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Analysis of Slot Characteristics in Slotted
Single-Mode Semiconductor Lasers Using

the 2-D Scattering Matrix Method
Q. Y. Lu, W. H. Guo, R. Phelan, D. Byrne, J. F. Donegan, P. Lambkin, and B. Corbett

Abstract—We use the two-dimensional (2-D) scattering matrix
method (SMM) to analyze the slot characteristics in slotted single-
mode semiconductor lasers and compare the results with those cal-
culated by the one-dimensional transfer matrix method (TMM).
The analysis shows that the 2-D SMM is required to accurately ac-
count for the measured results. Using the 2-D SMM simulation, we
find that there is almost no reflection at the interface from slot to
waveguide while a large reflection exists at the interface from wave-
guide to slot, and the power loss is much larger than the power re-
flected. For a single slot, the slot width has little influence on the
slot reflectivity, which coincides with the measured results. The re-
flection and transmission of the slot are found to be exponentially
dependent on the slot depth.

Index Terms—Perfectly matched absorption layers (PMLs),
scattering matrix method, semiconductor lasers, single-mode
laser, transfer matrix method.

I. INTRODUCTION

DISTRIBUTED feedback (DFB) lasers as archetypal
single-mode semiconductor lasers have achieved great

success. However, fabricating these lasers requires both high-
resolution processing and complex regrowth steps. On the
other hand, single-mode lasers can be realized by distributing
reflective defects (in the following we call them slots) into con-
ventional Fabry–Perot (FP) laser cavities [1]–[3]. By carefully
optimizing the slot positions and slot number, lasing with a
side-mode suppression ratio (SMSR) of more than 40 dB has
been achieved [2]. For optimization of such lasers, first we
need to make clear the characteristics of a single slot, most
importantly the reflection and scattering loss caused by the
slot. Experimental work has been carried out in which the slot
reflectivity was measured [4] and the slot loss was estimated
[3]. Theoretical work on the effect of slots was carried out in
the 1980s by Coldren and co-workers. In [5], the slots (grooves
in those papers) are separated into two different slot-depth
cases dealing with two different models and more emphasis
is laid on the deep slot case. For the shallow slot, the model
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Fig. 1. Schematic diagram of a 2-D multiple-slot waveguide structure.

is intuitive which assumes that the reflected and transmitted
modes are excited by the reflected tail and the remainder of
the incident wave, respectively. Now as single-mode lasers
with shallow slots have achieved excellent results, the analysis
of slots is now again an area of great interest especially with
the use of stricter numerical analysis techniques. In [2], the
one-dimensional (1-D) transfer matrix method (TMM) was
used to analyze lasers with multiple slots. The analysis is
straightforward but unfortunately the scattering loss can not
be determined. Furthermore, the reflection coefficient from the
TMM model does not reproduce the experimental results [4]. In
this letter, we use the two-dimensional (2-D) scattering matrix
method (SMM) [6] to solve the slotted laser problem. It has the
benefit of the TMM method as it can easily tackle the whole
laser structure with multiple slots, and moreover, because it
analyzes the transverse direction and the propagation direction
simultaneously it can predict the loss caused by the slot. We use
the 2-D SMM model mainly to analyse the characteristics of a
single shallow slot but also it can be easily extended to analyze
deep slots and multiple-slot structures.

II. THEORY

For generality we start with a multiple-slot structure. As
shown in Fig. 1, a 2-D multiple-slot waveguide can be separated
into uniform sections including the input and output regions.
Hereafter, the subscript , is used to refer to the
th section. The 2-D SMM model is used to compute the field

reflected and coupled into the input waveguide and also the
field transmitted and coupled into the output waveguide, which
are defined as the reflection and the transmission of the group
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of slots. In the model, the actual waveguide is extended peri-
odically with period in the transverse direction as shown in
Fig. 1. At the boundary of the new periodic structure, perfectly
matched absorption layers (PMLs) [7] are employed to absorb
the outgoing waves. Considering the TE polarization case, the
mode equation in the waveguide with the PML absorber can be
expressed as

(1)

where is the wavenumber in vacuum,
denoting the electronic conductivity results in the

absorption and exists only within the PML region, is the
component of the electric field which is uniform in the direc-
tion. Considering the periodic boundary condition we introduce
complete, orthogonal, and normalized plane wave basis func-
tions , where is an integer
and in practical calculations, is always truncated from
to corresponds to the highest spatial frequency used in
the expansion. Using the basis functions, (1) can be transformed
into a matrix form

(2)

where represents the inner product. In the following, is
used to substitute the vector for simplicity. Since the re-
fractive index distribution is piecewise uniform in the direc-
tion as shown in Fig. 1, the electric field in the th section can
be expressed as the summation of forward and backward prop-
agating waves

(3)

where and are eigenvectors and eigenvalues of (2) in
the th section, and are the forward and backward ampli-
tudes, respectively. All uniform sections of the waveguide can
be treated similarly. At the interface between two adjacent sec-
tions, the mode matching condition is implemented, which re-
quires and to be continuous at the interface. These
continuity conditions have the field amplitudes in adjacent sec-
tions connected. Through an iterative process, the connection
between the field amplitudes in the input and output regions can
be finally established through the scattering matrix technique

(4)

where each is a by matrix. The subma-
trix and are the reflection matrix and transmission ma-
trix, respectively. The guided mode is given a subscript in the
vector and in . If we assume that the incident wave is

TABLE I
REFLECTION AND TRANSMISSION COEFFICIENTS AT SINGLE SLOT INTERFACES

CALCULATED BY 2-D SMM COMPARED WITH 1-D TMM

completely composed of the guided mode, we can obtain the re-
flection and transmission into the guided mode respectively
as

(5)

III. SINGLE SLOT SIMULATION

In the following, we analyze the characteristics of a single
slot. The device structure simulated is the same as that used in
[3]. The slot is etched into the ridge with the depth equal to the
ridge height. The slot width is taken as 1.0 m at first. Using
the weighted-index method the three-dimensional structure is
simplified into a 2-D structure as shown in Fig. 1 with all layer
thickness and refractive index given. The reflection and trans-
mission coefficients at the slot interfaces obtained from the 2-D
SMM model are given in Table I together with the results from
the 1-D TMM model. It is found that from the 2-D SMM model,
there is little reflection at the interface from the slot region to
the waveguide region while a relatively large reflection exists at
the interface from the waveguide to the slot region. It is also
shown that the power loss is much larger than the power re-
flection because the reflected power is but the power loss
is . The 1-D TMM model gives
a much smaller reflection and predicts that the same reflection
amplitude exists at both interfaces. Also, there is no loss pre-
dicted by the 1-D TMM model because just the guided mode
is considered in this case. As shown in the above theoretical
analysis, the plane wave basis was used for the expansion in
the 2-D SMM model. Similarly, we could have chosen to use a
local waveguide eigenmode expansion (eigenmode expansion
method, EEM) [8]. Using an EEM-based commercial wave-
guide mode solver (FIMMWAVE), the calculated coefficients
at single slot interfaces are 0.0141, 0.974 and 0.00034, 0.974,
respectively, which agree very well with those obtained by the
plane wave expansion as listed in Table I.

A simple model can explain the different coefficients at these
two interfaces. Assume the power reflectivity caused by the
index discontinuity is . As only part of the mode expe-
riences this reflection (slot just partially etched into the wave-
guide), the reflected power is is the optical confine-
ment factor of the virtual layers that has been interrupted at the
slot interfaces. Considering the reflected power needs to couple
into the whole mode again, the power reflectivity for the whole
mode now becomes , which results in the amplitude reflec-
tion . At the interfaces from waveguide to slot and from slot
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Fig. 2. (a) Reflection amplitude. (b) Reflection phase shift of a single slot
versus slot width calculated by the 2-D SMM model and the 1-D TMM model.

to waveguide, is calculated to be 0.036 and 0.00075, respec-
tively. The latter is much smaller because at the slot-to-wave-
guide interface, the interrupted virtual layer is composed of air
and little power is confined in it. has the same amplitude
as 0.51 at both interfaces. The amplitude reflectivity calculated
at both interfaces are 0.018 and 0.0004, respectively, in good
agreement with the 2-D SMM results. The above simplified
model is essentially that used by Coldren and colleagues in [5].

We then calculated the reflection from the whole slot using
the 2-D SMM model. The reflection and transmission ampli-
tudes calculated are 0.014 and 0.96, respectively. Accordingly,
the loss introduced by a single slot for a cavity length 530 m
is 1.4 cm . The reflectivity agrees well with the measured
result in [4] but the loss is a little smaller than the value esti-
mated in [3]. Fig. 2(a)–(b) shows the reflection amplitude and
phase shift versus the slot width calculated using the 2-D SMM
model as well as using the 1-D TMM model. It is seen that 1-D
TMM model yields rapidly and periodically oscillating reflec-
tion amplitude and phase shift which evidently comes from the
Fabry–Perot resonances. However, the 2-D SMM model pre-
dicts very different behavior: the reflection amplitude and phase
shift show weak oscillation at small slot width and then almost
settle down to a stable value. This is consistent with the ob-
servation in [4] and is due to the fact that almost no reflection
is produced at the interface from the slot to the waveguide re-
gions. In Fig. 3, we show the reflection and transmission varia-
tion with the slot depth. The results using Coldren’s model [5]
are given as well. We can see that for very shallow slots the
results from the two models agree with each other very well.
As the slot depth increases, Coldren’s model still gives almost
the same transmission as the 2-D SMM model, however, the
reflection predicted is a little higher. In Coldren’s model, the
field tail at the waveguide-to-slot interface is assumed to be re-

Fig. 3. Reflection and transmission amplitude of a single slot versus slot depth
calculated by the 2-D SMM model and Coldren’s model.

flected like a plane wave and the tail shape is assumed to be well
preserved, which would overestimate the practical reflection. It
is seen that the reflection increases while the transmission de-
creases exponentially as the slot depth increasing from 0.1 to
1.3 m. The results of our 2-D SMM show that the slot depth
should be precisely controlled in practice so as to obtain uniform
reflections from different slots and also to improve the fabrica-
tion reproducibility.

IV. CONCLUSION

We have analyzed the characteristics of a single slot in
a slotted single-mode laser using the 2-D SMM model and
compared the results yielded by the more traditional 1-D TMM
method. From the 2-D SMM model, it is found that there is
almost no reflection at the interface from slot to waveguide
while a relatively large reflection exists at the interface from
waveguide to slot. This asymmetry cancels the rapid reflection
oscillation with slot width found in the TMM model. Further,
the power loss is much larger than the power reflected. These
results are consistent with those observed in experiments. It is
also found that both the reflection and transmission exponen-
tially depends on the slot depth.
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