
Spotlight

IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society JULY • AUGUST 2003 79

Overlay
Networks
A Scalable Alternative for P2P

P eer-to-peer systems are distributed systems
that operate without centralized organiza-
tion or control. To find a particular piece

of data within the network, P2P systems explicit-
ly or implicitly provide a lookup mechanism, or
locator function, that matches a given string, or
key, to one or more network nodes responsible for
the value associated with that key. P2P nodes
interoperate by using the same software or the
same set of network-based APIs.

Current Internet P2P applications typically
provide locator functions using time-to-live (TTL)
controlled-flooding mechanisms. With this
approach, the querying node wraps the query in a
single message and sends it to all known neigh-
bors. The neighbors then check to see whether
they can reply to the query by matching it to keys
in their internal database. If they find a match,
they reply; otherwise, they forward the query to
their own neighbors and increase the message’s
hop count. If the hop count passes the TTL limit,
forwarding stops. The TTL value thus defines a
boundary or “horizon” for the query that controls
its propagation.

However, flooding-based systems don’t scale
well because of the bandwidth and processing
requirements they place on the network, and they
provide no guarantees as to lookup times or con-
tent accessibility. Overlay networks can address
these issues. Overlay networks have a network
semantics layer above the basic transport proto-

col level that organizes the network topology
according to the nodes’ content, implementing a
distributed hash table abstraction that provides
load balancing, query forwarding, and bounded
lookup times.

Overlay networks are evolving into a critical
component for self-organizing systems (see, for
example, the multigroup effort at www.project-
iris.net). Here we outline the differences between
flooding-style and overlay networks, and offer
specific examples of how researchers are applying
the latter to problems requiring high-speed, self-
organizing network topologies.

Flooding-Style Networks
Figure 1 (next page) shows a P2P-style search with
TTL-controlled flooding. In this example, node Nq
is requesting the associated value of a key located
in Nr (for which only Nr can provide the value).
Nodes that can’t answer the query forward it to
their neighbors, eventually reaching Nr, which
returns the result directly to the requesting node;
the concentric circles indicate the number of mes-
sage hops. In a sense, the network itself resolves
the requested lookup.

This example underscores the problems of
flooding-style P2P networks. Even though only
Nr can answer the query, all the nodes within TTL-
range must process it. Also, if the value had been
stored in node Nar the query result would not be
found unless the message’s TTL was set to a high-

Diego Doval and Donal O’Mahony • Trinity College Dublin

Overlay networks create a structured virtual topology above the basic transport

protocol level that facilitates deterministic search and guarantees convergence.

er value, potentially flooding the entire network.
The Gnutella Network (www9.limewire.com/
developer/gnutella_protocol_0.4.pdf) essentially
uses this P2P scheme. In Freenet, the query is for-
warded according to a more sophisticated cache-
based routing strategy, and the result returns
through the request’s exact node-to-node path,
therefore guaranteeing local anonymity.1 Net-
works such as Gnutella organize nodes indepen-
dently of the underlying physical topology; neigh-
bors might exist within the same subnetwork or
across the Internet.

Although some networks adapt to the under-
lying physical topology, such optimization is not
required for the algorithm to operate properly.
These networks are unstructured: nodes attach to
the network according to measures unrelated to
content, such as join-order, connection speed,
and even physical proximity, creating a random
connection topology. Although this approach
makes maintaining connections simpler, it has
two problems:

• Content location and network topology are
uncorrelated. Network searches are essentially
open ended, forcing protocols to use TTL mea-
sures to control message propagation and avoid
flooding the whole network. Thus, available
content might not be accessible to all network

nodes, and a query hit cannot be guaranteed
even if the target node is connected to the net-
work.

• The network is random. As a result, searching
for a particular element within the horizon has
a theoretical limit of N hops, where N is the
number of nodes within the query’s reach. In
practice, however, the networks typically tra-
verse different sections of the graph in paral-
lel, reducing lookup times. Still, strictly speak-
ing, queries on an unstructured P2P network
tend to have lookup complexity of the order
of N, or O(N), hops.

Such limitations are not critical for applications
such as file sharing. However, for many content-
location applications — such as reliable distributed
data storage — networks must find content when-
ever it’s available. All content must therefore be
“reachable” by the content-location service, net-
work load must be constrained, and search times
must be bound by a predictable limit to avoid arbi-
trary reply times. In other words, search must be
deterministic. Overlay networks fulfill these
requirements.

Overlay Networks
Overlay networks such as the Content Addressable
Network (CAN),2 Chord,3 Pastry,4 and Viceroy5 cre-
ate a virtual topology on top of the physical topol-
ogy. In this sense, TTL-based P2P networks are also
a type of overlay, but we use the term here to refer
only to networks that create virtual topologies based
on node-content attributes. Some networks, such as
Chord, organize the network on the basis of each
participating node’s IP address; other networks use
the node’s stored data as the organizing content.

How They Work
Overlay networks share four qualities:

• Guaranteed data retrieval
• Provable lookup-time horizons (typically O(log

N) with N being the number of network nodes)
• Automatic load balancing
• Self-organization

Because overlay networks define neighbor nodes
by content stored, they can change search from a
standard graph-traversal problem into a localized
iterative process. In this process, each hop brings
the query closer to its target set of hops, which can
be calculated according to a mathematical func-
tion. This reduces the overall network load and

80 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Node that originates
the query

Node that replies
to the query

Node connectivity

Node affected by the query

Reply path

(query TTL=2)

Nq

Nr

Nar

Figure 1. Sample TTL-based P2P network and query. The Nq node
transmits a query requesting the value of a key located in Nr.
Concentric circles indicate the number of message hops.

makes the query process deterministic. In abstract
terms, an overlay network operates like a distrib-
uted hash table by allowing key insertion, query-
ing, and removal. Typically, it derives those keys
from the node-exposed content by, for example,
using a consistent hashing algorithm such as the
secure hash algorithm (SHA-1).

An overlay network’s connectivity pattern is dif-
ferent from that obtained using a TTL-based algo-
rithm in that it is structured and typically symmet-
rical. The structure is based on one or more
mathematical functions that determine how the
nodes are connected. The network’s structure con-
tributes to the overlays’ bound lookup times. When
nodes fail, overlay network algorithms provide
mechanisms that let the network recover and recre-
ate or maintain an appropriate network structure.

An important difference between overlay net-
works and unstructured P2P networks is that
overlays lookup data on the basis of identifiers
derived from the content, and thus don’t directly
support keyword-based searching. Although work
is ongoing for layering keyword searching on top
of overlays, whether it can be done efficiently
enough to support large-scale networks is still an
open problem.

Example Overlay Networks
As an example, let’s consider a network in which
nodes want to publish a given storage identifier,
as in a distributed database system. In this case,
the node-exposed content is also its identifier; we
define it as a positive integer value and skip the
hashing step. If the identifiers are universally
unique, we can establish a few simple rules to cre-
ate an overlay topology:

• Each overlay node has two neighbors: the node
whose value is the next available (higher) inte-
ger, and the node whose value is the previous
available (lower) integer.

• If the current node is the network’s lowest or
highest identifier, one of the neighbors will be
the opposite value in the available node range
(that is, the highest or the lowest, respectively).

• To join the network, a node must perform an
out-of-band request — such as a broadcast —
to find another network node. The incoming
node can then use the search function to find
the network “slot” where it should insert itself.

The search process is simple: the node that initi-
ates the query determines the relation between its
own value and the target value. If the target value

is higher than the node’s value, the node passes the
request to its higher-value neighbor, if it is lower it
passes it to its lower-value network. This local
decision process continues until the request reach-
es the destination node, which replies directly to
the requester, sending its physical network address
for additional operations.

Figure 2 shows a hypothetical overlay network
built using our simple example algorithm propa-
gating a query. Because overlay nodes are con-
nected according to the content stored in them,
queries can be routed efficiently to the target.

This example is unrealistic because the search
time is bound but linear (the maximum number of
hops is N/2), which creates unacceptable lookup
times. It also fails to deal with recovery and pos-
sible loops created by missing nodes in the topol-
ogy. However, the example does show how a set
of simple rules lets nodes use their content to self-
organize and provide bound lookup times. Real-
world overlay network algorithms use more com-
plex rules to organize the nodes.

Chord’s algorithm offers a more relevant exam-
ple. Chord establishes a single successor — a next
node in the chain — for each node, thus defining
a global ring topology (similar to our simple
example, but unidirectional). This basic algorithm
implies one connection per node, and is thus
inherently resilient to node joins, leaves, or fail-
ures. Chord then extends the basic successor node
with a set of “fingers” — to other, more distant
nodes — according to powers of two. So, for a
value n, the neighbors will be those nodes match-
ing a rule that evolves according to n + 20, n + 21,
n + 22 ... n + 2m where m is the number of bits in

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 81

Overlay Networks

Figure 2. Sample overlay network and query. This structured topology
is typical of overlay networks, though the algorithms that build the
overlay (and resulting structure) vary according to network type.

Node that originates
the query

Node that replies
to the query

Node connectivity

Node affected by the query

Reply path

Nq

Nr

the identifier (2m thus defines the maximum num-
ber of nodes supported). Formally, a Chord node’s
fingers are defined as each of the ring’s successors
for node (n + 2k-1) mod 2m 1 < k < m.

Because the fingers increase according to the
power of two, each step cuts the distance to the
target by half, resulting in a lookup complexity of
O(log n). To maintain correctness, Chord requires
only that the successor node pointer be correct,
and it can revert to the basic successor-only
scheme at any point if the fingers table is damaged
(by node failures, for example). Because finger
tables are small, nodes can keep them valid via a
periodic “stabilization” algorithm. As long as the
initial network is stable, researchers have found
that the system maintains O(log N) lookup times
even with 50 percent probability of node failure.3

Finally, Chord stores multiple key-value pairs in
each node, automatically balancing the node load
as new network entrants arrive.

Current overlay networks are useful for applica-
tions that require reliable, highly scalable, and self-
organizing storage and lookup for unique key-value
pairs. This includes distributed databases, process-
ing clusters, and deterministic search applications.
Many of the systems we describe here provide open-
source library implementations that developers can
use directly for building distributed applications.
See, for example, the project pages on Chord (www.
pdos.lcs.mit.edu/chord), Tapestry (www.cs.berkeley.
edu/~ravenben/tapestry), and Pastry (http://
research.microsoft.com/~antr/Pastry/download.htm).

Conclusion
Researchers are using overlay networks in diverse
applications, ranging from Internet routing to dis-
tributed network storage. The overlay-based Inter-
net Indirection Infrastructure (i3) routing system,
for example, aims to simplify network services’
deployment and management by decoupling the
acts of sending and receiving.6 This additional
level of indirection allows for more flexibility in
node mobility and in service location and deploy-
ment. Researchers are also successfully deploying

overlay networks as part of distributed storage sys-
tems, such as the cooperative file system.7 CFS
interprets the Chord network’s stored values as a
file system, and includes features such as replica-
tion for increased robustness. Finally, researchers
have applied the Pastry system to various end-user
applications, such as cooperative Web caching,
group notification, and instant messaging.

Overlay network algorithms are the subject of
ongoing research and development. In particular,
researchers are working to reduce network opera-
tion costs, such as multiple concurrent node join
and leave, fault tolerance, security, and physical
proximity (by modifying the overlay to adapt bet-
ter to the underlying physical topology).

References
1. I. Clarke et al., “Freenet: A Distributed Anonymous Infor-

mation Storage and Retrieval System,” Designing Privacy
Enhancing Technologies: Int’l Workshop Design Issues in
Anonymity and Unobservability, H. Federrath, ed., Springer-
Verlag, 2001, pp. 46–66.

2. S. Ratnasamy et al., “A Scalable Content-Addressable Net-
work,” Proc. ACM SIGCOMM, ACM Press, 2001, pp.
161–172.

3. I. Stoica et al., “Chord: A Scalable Peer-to-Peer Lookup Ser-
vice for Internet Applications,” Proc. ACM SIGCOMM,
ACM Press, 2001, pp. 149–160.

4. A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed
Object Location and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. Int’l Conf. Distributed Systems Platforms
(Middleware), ACM Press, 2001, pp. 329–350.

5. D. Malki, M. Naor, and D. Ratajczak, “Viceroy: A Scalable and
Dynamic Emulation of the Butterfly,” Proc. ACM Principles
of Distributed Computing, ACM Press, 2002, pp. 183–192.

6. I. Stoica et al., “Internet Indirection Infrastructure,” Proc.
ACM SIGCOMM, ACM Press, 2002, pp. 73–88.

7. F. Dabek et al., “Wide-Area Cooperative Storage with CFS,”
ACM Symp. Operating System Principles, ACM Press, 2001,
pp. 202–215.

Diego Doval is CTO and cofounder of Clevercactus, and a doc-

toral student at Trinity College, Dublin. His research inter-

ests include self-organizing and wireless networks, com-

plexity theory, dynamical systems, and molecular

nanotechnology. He has a BS in computer science from

Drexel University, Philadelphia. He is a member of the

ACM. Contact him at diego.doval@cs.tcd.ie.

Donal O’Mahony is senior lecturer at Trinity College where he

leads the Networks and Telecommunications Research Group,

which investigates a range of core networking and telecom-

munications issues involved with fourth-generation mobile

systems. His other research interests include cryptographic

techniques and protocols, particularly in the area of electronic

payment. He is the author of several books, including Elec-

tronic Payment Systems for E-Commerce (Artech House,

2001). Contact him at donal.omahony@cs.tcd.ie.

82 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

Write for Spotlight

Spotlight focuses on emerging technologies, or new aspects of existing
technologies, that will provide the software platforms for Internet appli-

cations. Spotlight articles describe technologies from the perspective of a
developer of advanced Web-based applications. Articles should be 2,000 to
3,000 words. Guidelines are at www.computer.org/internet/dept.htm.

Contact department editor Siobhán Clarke at siobhan.clarke@cs.tcd.ie.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

