Self-Adapting Context Definition

Neil O’Connor, Raymond Cunningham and Vinny Cahill
Distributed Systems Group
Trinity College Dublin, Ireland
{neil.oconnor, raymond.cunningham, vinny.cahill} @cs.tcd.ie

Abstract

Many approaches to context-aware computing have fo-
cused on providing means for developers to define applica-
tion contexts. In these approaches, correct application be-
havior depends on the developer defining the right contexts.
The application cannot adapt incorrectly defined contexts
as they are statically defined by the developer. We propose
a method by which an application can use feedback to eval-
uate its contexts and adapt them where necessary. This re-
sults in more accurate context definitions and should lead
to improved application performance. We discuss how this
is achieved using Q-learning, and present a scenario and
experimental results to support our approach.

1 Introduction

The growth of context-aware computing has seen a move
away from the development of “one-off” applications that
use context, toward the provision of generic solutions such
as middleware and toolkits that support defining and rea-
soning about context [6], and ontologies that can be used to
describe contexts [4]. Using all these approaches relies, to
varying degrees, on the developer to provide knowledge to
the application.

Environment
Sensors Actuators

‘Sensor Data ‘4% Contexts ‘

Context-aware Application

Figure 1. A context-aware application

Context information is often derived from sensor data
(Fig. 1). Contexts can then be described as abstractions
of environmental situations recognizable by sensors. By
environmental situations we mean distinct states in which
the environment can be. For example, office applications

(e.g. ParcTab [1]) use location-sensor data to infer contexts.
A context such as “in a room” is an abstraction of many
distinct positions within the room. In particular, contexts
should be abstracted from situations that share the same
meaning to the application.

Typically developers are responsible for defining con-
texts. They use their knowledge of the operating environ-
ment, sensors and actuators to define relevant contexts. Sets
of sensor readings are mapped to corresponding contexts.

For linear sensor data [12] the developer does not need to
explicitly define each sensor reading relevant to a context.
Instead the limits of a context can be defined, e.g. “room
temperature” abstracts readings from 16-22°C'. This is pos-
sible for many sensors such as distance, location, weight,
velocity etc.

Machine Learning approaches reduce the dependency on
the developer to define correct behavior; by allowing an
application improve itself. These approaches use abstrac-
tions in order to scale to real world problems, and function
approximation has been applied to learning these abstrac-
tions [13]. Function Approximation is a supervised learn-
ing technique [13] so it relies on correct examples to learn
from [10]. The developer selects these examples, so similar
to context approaches there is a dependency on developer
knowledge when defining abstractions.

We identify two issues with developer-dependent ap-
proaches to context/abstraction definition:

Inaccurate Contexts: If the developer has incorrect or in-
complete knowledge of the domain then contexts may be
poorly chosen, e.g., “room temperature” = 10-15°C' when
it should be 16-22°C'. In addition, the dynamic nature of
the real world may result in accurate contexts becoming in-
accurate, e.g. in the summer room temperature might be
regarded as 18-25°C. Inaccurate contexts lead to incorrect
behavior.

Inflexible Context Definitions: Developer-defined con-
texts imply fixed relationships with sensor data. The ap-
plication is only aware of the implication of being in a con-
text, rather than why the abstraction is appropriate. It cannot
reason about the suitability of the abstraction, so it cannot

IEE I-'

COMPUTER
SOCIETY

First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007)
0-7695-2906-2/07 $25.00 © 2007 IEEE

State Space

Sensor 2

~—
Sensor 3 —
-—

Environment

Sensor 1

Figure 2. Application perception

adapt it to correct it or even identify that it is incorrect.

Using our approach the application adapts its context
definitions to address these issues. We define a meaning
for sensor data that is relevant to the application. The ap-
plication uses feedback to learn this meaning and identifies
contexts based on it. By defining more accurate contexts the
application should perform better.

2 Application-Centric Context

There are a variety of definitions for context. They define
types of information that make up context [3, 11], or how
it is relevant to an application [5]. We consider context to
be an abstraction of situations that have similar meaning
(Section 1). In order for an application to abstract contexts
it must have some notion of meaning for sensor data.

2.1 Meaning for Sensor Data

In [8] Nehaniv argues that the meaning of information is
revealed in how it influences an agent. A discussion of the
meaning of sensor data in [9] also suggests that the meaning
of something is grounded in how it is used by the entity
interpreting it.

Brown [3] states that context-aware applications change
their behavior according to the context. If contexts adapt
behavior and contexts are abstracted from sensor data, then
it logically follows that sensor data adapts behavior. Based
on this usage we define application-centric meaning as a
mapping M from sensor data to application actions

M:S5d— A

where Sd is the set of possible sensor values and A is the

available actions. Feedback is used to identify this mean-
ing, and the process is dependent on an underlying learning
technique.

2.2 Context Definitions

The application perceives environmental situations
through its sensors. We have chosen to consider sensor data
as a state space in order for the application to reason about
and compare situations, and abstract contexts.

First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007)

0-7695-2906-2/07 $25.00 © 2007 IEEE

Context Edge
state1 I .sla(eZ
Sensor2 | |

Context A Context B

»
>

Sensor 1

Figure 3. Contexts in the state space

The combined readings of an application’s n sensors
form a unique point in n-dimensional space. Figure 2 shows
an application with three sensors. When combined the sen-
sor readings form a triple (sensorl_value, sensor2_value,
sensor3_value) that uniquely identifies a situation in the en-
vironment. Situations are distinguished at the highest reso-
lution offered by the sensors. We assume that sensor data is
linear [12], which allows the proximity of states within the
state space to be calculated using a metric.

From the perspective of the application, a context is a
group of states within the state space that share the same
meaning. Due to our linear state space it is our intuition
that similar states will be close to each other. In this case
contexts emerge as continuous spaces within the state space.

Contexts are defined in terms of context edges. A context
edge is the border between two contexts. Atkin [2] explores
the issue of state definition in continuous search spaces, and
proposes that only states at which a decision is made are
needed. Our context edges are equivalent to these points,
as a context change causes a change in behavior. If neigh-
boring states within the state space have dissimilar meaning
then we say that a context edge exists between them.

Figure 3 shows a two-dimensional state space. Contexts
A and B are regions within the state space, separated by a
context edge. All of the states in Context A have the same
meaning as statel, and all of the states in Context B have the
same meaning as state2. Context A is defined as any state
to the left of the context edge, and Context B is defined as
any state to the right. The meaning of a context is the same
as that of the states it abstracts; it influences the behavior of
the application in the same way as each of its states.

By defining contexts in terms of context edges we make
our context definitions flexible. The application identifies
context edges, and uses their locations in the state space to
evaluate and update existing context definitions.

3 Implementation

There are two main phases to the implementation. Mean-
ing is associated with sensor states, and contexts are subse-
quently abstracted based on the meaning. For this imple-
mentation we used Q-learning to identify meaning.

IEE I-'

COMPUTER
SOCIETY

Inconsistency
c1 c2

L Contexts
ActionA | g s2 13 Is4 -
O Action B Learning States

@ Sensor States

]
Context Edge

Figure 4. Inconsistent learning state

3.1 Adding Meaning to Sensor States

Q-learning [13] is a Reinforcement Learning algorithm
that uses feedback to learn appropriate behavior. The aim of
the learning algorithm is to find the optimal action for each
of a set of states. To achieve this the algorithm receives a
reward from the environment when an action is taken in a
state. By exploring all combinations of states and actions
the application learns the optimal action for each state- a
policy for optimal behaviour.

In our implementation the policy maps states in the sen-
sor state space to actions. This is the same as our notion of
application-centric meaning (Section 2.1). The policy de-
fines the meaning of states to the application.

Our metric for comparing states is based on this policy,
e.g. if states s/ and s2 have different optimal actions we say
they have dissimilar meaning.

3.2 Scaleable Learning

Learning becomes infeasible in large state spaces [10] so
we cannot apply Q-learning to all states in the state space.
We introduce another layer of abstraction between the sen-
sor state space and contexts called learning states, to reduce
the number of states to be learned about.

Figure 4 shows the two levels of abstraction. Contexts
are expressed on learning states rather than directly on the
sensor states, so the accuracy of context definitions depends
on the accuracy of the learning states. A learning state accu-
rately represents the sensor states below it if the appropriate
action is consistent across the learning state.

Figure 4 illustrates a situation where the learning states
are not accurate. Is2 is an inconsistent learning state as
it contains two distinct regions where different actions are
appropriate. The size of the inconsistency is the distance
between the context edge and the nearest learning-state
boundary. A context edge based on these learning states
is inaccurate by this amount.

Some Reinforcement Learning approaches have been ex-
tended to include state-space adaptation [7]. They adjust
their states to maximise performance. We use a similar ap-
proach to evolve an accurate set of learning states.

Our focus is on identifying context edges. Therefore our
algorithm focuses on increasing the accuracy of learning

s1 Is3 Is4

L Is2
U, VA A A, VA Vil | Learning States

—» Sensor States

Potential Gontext-edge Locations

Figure 5. Locating context edges

states in areas of the state space where there is a context
edge. To identify these areas neighboring learning states are
compared using our similarity metric (Section 3.1). A con-
text edge exists somewhere in the state space represented by
neighboring, dissimilar learning states.

Figure 5 shows an area that contains a context edge. The
states Is] are [s2 are dissimilar, therefore there is a context
edge somewhere in their combined state space. To refine
our knowledge of the context-edge location a new learning
state is introduced between the dissimilar states, increasing
the resolution. Q-learning is applied again to find the mean-
ing for the adjusted set of learning states. Increasing the res-
olution in the region of the context edge reduces the size of
the area shared by dissimilar states, and therefore decreases
the uncertainty regarding the context edge location.

This process is repeated to increase the accuracy. Ide-
ally the learning-state boundary matches the context edge
exactly, however it may be infeasible to reach this level of
accuracy due to the demands of learning.

3.3 Adjusting the Context Definitions

Context edges are identified once an accurate set of
learning states is discovered. Learning states are compared
to their neighbors, again using our similarity metric (Sec-
tion 3.1). Dissimilar neighbors have a context edge between
them, while similar neighbors are in the same context. Con-
text edge locations are compared to existing context defini-
tions. If the bounds of existing definitions do not match the
identified edges they are updated.

4 Experimental Results

To validate our initial implementation we performed ex-
periments on a simple scenario where the environment is
represented by a single-dimension state space (Fig. 6). The
environmental situation at any point in time is some real
value in the range 0-100. There are two actions: action A
changes the environment towards 100, and action B changes
it towards 0. This might equate to a real-world scenario such
as a heating controller based on temperature readings.

The goal of the application is to keep the environment
near a particular value. This value is the context edge be-
tween situations where Action A and Action B are appro-
priate. The task of the algorithm is to discover this edge so
contexts can be defined.

IEE I-'

COMPUTER
SOCIETY

First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007)
0-7695-2906-2/07 $25.00 © 2007 IEEE

Inconsistency

Is1 | V| 12 13

: I a
0 25 | 75 100
Action A ' Action B
- 33.5

Figure 6. Initial scenario set up

Inconsistency

Context A | Context B
|
1s7"
st Is4 Is6 xl Is5 Is2 1s3 X
1 1 A
Q0 125 25 31.5'34.5 435 75 100
33.5

Figure 7. Context edge after four passes

To illustrate the algorithm we outline an experiment
where the context edge was 33.5 units. We summarize the
results of our experiments in Section 4.2.

4.1 Context-edge Identification

We applied the approach discussed in Section 3.2. Three
default learning states were initially defined (Fig. 6), and
the inconsistency was 8.5 units. Figure 7 shows the learn-
ing states after four passes of the algorithm. The region of
state space near the context edge has been refined by new
learning states, and the inconsistency is 1 unit.

A context edge was identified between Is7 and Is5. Based
on this edge Context A was defined as the region below
34.5 and Context B as the region above. This definition was
within 1% of the actual context edge (33.5).

4.2 Inconsistency-Related Results

We performed 100 experiments on this scenario with
randomly chosen context edges. Table 1 summarizes the
inconsistency observed in learning states after 0, 2 and 4
iterations of the algorithm.

The average and standard deviation values demonstrate
the algorithm’s effectiveness. Both values fell as the num-

Iterations \ Average \ Standard Deviation ‘

0 11.23 6.56
2 3.38 2.56
4 1.03 1.02

Table 1. Inconsistency-related statistics

ber of iterations increased. By the fourth iteration a context
definition based on the evolved learning states was on aver-
age within 1.03% = 1.02 of the actual context definition.

5 Conclusion

We have presented an approach for making context def-
initions adaptable. It focuses on the application identifying
context edges by interpreting sensor information for itself,
and addresses some limitations of developer-defined con-
texts.

Having validated our approach using this simple sce-
nario, we intend to apply it to a set of more complex
context-aware scenarios. In the longer term, we hope to
use this approach to allow the application adapt the set of
sensors it uses to distinguish contexts.

References

[1] Parctab, http://sandbox.parc.com/parctab/.

[2] M. S. Atkin and P. R. Cohen. Using simulation and critical
points to define states in continuous search spaces. In Winter
Simulation Conference (WSC), Orlando, 2000.

[3] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware ap-
plications: from the laboratory to the marketplace. In /EEE
Personal Communications, 1997.

[4] H. Chen, E. Perich, T. Finin, and A. Joshi. Soupa: Stan-
dard ontology for ubiquitous and pervasive applications. In
Mobile and Ubiquitous Systems, 2004.

[5] A.K.Deyand G. D. Abowd. Towards a better understanding
of context and context-awareness. Technical report, Georgia
Institute of Technology, 1999.

[6] A. K. Dey, D. Salber, and G. D. Abowd. A conceptual
framework and a toolkit for supporting the rapid prototyp-
ing of context-aware applications. Special issue on context-
aware computing in the HCI Journal, 16, 2001.

[7] R. Munos and A. Moore. Variable resolution discretization
for high-accuracy solutions of optimal control problems. In
IJCAI 1999.

[8] C. L. Nehaniv. Meaning for observers and agents. In Inter-
nation symposium on Intelligent Control/Intelligent Systems
and Semiotics, Cambridge, 1999.

[9] D. Polani, T. Martinetz, and J. Kim. An information-
theoretic approach for the quantification of relevance. In Eu-
ropean Conference on Artificial Life (ECAL), Prague, 2001.

[10] S. Russell and P. Norvig. Artificial Intelligence: A Modern
Approach. Prentice-Hall, 2nd edition, 2003.

[11] B. Schilit, N. Adams, and R. Want. Context-aware computer
applications. In Ist IEEE Workshop on Mobile Computing
Systems and Applications, California, 1994.

[12] R. Siegwart and 1. R. Nourbakhsh. Introduction to Au-
tonomous Mobile Robots. MIT Press, 2004.

[13] R. Sutton and A. Barto. Reinforcement Learning. MIT Press,
1998.

IEE |-:

COMPUTER
SOCIETY

First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007)
0-7695-2906-2/07 $25.00 © 2007 IEEE

