
Introducing Security Aspects with Model Transformation

Jorge Fox, Jan Jürjens

Technische Universität München

Boltzmannstraße 3

D-85748 Garching

{fox,juerjens}@in.tum.de

Abstract

Aspect Oriented Programming and subsequently

Aspect Oriented Software Development have received

great attention recently and constitutes an interesting

field of research in computer science. The goal of this

paper is to propose a more precise understanding of

aspects based on the idea of crosscutting concerns in

view of model transformation. This proposal considers

security aspects as an example of a behavior applied

over a desired software product. This implies

improving the actual definition of aspects. The work

introduces the main current concepts of aspect, defines

aspects as behavioral entities, presents examples, and

outlines a method for model transformation based on

the proposed definition.

1. Introduction

Aspect Oriented Programming has been the focus

of an ever growing attention and research in computer

science. Names as Aspect Oriented Software

Develpoment (AOSD), Aspect Modeling, Early

Aspects, and the like can be found recently in the

literature. Despite all the work done, it still seems

necessary to provide some of these concepts with a

more precise meaning in relation to its practical utility.

Aspect Modeling and Model Transformation with

aspects are an importante line of research within AO.

We will therefore in this paper explore aspects in

relation to transformation of models, particularly in

relation to introduction of security aspects in UML

models.

The present paper presents a definition of aspects

understood as a desired behavior affecting various

execution units. This approach allows us to propose a

methodology for transformation of models with

aspects, based on a formal transformation language

(BOTL) [13], as well as a syntactic and semantic

proposal for representing aspects as in UMLsec [11].

Related work is based mostly on defining aspects in

terms of frameworks, roles, mixing of UML models

with frameworks using OCL [20], or in some cases by

techniques close to what [3] call direct manipulation as

in [8, 19]. On the other hand, as [8] show, aspect

composition can lead to conflicts in the resulting

model, in which case, the system developer must

resolve the conflict manually. By defining an aspect as

we propose in section 3 and expressing them formally,

we achieve a higher level of abstraction which under

frameworks as BOTL and UMLsec [11] allow us to

prove the properties of the desired transformation. The

latter is work on progress. In this work, we focused

ourselves on security aspects, in order to explore a

means of representing aspects in general. It is our

hypothesis that this approach is useful for other kinds

of aspects, defined as in section 3, and represented as

exemplified in section 4.

The rest of the paper is structured as follows.

Section 2 explores the current definitions of aspect.

Section 3 presents examples of aspects from the

literature and gives our definition of aspect. Section 4

introduces our proposal for expressing an aspect

syntactically and semantically based on the security

formalism in [11] and outlines model verification

against the consistency of desired security

characteristics. Section 5 describes our proposal

toward model transformation with aspects. Finally,

Section 6 presents our conclusions.

2. Current definitions of aspects

We are now going to explore some of the current

definitions of aspect found in the literature.

In [2] we find that aspects are issues not well

localized in functional designs, such as:

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

synchronization, component interaction, persistency,

security control, fault tolerance mechanisms, quality of

service, and the like; these are considered concerns

that constitute typical candidate aspects. In this case

we need then first to define issue as well as concern so

that the concept of aspect acquires meaning.

Moreover, [18] indicate that compatibility,

availability and security requirements are crosscutting

concerns. Also, exception handling, multi-object

protocols, synchronization, and resource sharing would

be extended across the source code if only using

traditional implementation techniques, like Object

Orientation, thus implying that those behavioral

elements are candidate aspects as well.

In our view, one of the central unanswered issues in

Aspect Orientation (AO), as Ossher in [5] mentions, is

that “one of the hard things about crosscutting

concerns is understanding just what cuts across what”.

There is a need for a clear definition of aspect, even

before we aim at achieving aspect identification,

“weaving”, and modeling of aspects. Take for instance,

the early stage of software requirements; it is at that

stage that many of the later difficulties in software

development can be generated. Therefore a great effort

is on progress to identify aspects at the requirements

stage, see for instance [1, 7, 9, 15, 17].

Despite the efforts, in most cases it is left to the

criterion of the analyst to identify software concerns,

out of these, select candidate aspects and test them. As

[12] stated: “Designers must rely on their discretion to

decompose the problem effectively”. The later seems

to be astray from a software engineering approach.

There is also research in aspect mining in code as in

[9]. Research on software evolution and AO is based

also on aspect mining in existing code [14, 16].

Nevertheless, no conclusive work seems to have been

as yet achieved.

We believe that the problem can be traced to a

deeply rooted belief in the early definitions of aspect.

As long as the work is based on the notion of

“crosscutting concern” and take for granted definitions

such as “a concern is any matter of interest in a

software system,” [22] the following kind of questions

will remain open. Questions like: is a method a

crosscutting concern, i.e. an aspect? If so, then how do

we distinguish a clone in code from an aspect, and an

aspect from just an erroneous implementation?

A bottom-up approach is not devoid of difficulties

in view of the primary goal of AO, i.e. to achieve

Separation of Concerns (SoC) as defined in [4, 5, 6].

The reason for the above might well be that if we

consider an aspect as a collection of Advice and Join

Points, or pointcut designators coupled with advice

[21, 23], such an approach does allow for the creation

of language extensions to the Object Oriented

Paradigm (OOP). However, a programmer using this

kind of aspectual language implementations may even

damage an originally well designed software product,

or a product being developed by different work teams,

as shown in [16].

3. A definition of aspect

We believe it necessary to remember the primary

motivation of AO, in our view, to help reducing

complexity. Like [2] suggest “the goal of AOP is to

provide methods and techniques for decomposing

problems into a number of functional components as

well as a number of aspects that crosscut functional

components”.

In some of the early works on AOP we find the

following motivations.

“AOP is based on the idea that computer systems

are better programmed by separately specifying the

various concerns (properties or areas of interest) of a

system and some description of their relationships, and

then relying on mechanisms in the underlying AOP

environment to weave or compose them together into a

coherent program” [6].

In this paper we propose to accept the definition

presented in [10] as a point of departure in order to

further define aspects. According to Ivar Jacobson

[10], an aspect is a “modular unit of crosscutting

implementation”. Please note that both [2, 10] specify

that aspects are functional units. We will now explore

the example presented in [10], which can be broadly

accepted as a typical aspect example.

3.1 Call handling and traffic recording

example

The example is about a Telecom Switching System.

There is a Call Handling Subsystem that further

requires a Traffic Recording Implementation. The

latter is added in [10] as an aspect, though its author

names these “Base” and “Existion”. Both are shown in

Figures 1 and 2.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Figure 1. Call handling flow diagram. [10]

On the one hand, Figure 1 presents flow of

activities associated with a Use Case “Call Handling”

as proposed in [10]. We might have chosen a similar

example, but this one seems neat and precise enough.

On the other hand, we have in Figure 2 the activities

associated with an additional desired behavior

extending the “Call Handling” (flow of activities) as

indicated in the figure by the so called extension

points. We focus ourselves at the moment, not on the

issue of extension points or the relation between what

[10] calls “Base” and “Existion.” We aim at drawing

attention to the fact that the flow of activities

represents a desired behavior. As we mentioned, this

behavior is expressed in a sequence of activities, and

aims at achieving a given goal. In this example, in

Figure 2 the goal is to measure the average traffic from

subscribers [10], another important consideration we

would like to point at is that this goal is set by some

stakeholder. The fact that the sequence of activities

acquires meaning in respect to a given stakeholder or

stakeholders provides pointers for aspect identification.

Figure 2. Traffic recording flow diagram. [10].

Both sequence diagrams can also be expressed in

use cases, and also be described with state machines,

wh

e study

ts a software evolution

case study in order to appraise the capabilities of

asp

the one

ha

entication

ions of the user

according to the user’s role

We e

a more thor ter.

n

of the aspect we select its goal. In this case, it has two

go

rization aspect. In this case, the aspect

ha one goal, and it will help us illustrating our

de

presentation at

different levels. Either at the code level, as these were

ac

s formulated in terms of behavior, it is

su

ich is out of the scope of this work. However, we

will show the utility of our aspect definition with

model transformations in state machines with an

example in section 5.

3.2 Aspects in a cas

In [16] the author implemen

ect orientation in view of the maintainability of

software systems. For the purposes of this paper, we

selected two of the aspects he presents as trial case.

The author realized a system called “MySABoM”,

namely My Simple Address Book Manager.

In the realization of this software product the author

in [16] modularized the desired behavior on

nd in a Data Model following the Object Oriented

Paradigm, on the other he identified pieces of

crosscutting functionality, meaning aspects. He based

himself on the following definition of aspect as “a

modular unit that cross-cuts the structure of other

modular units.”

He defined four aspects in his work:

Auth

Authorization

Tracing

Presentation of port

interface

sel cted the first two with the aim of achieving

ough understanding of the subject mat

3.2.1. Authentication aspect. From the descriptio

als. First, to define which parts of the system shall

be protected. Second, to get the log on information

from the user.

3.2.2. Autho

s

finition in section 3.3. Its goal is to enforce that “a

user with the role ‘Reader’ shall be allowed to change

data if and only if he owns these data.”

In both cases, we may analyze its re

tually implemented in [16], or consider them at an

architectural level. The latter constitutes the focus of

our attention.

If we look at them in this manner, we may note that

once the goal i

sceptible of being translated into some formal

specification or a given set of rules. The latter will

extension point X in Call Handling

after input: off-hook

before task: connect digit

receiver

!

!

!

insert at X

step call

counter

traffic

recording?

yes

no

continue at X

Traffic Recording …

extension point X in Call Handling

input: off-hook

before task: connect digit

receiver

!

!

!

insert at X

step call

counter

traffic

recording?

yes

no

continue at X

Traffic Recording …

idle

of -hook

connect digit

receiver

dial

tone

busy

Call Handling …

idle

of -hook

connect digit

receiver

dial

tone

busy

Call Handling …

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

serve our purpose of model transformation with

aspects and will be explored in section 5 with a

different case study.

3.3 A behavioral definition of aspect

propose the

fol wing definition of aspect as a set of units of

ex

that modifies the

be

epted definitions of aspects such as

“co

now one of the

sec

c [11] as a method

to aspects as

de

velopment called UMLsec.

Re

For instance, “freshness” of a value

me

fi tai

r stereotype
the UMLsec

default() insider()

Based on the preceding examples, we

lo

ecution representing a desired behavior whereas this

behavior relates to the point of view of one or more

stakeholders, in the context of the software

development lifecycle, and affects i.e. modifies the

behavior of other units of execution.

In this sense, an aspect represents a desired

functionality in a software product

havior of more than one software entity. This

functionality is the semantic formulation of the desired

behavior and the relations among various units of

execution. In other words, an aspect is a desired

functionality that involves various other units of

execution.

We believe this approach helps improving the

widely acc

ncerns that cut across other concerns”, it brings us a

step forward in its understanding, and allows us

thereon to propose a method for model transformation

with AO as presented in section 5.

As an example of aspect, and the means we propose

to represent them, we introduce

urity stereotypes defined in UMLsec.

4. An overview of UMLsec

We will now introduce UMLse

for giving a precise semantic body

fined in 3.3. By doing so, we allow for

transformation of models, models as in UML, as

explored in section 5.

We make use of the extension of the UML [11] for

secure systems de

curring security requirements, such as secrecy,

integrity, and authenticity are offered as specification

elements by the UMLsec extension. These properties

and its associated semantics are used to evaluate UML

diagrams of various kinds and indicate possible

security vulnerabilities. One can thus verify that the

desired security requirements, if fulfilled, enforce a

given security policy. One can also ensure that the

requirements are actually met by the given UML

specification of the system. UMLsec encapsulates

knowledge on prudent security engineering and

thereby makes it available to developers who may not

be experts in security. The extension is given in form

of a UML profile using the standard UML extension

mechanisms. Stereotypes are used together with tags to

formulate security requirements and assumptions on

the system environment. Constraints give criteria that

determine whether the requirements are met by the

system design, by referring to a precise semantics

mentioned below.

The tags defined in UMLsec represent a set of

desired properties.

ans that an attacker can not guess what its value

was. Moreover, to represent a profile of rules that

formalise the security requirements, the following are

some of the stereotypes that are used: «critical»,

«high», «integrity», «internet», «encrypted»,

«LAN», «secrecy», and «secure links». If relevant,

their pro le also con ns the possible attackers

associated to them as shown in Table 1.

Table 1. Attackers and threats pe
in

Stereotype Threats Threats

Internet {delete, re

insert}

ad, ead,{delete, r

insert}

Encrypted {delete} {delete, read,

insert}

LAN Ø {delete, read,

insert}

The definition of the stereotypes for model

checking and tool support. As an example consider

«s

allows

ecure links». This stereotype is used to ensure that

security requirements on the communication are met

by the physical layer. More precisely, when attached to

a UML subsystem, the constraint enforces that for each

dependency d with stereotype

high,integrity,secrecys

between subsystems or objects on different nodes,

be no possibilities of an attacker reading, or having any

kind of access to the communication, respectively. A

detailed explanation of the tags and stereotypes

defined in UMLsec can be found in [11]. The

extension has been developed based on experiences on

the model-based development of security-critical

systems in industrial projects involving German

government agencies and major banks, insurance

companies, smart card and car manufacturers, and

other companies. There have been several applications

of UMLsec in industrial development projects. There

exists extensive tool-support which allows the

developer to automatically analyze UMLsec models

according to each of the above stereotypes, there shall

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

with respect to the security requirements which are

included as stereotypes against the threat scenario

which is derived from the information about the

physical layer of the system (see figure 3).

Figure 3. Overview of the proposed model
verification and correction methodology

cts

a

rep

odel S, the UMLsec stereotype encryption

as

hine in Figure 4 as part of the model S. The

en

5. Transformation of models with aspe

In this section, we propose that the introduction of

desired behavior over a given model can be

resented as a function with the following

parameters, a model , (in this case, every subsystem

instance in a UML model) and the semantic

description of an aspect (transformation rules). In

this way, transforms S in S’ with the introduced

behavior .

To exemplify this, consider the package Channel in

Fig. 4. as m

aspect . The resulting model S’ is shown in Figure

5.

Let us focus our attention on the Sender state

mac

cryption behavior added to it produces a modified

state machine in S’ with a new State Request, added

between the early state Wait with the original

transition “send(d)” modified into “send(d) /

request()”. Moreover, state Wait in S has been added

in S’ with a function and a counter “entry/i:=i+1”. The

transition “/transmit(d)” in S has been added with the

required security elements in S’ according to the stated

semantics of the encryption aspect. The resulting state

machine is shown in Figure 5. The Receiver state

machine is also transformed accordingly.

Figure 4. Security example: sender and
receiver

ransformation is susceptible of being

performed on every channel marked with stereotype

<<

, and the related tool created at the

Te

nted in Section 3.3, because it

all

This t

encrypted>>. The original state “Send” remains

unchanged, this means, that the base functionality is

enhanced by the stereotype representing the new

required functionality. We are not talking about

“weaving” here, what the Bidirectional Object oriented

Transformation Language (BOTL) [13] with the

respective transformation rules performs is simply

more powerful than related approaches [8, 19, 20].

Because BOTL is based on graph transformation and

the representation of aspects in a formal semantic may

allow us further to verify the results of the

transformation against a given framework as for

instance UMLsec.

As we already mentioned, we intend to base our

work on the BOTL

chnical University of Munich. In this case, BOTL

takes a set of transformation rules and transforms a

given model. In our case, the tool plays the role of the

proposed function .

The above paragraphs demonstrate the significance

of the definition prese

ows us to represent aspects as units of desired

behavior, provide them with a semantic representation

and from there on apply it as the set of rules for BOTL.

In order to transform a given UML model including in

it the desired aspects.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

Please note that the above transformation is not

necessarily dependent on BOTL, but a similar

language transformation and tool can be applied.

Figure 5. Security example: secure channel

As exposed in this section, in the end we aim at

being able to formally verify whether the resulting

model expresses the desired behavior without

hindering its original characteristics.

As shown in Figure 3, we suggest that after

introducing the aspect a validation of the model can be

performed. The former may allow us to verify that the

model S’ be consistent with the desired characteristics.

6. Conclusion

The aim of the present paper was to examine a

means of representing aspects with the aim of

introducing them on a given model. We achieved this

in the first place, by focusing on aspects as a set of

units of execution embodying a wanted functionality.

In the second place, by expressing them as

specification elements with associated semantics. And

finally, by regarding such semantic elements as

transformation rules.

This approach allows us to achieve SoC at the

modeling level. Therefore, our approach toward SoC

allows for solutions that are independent of platform or

programming language, hence devoid of the

shortcomings of actual aspect language

implementations. Indeed, viewing aspects this way, we

actually need no aspect language because the model

can be later implemented with existing Object Oriented

techniques.

We also provided examples of aspects from other

cases in the literature. From these cases and the current

definitions in the field we apprehended what we

believe is the core of an aspect. The definition

introduced here allows for a subsequent formalization

of aspects and as a result of this, we may achieve a

more comprehensive transformation of models than the

related AO approaches provide. The definition

proposed here may also prove useful for related

problems such as aspect mining in requirements and

code.

As a future line of research, we aim at exploring our

proposal with aspects other than security related ones.

Furthermore, we aim at expressing a software product

at the modeling level as a set of desired characteristics,

i.e. concerns, and the relations among them. In this

way, we may achieve a more abstract view of a

software product and strive for expressing it with

formal methods e.g. predicate calculus, which would

allow to verify the consistency of the desired

characteristics even before translating it to a model in

UML.

7. References

[1] J. Araùjo and P. Coutinho, “Identifying Aspectual Use

Cases Using a Viewpoint Oriented Requirements Method”,

in Early Aspects 2003: Aspect-Oriented Requirements

Engineering and Architecture Design Workshop, 2nd

International Conference on Aspect Oriented Software

Development, Boston, 2003.

[2] Czarnecki, K and Eisenecker, U., Generative

Programming: Methods Tools and Applications, Addison-

Wesley, May 2000.

[3] K. Czarnecki, and S. Helsen, “Classification of Model

Transformation Approaches”, In Workshop on Generative

Techniques in the Context of Model-Driven Architecture

(OOPSLA ’03), 2003, pp. 1-17.

[4] Dijkstra, E.W., A Discipline of Programming, Prentice

Hall, Englewood Cliffs, 1976.

[5] T. Elrad, M. Aksit, G. Kiczales K. Lieberherr, and H.

Ossher, “Discussing Aspects of AOP”, Communications of

the ACM, vol. 44 No. 10, October 2001, pages 33-38.

[6] T. Elrad, R.E. Filman, A. Bader, “Aspect-Oriented

Programming”, Communications of the ACM, vol. 44 No. 10,

Oct 2001, pp. 29-32.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

[7] G. Georg, R. Reddy, and R. France , “Specifying Cross-

Cutting Requirement Concerns, 7th International Conference

UML 2004 (Proceedings), Springer, Lisbon, Portugal,

October 2004, pp. 113-127.

[8] G. Georg, R. France, and I. Ray, “Composing Aspect

Models”, The 4th AOSD Modeling With UML Workshop,

UML 2003, October, 2003.

[9] J. Hannemann, Aspect Mining Tool,

http://www.cs.ubc.ca/~jan/amt/, November 2003

[10] I. Jacobson, “Use Cases and Aspects - Working

Seamlessly Together”. Journal of Object Technology, ETH

Zurich, Vol. 2, No. 4, July-August 2003, pp. 7-28.

[11] Jürjens J., Secure Systems Development with UML,

Springer-Verlag, 2004

[12] Kiselev I., Aspect-Oriented Programming with AspectJ,

SAMS Pub., USA, 2003.

[13] F. Marschall, and P. Braun, “Model Transformations for

the MDA with BOTL”, In Proceedings of the Workshop on

Model Driven Architecture: Foundations and Applications,

CTIT Technical Report TR-CTIT-03-27, Univeristy of

Twente, June 2003.

[14] T. Mens, K. Mens, T. Tourwe. „Aspect-Oriented

Software Evolution”, Special Theme: Automated Software

Engineering, ERCIM News No. 58 : 36 –37, July 2004.

[15] B. Nuseibeh, “Crosscutting Requirements”, in

Proceedings of the 3rd International Conference on Aspect

Oriented Software Development (AOSD 2004), Lancaster,

ACM, 2004, pp 3-4.

[16] F. Prilmeier, AOP und Evolution von Software-

Systemen, Master’s Thesis, Technische Universität München,

Munich, November 2004.

[17] A. Rashid, P. Sawyer, A. Moreira, and J. Araujo, “Early

Aspects: A Model for Aspect-Oriented Requirements

Engineering”, in IEEE Joint International Conference on

Requirements Engineering, Essen Germany, 2002, pp. 199-

202.

[18] A. Rashid, A. Moreira, and J. Araújo, “Modularisation

and Composition of Aspectual Requirements”, In

Proceedings of the 2nd international conference on Aspect-

oriented software development, ACM, Boston, March 2003,

pages 11-20.

[19] I. Ray, R. France, N. Li, and G. Georg, "An Aspect-

Based Approach to Modeling Access Control Concerns",

Information and Software Technology, 46(9), July 2004,

pages 557-633.

[20] A. Rausch, B. Rumpe, C. Klein, L. Hoogendoorn,

„Aspect Oriented Framework Modeling“,In: Proceedings of

the 4th AOSD Modeling with UML Workshop (UML

Conference 2003), October 2003.

[21] D. Sereni and O. de Moor, “Static Analysis of Aspects”,

In Proceedings of the 2nd international conference on

Aspect-oriented software development, ACM, March 2003,

pp. 30-39.

[22] S. Sutton Jr., and I. Rouvellou, “Modeling of Software

Concerns in Cosmos”, 1st international conference on

Aspect-oriented software development (Proceedings), ACM,

April 2002, pages 127-133.

[23] M. Wand, G. Kiczales, and C. Dutchyn, „A semantics

for advice and dynamic join points in aspect-oriented

programming“, In ACM Transactions on Programming

Languages and Systems (TOPLAS), ACM Press, September

2004, pp. 890-910.

Proceedings of the 12th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems (ECBS’05)

0-7695-2308-0/05 $20.00 © 2005 IEEE

