Servlet to the Registry (Figure 2a).
The Registry records details about the Producer, which include
the description and view of the data published, but not the
data itself. The description of the data is actually stored
as a reference to a table in the Schema. In practise the
Schema is co-located with the Registry. Once registration is
completed, then whenever the Producer publishes data, the
data are transferred to a local Producer Servlet (Figure 2b).

When a Consumer is created its registration details are also
sent to the Registry although this time via a Consumer Servlet
(Figure 2c). The Registry records details about the type of data
that the Consumer is interested in. The Registry then returns
a list of Producers back to the Consumer Servlet that match
the Consumer’s selection criteria.

The Consumer Servlet then contacts the relevant Producer
Servlets to initiate transfer of data from the Producer Servlets
to the Consumer Servlet as shown in Figures 2d-e. The data
are then available to the Consumer on the Consumer Servlet,

which should be close in terms of the network to the Consumer
(Figure 2f).

As details of the Consumers and their selection criteria are
stored in the Registry, the Consumer Servlets are automatically
notified when new Producers are registered that meet their
selection criteria.

The system makes use of soft state registration to make it
robust. Producers and Consumers both commit to communi-
cate with their servlet within a certain time. A time stamp is
stored in the Registry, and if nothing is heard by that time,
the Producer or Consumer is unregistered. The Producer and
Consumer servlets keep track of the last time they heard from
their client, and ensure that the Registry time stamp is updated
in good time.

III. THE CANONICALPRODUCER

If we have to deal with a large volume of data it may not be
practical to convert it all to a tabular storage model. Moreover,
it may be inefficient to transfer the data to a Producer servlet
with SQL INSERT statements. It may be judged better to leave
the data in its raw form at the location where it was created.
The CanonicalProducer is able to cope with this by accepting
SQL queries and using user supplied code to return selected
information in tabular form when required.

In general the R-GMA producers are sub-classes of the
Insertable class, the class that provides the insert method. The
insert method is used by the producers to send data to the
servlets as an SQL INSERT string. The CanonicalProducer is
different however; it is a subclass of the Declarable class. This
means that it inherits the methods for declaring tables, but not
inserting data. The user’s producer code is responsible for ob-
taining the data requested. Figure 3 shows the communication
between the servlets for a CanonicalProducer. When the other
producer types publish data, the data is transferred to a local
producer servlet via a SQL INSERT. The CanonicalProducer
Servlet, however, is never sent raw data, which is instead
retained local to the user’s CanonicalProducer code.

Canonical
Producer Registry .

Registry

Servlet API Serviet

User's Canonical | select data
Producer Code A

CanonicalProducer

TN —
. transfer | -~

data

%
transfer
data select data

User's Consumer
Code Producer
API

Consumer select data,
API 14

Registry
API register Consumers,
and select Producers

Consumer
Servlet

Fig. 3. CanonicalProducer Servlet Communication

A CanonicalProducer is instantiated by calling the API
constructor method:

CanonicalProducer myProducer =
new CanonicalProducer
(8998, CanonicalProducer.HISTORY) ;

Producer Producer - 2+ Regiztry Producer Prducer R
Servlet | Registry E&ﬁ‘l Servlet Serviet Registry
Praducer AFL Producer | |- AFL
AFT clzats producer APL insert
"] table - "l data
1) Register Producer b) Publizh data
Producer Producer - Registry Prochicer Registry
Serviet Registry Semvlet Senlet
irpo[duccr e APL ir;[ducc: iy
data data
A
-C-O!'IEL]II'ICE Producer
Consumer | |select - _AP[
e data 'Registry | | register Consumer |
Igon.snmcr AFL and s=lect Priodocers
[Servlet
cl Register Cansumer and select Produce s di Contact Praducers
Producer Producer - Registry Producer Producer . Registry
Servlet Registry Servlet Senvlet R%[EEH;" Servlet
Producer | |. AFT Producer | |, Al
APL insert APL insert
" | data " | data
F i
g g
El< El4
Consumer [Brodieer Cansumer —_— Bradoeer
= -
APL : APL data 7
1y i
L Cansumer Eﬂ Cansumer ‘l}fﬂms ¥
Servlet —_ Servlet

=) Transter data to Consumer Servlet

) Transfer data to Consumer

Fig. 2. Relational Grid Monitoring Architecture

This creates a new CanonicalProducer object, which regis-
ters itself with the CanonicalProducerServlet. The first param-
eter is a port number. The CanonicalProducerServlet expects
to be able to connect, by way of a socket connection, to the
CanonicalProducer code on this port in order to satisfy SQL
queries. The second parameter describes the type of query that
this producer code can satisfy, HISTORY or LATEST.

The table, or tables, that this producer publishes are then
declared using the declareTable method.

myProducer.declareTable

("cpuLoadUsage",
" WHERE (ipAddress='"
+ this.ipAddress + "’)",
"CREATE TABLE cpulLoadUsage (
ipAddress VARCHAR (50)
NOT NULL PRIMARY KEY,
cpuLoad REAL)"

When the servlet receives a query it opens a socket con-
nection on the given port number to the CanonicalProducer

code and forwards the SQL SELECT query to the producer
code. The producer code must then execute the query, in
whatever way it likes, and return a ResultSet to the servlet.
The servlet can then return this ResultSet to the consumer.
With the other producer types the producer is never aware
of the SQL SELECT queries, they simply push the data to
the servlet, and it is the servlet that carries out the SQL
query. With a CanonicalProducer, however, the servlet has
only the very minimum functionalty. To satisfy the query, it
simply acts as an intermediary, forwarding the query to the
correct CanonicalProducer instance and waiting for results to
be returned.

A typical implementation of CanonicalProducer code would
consist of several components, as shown in Figure 4. Although
the figure shows the data being collected by an instrument and
stored in log files, the data source could be anything.

CanonicalProducer Code would be the main class imple-
mented by the user, which would
use the CanonicalProducer API
to instantiate a producer object,
and declare the tables that the

Device

Z

Monitoring
Instrument

seekl
N

Register,
cP declare tables |
API 4

User' s
Canonical
Producer Code

Canonical
Producer
Serviet

Listener

ServerSocket

Connegtion

ResultSet

SQLParser (¢

Search

query
»

data
&

Processing
Thread

Log File 14

17 Class

| Implemented
by user

L 4

—_ e e — — — — —

Fig. 4. An example of CanonicalProducer user code

Listener

Processing Thread

SQL Parser

Search Class

producer publishes. It would then
start a Listener to wait for con-
nections from the servlet.

would be created by the main
class. It would need to create a
ServerSocket and then listen on
this socket for connections from
the servlet. When a connection is
obtained it would be passed to a
processing thread to execute the
query and then continue listening
for new connections.

would receive the connection to
the servlet from the Listener. The
processing thread would read the
SQL SELECT query from the
socket connection, and process
it over the available data. When
the results had been accumulated
they would then be returned to
the servlet, over the same socket
connection.

Some additional classes would
have to be used by the processing
thread. A class would be needed
to parse the SQL SELECT re-
ceived from the servlet.

A class would also be needed to
search the data for the required
results to satisfy the query. This
class might, for example, perform
seek operations on a binary log
file to find the data, or possibly
invoke a script to collect the data.

Results should be returned to the servlet as XML ResultSets.
The form of these is as follows:

<?xml version =
"standalone='no’?>
<edg:XMLResponse

"1

.07

encoding='UTF-8’'

xmlns:edg="http://www.edg.org’ >
<XMLResultSet>

<rowMetaData>
<colMetaDatas>ColumnName</colMetaData>
</rowMetaData>
<row><col>ColumnValue</col></row>
</XMLResultSets>

</edg:XMLResponse>

An important issue with the CanonicalProducer is the
following. For the other producer types one can estimate
how often the producer will contact the servlet, as it should
be regularly inserting data. This is not the case with the
CanonicalProducer. Because the CanonicalProducer never ac-
tually inserts data, the servlet will never be informed as to
whether the producer is still alive, and therefore will not
inform the registry. After the R-GMA termination interval
the CanonicalProducer would be presumed to be dead and
its details would be removed from the registry. To avoid
this a CanonicalProducer implementation should ensure that
it regularly sends a sign of life to the servlet. This can be
achieved by a thread that periodically, at intervals less than
the termination interval, contacts the servlet.

Because the user must write the code to parse and execute
the query, the CanonicalProducer can be used to carry out any
type of query on any type of data source.

IV. EXAMPLE USE OF THE CANONICALPRODUCER:
SANTA-G

SANTA-G (Grid-enabled System Area Networks Trace
Analysis) is a generic template for ad-hoc, non-invasive mon-
itoring with external instruments, see Figure 5. The template
allows for the information captured by external instruments
to be introduced into the Grid Information System. It is
possible for these intruments to be anything, from fish sonars
to PCR Analysers. The enabling technology for the template
is the CanonicalProducer. The demonstrator of this concept,
developed within the CrossGrid [11] project, is a network
tracer that allows a user to analyse the Ethernet traffic at a
site. The information obtained is useful for both the validation
and calibration of intrusive monitoring systems and also for
performance analysis.

Monitoring p N .
Instrument - > Grid Resource
User' s Canonical
3 3_‘ Producer Code
& N —_— Grid Information
M 4 System (R-GMA)
Canonical
Log Files Producer APl (¥
Fig. 5. SANTA-G monitoring framework

The SANTA-G NetTracer is composed of three components
that allow for the monitoring data to be accessed through
the R-GMA: a Sensor (which is installed on the node(s)
to be monitored), a QueryEngine, and a Viewer GUI, see

Figure 6. The Sensor invokes Tcpdump (an open-source packet
capture application), and then monitors the log files created.
The Sensor notifies the QueryEngine when new log files are
detected. The QueryEngine records these events in a database,
which is published to users through the R-GMA (by using
the LatestProducer API). The QueryEngine also includes the
interface to the R-GMA by using the CanonicalProducer
API. Data is viewed via the R-GMA by submitting an SQL
SELECT statement, as if querying a relational database.
Through the CanonicalProducer this query is forwarded to
the QueryEngine, which then parses the query, searches the
appropriate log file to obtain the data required to satisfy the
query, and returns the dataset to the GUI through the R-GMA.

invoke
Tepdump

SANTA-G
Viewer

SANTA-G
Sensor

write network
data

i Consumer
,_monitor
& API

—‘ register 1T P
h 4 log file Sensor ID
info ¥
SANTA-G
QueryEngine

CanonicalProducer

Log Files
9 API

R-GMA

Trace Directory LatestProd
atestProducer
API

Sensor and
log file
information

Fig. 6. SANTA-G NetTracer

It is the SANTA-G QueryEngine that implements the
components of the CanonicalProducer code as described in
Section III. Figure 7 shows how the QueryEngine executes a
SQL query received from the R-GMA (i.e. from the Canon-
icalProducerServlet). The QueryEngine listens on a socket,
waiting for connections from the Servlet. When a connection
is made the SQL query is read from the socket and passed
to an SQLParser class. The parser breaks the query into three
separate lists; a select list that contains the network header
fields to be read, a from list that contains the table the fields
belong to, and a where list that contains the values used to
match the packets to. The Search class searches the log file for
network packets that match the WHERE predicates specified
in the query, and extracts the required packet header fields
from them. The data that satisfies the query is accumulated
into a ResultSet in XML format and returned to the Servlet
over the socket connection. For example, the following query:

SELECT source_address, destination address,
packet type

FROM Ethernet
WHERE sensorld =
AND fileId = 0
AND packetId < 100

‘some.machine.com:0’

would return the source address, destination address, and
packet type fields of the Ethernet header for the first

100 packets in the log file assigned ID 0 and stored on
‘some.machine.com’.

SANTA-G
QueryEngine

socket SQL query

SQLParser

lparsed

Search

1 ResultSet

Responder

transfer
data

seek

&
Log File \‘
N
! »
data
Log File

XML
ResultSet

CanonicalProducer

LatestProducer
API

Fig. 7. SANTA-G QueryEngine Query Processing

The SANTA-G Viewer provides a graphical user interface,
which makes use of the R-GMA Consumer API, to allow users
to graphically view network packets in the log files, and also
to build and submit SQL queries that will be carried out on
the log files.

V. CONCLUSION

The R-GMA is a relational implementation of the GMA
architecture. It is built using servlet technology. In the R-GMA
most producers of information publish data by transferring
the data to servlets. This may not always be suitable for all
applications. When dealing with instruments which produce
a large volume of data it may not be practical to convert
it all to a tabular storage model nor efficient to transfer the
data to the servlets. It may be preferrable to leave the data
where it was created, and only transfer it across the network
when specifically requested by a user. In order to allow for
this a special type of producer was included in R-GMA, the
CanonicalProducer. This allows a user to customize the way
the producer responds to a user request, i.e. a SQL query.
The SANTA-G network monitoring tool developed within
the CrossGrid project demonstrates the CanonicalProducer
concept by publishing Ethernet trace data.

REFERENCES

[1] Andrew Cooke, Werner Nutt, James Magowan, Manfred Oevers, Paul
Taylor, Ari Datta, Roney Cordenonsi, Rob Byrom, Laurence Field, Steve
Hicks, Manish Soni, Antony Wilson, Xiaomei Zhu, Linda Cornwall,
Abdeslem Djaoui, Steve Fisher, Norbert Podhorszki, Brian Coghlan,
Stuart Kenny David O’Callaghan, John Ryan. RGMA: First Results After
Deployment CHEPO3, La Jolla, California, March 24-28, 2003.

[2] B. Tierney, R. Aydt, D. Gunter, W. Smith, M. Swany, V. Taylor, and
R. Wolski. A Grid monitoring architecture. Global Grid Forum
Performance Working Group, March 2000. Revised January 2002.

[3] Andy Cooke, Alasdair J G Gray, Lisha Ma, Werner Nutt, James Magowan,
Manfred Oevers, Paul Taylor, Rob Byrom, Laurence Field, Steve Hicks,
Jason Leake, Manish Soni, Antony Wilson, Roney Cordenonsi, Linda
Cornwall, Abdeslem Djaoui, Steve Fisher, Norbert Podhorszki, Brian
Coghlan Stuart Kenny, David O’Callaghan. R-GMA: An Information
Integration System for Grid Monitoring Proceedings of the Tenth
International Conference on Cooperative Information Systems, 2003.

[4] Brian Coghlan, Abdeslem Djaoui, Steve Fisher, James Magowan, Man-
fred Oevers. Time, Information Services and the Grid 31st May 2001.

[5] S. Tuecke, K. Czajkowski, 1. Foster, J. Frey, S. Graham, C. Kesselman,
P. Vanderbilt. Grid Service Specification http://www.gridforum.org/ogsi-
wg/drafts/draft-ggf-ogsi-gridservice-04_2002-10-04.pdf, 2003.

[6] The DataGrid Project. http://www.eu-datagrid.org

[7] DataGrid WP3. DataGrid Information and Monitoring Final Evalua-
tion Report https://edms.cern.ch/document/410810/4/DataGrid-03-D3.6-
410810-4-0.pdf

[8] Brian Coghlan, Stuart Kenny. SANTA-G Software Design Document

[9] Brian Coghlan, Stuart Kenny. SANTA-G First prototype Descrip-
tion http://www-eu-crossgrid.org/Deliverables/M12pdf/CG3.3.2-TCD-
D3.3-v1.1-SANTAG.pdf

[10] CrossGrid WP3. Deliverable D3.5, Report on the Results of the 2nd and
3rd Prototype http://[www-eu-crossgrid.org/Deliverables/M24pdf/CG3.0-
D3.5-v1.2-PSNCO010-Proto2Status.pdf

[11] The CrossGrid Project http://www.eu-crossgrid.org

[12] DataGrid WP3 Information and Monitoring Services
http://hepunx.rl.ac.uk/edg/wp3/

[13] Global grid forum. http://www.ggf.org

[14] I Foster and C. Kesselman. The Grid: Blueprint for a New Computing
Infrastructure, chapter 2: Computational Grids, pages 15-51. Morgan
Kaufmann, 1999.

[15] 1. Foster, C. Kesselman, and S. Tuecke. The anatomy of the Grid:
Enabling scalable virtual organization. The International Journal of High
Performance Computing Applications, 15(3):200-222, 2001.

[16] Globus Toolkit. http://www.globus.org

