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Figure 1: Exterior scene. Left: frame of DV footage. Right: a novel view rendered after trimming of the unstructured lumigraph.

Abstract

We present a novel perceptual method to reduce the visual redun-
dancy of unstructured lumigraphs, an image based representation
designed for interactive rendering. We combine features of the un-
structured lumigraph algorithm and image fidelity metrics to effi-
ciently rank the perceptual impact of the removal of sub-regions
of input views (sub-views). We use a greedy approach to estimate
the order in which sub-views should be pruned to minimize percep-
tual degradation at each step. Renderings using varying numbers
of sub-views can then be easily visualized with confidence that the
retained sub-views are well chosen, thus facilitating the choice of
how many to retain. The regions of the input views that are left
are repacked into a texture atlas. Our method takes advantage of
any scene geometry information available but only requires a very
coarse approximation. We perform a user study to validate its be-
haviour, as well as investigate the impact of the choice of image
fidelity metric. The three metrics considered fall in the physical,
statistical and perceptual categories. The overall benefit of our
method is the semi-automation of the view selection process, result-
ing in unstructured lumigraphs that are thriftier in texture memory
use and faster to render. (Note to reviewers: a video is available at
http://isg.cs.tcd.ie/ymorvan/paper37.avi. The figure occupying the
ninth page is intended to appear on a color plate.)
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1 Introduction

The creation of digital visual content has become a major activ-
ity in a broad range of industries. Huge numbers of person-hours
are invested in related tasks, from modeling to de-noising of cap-
tured data. There has been significant research in computer graph-
ics aimed at automating or even bypassing some of these tasks. In
the field of rendering, one such direction is the image-based ap-
proach, which allows new views to be computed from available im-
ages and rudimentary geometric information. Perceptually adaptive
graphics, albeit so far predominantly explored to achieve machine-
hours savings, is another area of great potential.

Research in Image-Based Rendering (IBR) has mainly focused on
achieving interactive frame rates at satisfactory visual quality while
exploring the tradeoff between how finely the light field has to be
sampled and how much geometric information to use. From an
artist’s point of view, all the proposed methods are difficult to lever-
age: on one hand, depth-map, dense correspondence or optic flow
based techniques [Heigl et al. 1999] rely either on the availability of
an accurate geometric model or on computer vision methods such
as stereo matching or range scanners. These perform poorly on
scenes that contain complex occlusion boundaries, large surfaces
of uniform irradiance or highly reflective materials. On the other
hand, methods that put the emphasis on a dense sampling of the
light field are often based on a rigid parameterization that requires
expensive and impractical gantries to constrain camera positions.
In [Gortler et al. 1996], views can be acquired in an unstructured
way, for example using a hand-held camera, but a lossy rebinning



pre-process is then needed.

Buehleret al [2001] propose their unstructured lumigraph render-
ing algorithm as a flexible method that bridges both ends of the light
field samplingvs geometry compromise. It behaves similarly to
light field rendering when given many views and a single plane, and
like view dependent texture mapping [Debevec et al. 1998] when
given fewer views but more detailed geometry. A major drawback
of unstructuredIBR techniques is that they cannot exploit any pa-
rameterization properties to guide compression, making it difficult
to compress inter-view redundancy. Selecting a set of views that
minimizes redundancy is therefore crucial.

Perceptually adaptive rendering is particularly well suited to global
illumination, see the works of [Myszkowski et al. 1999], [Yee et al.
2001] and [Stokes et al. 2004] among others. One reason is that
perceptual metrics, be they based on complex simulations of the
Human Visual System (HVS) or on implicit models of its properties,
tend to be computationally expensive, so that their own cost can
counterbalance the savings they achieve (there exist works that take
up this challenge in the context of interactive rendering: [Dumont
et al. 2003], [Walter et al. 2002], [Williams et al. 2003]). Another
reason is that intermediate results of global illumination algorithms
that proceed by progressive refinement can be substituted for the
gold standard that most perceptual metrics need.

In the context of unstructuredIBR, view selection is a pre-process,
which makes the use of perceptual metrics more tractable. Further-
more, the input images themselves can be used as a gold standard.
The initial set of views then needs to be dense enough to sample the
scene properly. This will typically be the case when working from
video sequences.

This paper proposes a framework to facilitate the authoring of
thrifty unstructured lumigraphs. We make use of image fidelity
metrics as a criterion to remove redundancy from the original
dataset. Three metrics are considered, respectively of a physical,
statistical and perceptual nature. We perform a user study to in-
vestigate which metric performs best, as well as validate that our
framework yields better results than the alternatives. The scope of
this work is limited to static scenes under constant illumination.

2 Related work

Hlavacet al[1996] were the first to study the problem of view selec-
tion for unstructuredIBR, more specifically in the context of view
interpolation. They demonstrated their method in the case where
camera positions are limited to one degree of freedom. It consists
of growing view position intervals until the quality of the interpola-
tion over them falls under a threshold, and then keeping the views
at their bounds. They point out that the computational cost of the
interval growing algorithm explodes in the general case.

In [Fleishman et al. 2000], the geometry of the scene is assumed
to be known and its surfaces to be Lambertian. Thus, views can
be selected withouta priori knowledge of the corresponding im-
ages. A heuristic is presented to determine a reduced set of views
that ensure coverage of all the scene polygons with quality superior
to some user specified threshold. Vazquezet al [2001] propose a
similar technique inspired by information theory, using viewpoint
entropy to guide the selection process.

Schirmacheret al [1999] use a lumigraph representation to interac-
tively render high quality global illumination solutions. Each frame
of the solution being expensive to compute, they propose an iter-
ative method to progressively add views to the lumigraph that are
predicted to most increase rendering quality. Coombeet al [2005]
introduce a system that lets an author interactively create a surface

light field online by giving him feedback on what views to capture
next. Views are incorporated on the fly into the light field using
an online SVD algorithm. Their method pre-supposes a reasonably
accurate geometric model of the captured scene.

The framework we propose is based on assumptions different from
those made by these two last works: a dense set of views, along with
their camera pose information, is available, but geometric informa-
tion can be sparse and/or innaccurate. It therefore aims to prune vi-
sual information that contributes less to rendering quality. As such
it is related to the various light field compression techniques that
have been developed. Further discussion of this topic can be found
in the works of Xin and Gray [Xin and Gray 2003]. Our approach
puts more emphasis on facilitating the authoring process. The main
advantage of our framework is that it transparently deals with the
compromise between geometric accuracy and the light field sam-
pling rate.

3 Proposed framework

Given a perceptual measurement tool that evaluates how similar an
image is to a reference, it is straightforward to define the perceptual
quality score (PQS) of a subset of input views. This is calculated
by applying the measurement tool to pairs consisting of each initial
input view and its reconstruction by theIBR algorithm using that
subset, then taking the sum. From there, we can assess the percep-
tual degradation caused by the removal of an input view by taking
the difference in perceptual quality score of renderings computed
with and without it. The higher the degradation, the more view
dependent information that input view captures, and the less redun-
dant it is. For clarity, we will call the views used for the purpose of
computing perceptual quality scorestouchstone views(TV).

We show how the unstructured lumigraph rendering algorithm
makes it easy to exploit spatial coherence to speed up the com-
putation of the perceptual degradation caused by the removal of an
input view. We then describe the perceptual measurement tools that
we have chosen to use and justify our choice. The details of our
greedy pruning process are then provided, followed by a descrip-
tion of how to leverage its results for rendering. Finally, we discuss
some practical features of the technique.

3.1 Context: Unstructured Lumigraph Rendering

Buehleret al’s [2001] Unstructured Lumigraph Rendering (ULR)
algorithm is a general purposeIBR technique that takes as input
a polygon mesh approximating the geometry of the scene, a set
of images of it and the camera pose information corresponding to
each image. The polygon mesh is dubbed ageometric proxy. It is
important that the registration between the geometric proxy and the
input views be known.

The main principle of the technique is to compute ablending field
that depicts how the color of each pixel of the desired view is to be
obtained by blending the colors of the corresponding pixels in the
input images.

Buehleret al design a continuous function that gives a highblend-
ing weightto views that see a given point of the geometric proxy
with good resolution from an angle close to that from which it is
seen in the desired view. This function only gives a non-null weight
to a small numberk of best views (in practice, they choose four).
To achieve interactive frame rates, the blending weights for each
input view are not evaluated at each pixel but linearly interpolated
from evenly located sample points: the vertices of the triangulated
geometric proxy.



Thus for a given touchstone view, it is possible to determine the list
of triangles over which visual changes will happen when computing
the perceptual degradation caused by the removal of an input view.
It is simply the list of triangles that have at least one vertex whose
set ofk best views contains that input view. If that list is empty
for all triangles in a given touchstone view, its contribution to the
overall perceptual quality does not need to be updated. Moreover,
if we are able to compute the perceptual measure locally, time can
be saved by computing it only over triangles where a visual change
has occured.

3.2 Perceptual measure of view utility

For our framework, we considered three image fidelity metrics:
the traditional Root Mean Square error (RMS), Yee and Newman’s
[2004] PerceptualDiff (PDIFF) , and Wanget al’s [2002] Structural
SIMilarity index (SSIM). We had considered including Daly’s Vis-
ible Difference Predictor (VDP) [Daly 1993] using Mantiuket al’s
most recent implementation [Mantiuk et al. 2005], but its longer
computation times (between one and two orders of magnitude)
made our framework untractable in its current iteration. In this
work, all the metrics considered were computed only on the lu-
minance channel, thus disregarding chrominance information. This
was motivated by computation time concerns, as well as the fact
that for each of the metrics considered, color handling is an orthog-
onal addition that we thought better to investigate at a later point.

3.2.1 SSIM

Contrary to most perceptual metrics, theSSIM does not rely on a
simulation of the low level behavior of the Human Visual System
(HVS). It is based on the observation that the function of theHVS
is to extract structural information from visual stimuli. It therefore
estimates how similar two images are by using statistical tools to
quantify the structural difference between them.

We justify our inclusion ofSSIM as follows:

• As Wanget al show, when predicting the visual fidelity of a
wide range of images, their method can compare favorably to
RMS, peak signal to noise ratio, and more importantly, tech-
niques based on models that reproduce the error sensitivity of
theHVS.

• Spatial frequency masking is aHVS property accounted for
by these latter techniques, as opposed toSSIM, but taking it
into account is not clearly desirable for our purpose. This
is because changes of the viewing context, like a change of
viewpoint or the presence of an occluder between the image
based rendered object and the observer, will cause arbitrary
modifications of the visual information surrounding a point of
the object.

• The SSIM index is less computationally intensive because it
takes a statistical approach as opposed to a signal processing
one, which requires complex transforms to be applied.

• It has little computational overhead, an important advantage
if we want to evaluate it on many small triangles and not just
a few whole images, as mentioned in section 3.1.

• It is straightforward to implement as a multi-pass fragment
shader.

SSIM’s evaluation is based on a sliding window mechanism and
computes a score for each pixel (we invite the reader to consult
Wanget al’s [2002] paper for further details). We implement it us-
ing OpenGL’s fragment shader mechanism, taking advantage of its
separability into horizontal and vertical passes. The value of the

SSIM index over each triangle is obtained by taking its average over
the relevant pixels.

3.2.2 PDIFF

Yee and Newman’s [2004] (PDIFF), which they put forward in the
context of production testing, is based on Ramasubramanianet al’s
[1999] simplified version of theVDP. Like theVDP, it accounts for
three features of theHVS: amplitude non-linearity, sensitivity vari-
ation as a function of spatial frequency, and visual masking. For
efficiency purposes, the originalVDP’s decompositions of the sig-
nal into different bands in the frequency domain and different ori-
entations are discarded. This allows for a purely spatial approach,
based on Laplacian pyramids, at the cost of a much more rudimen-
tary modeling of the visual masking phenomenon (because interac-
tions between signal components based on frequency and orienta-
tion similarity are not considered). The behaviour ofPDIFFdepends
on the field of view occupied by the signal and its resolution, which
depend on the target viewing conditions: cinema theatre in Yee and
Newman’s case, desktop monitor in our user study.

In the context of our framework, the computation of the Laplacian
pyramid proved a manageable overhead in the application ofPDIFF
to individual triangles. UnlikeSSIM, which outputs a normalized
score for each pixel,PDIFF’s output consist of a number of pixels
where the metric predicts viewers will perceive a difference. To
obtain a score over a triangle to use within our framework, we took
the ratio between the number of pixels predicted indistinguishable
and the total number of pixels covered by the triangle.

3.3 Greedy sub-view selection

In order to take advantage of the locality of view-dependent phe-
nomena - be they inherent to the scene, such as reflective surfaces,
or caused by geometric proxy inaccuracies - our framework does
not discard whole input views but sub-regions of them: The trian-
gle ring surrounding each vertex of the geometric proxy is projected
into each input view. The resulting image areas are treated assub-
views(thus a sub-view is identified by the input view it belongs to,
and a vertex of the geometric proxy). This choice is justified by the
nature of theULR algorithm: it operates on vertices, whose list of
blending weights only affect the neighbouring triangles.

For sub-views to be consistent from one primary view to the other,
it is necessary to drop the view dependent triangulation step of the
origial ULR algorithm. To maintain proper sampling of the blend-
ing field (Cf. 3.1), we simply subdivide the initial geometric proxy
evenly. The only extra cost of this approach is that it will sam-
ple the blending field unnecessarily tightly where triangles of the
proxy project to a small region of the desired view. In practise,
we found that this was counterbalanced by the savings incurred
by scrapping the constrained Delauney triangulation originaly per-
formed for each frame.

We then greedily prune the sub-views in order of increasing percep-
tual impact: at each step, the discarded sub-view is the one whose
removal causes the least perceptual quality degradation, as defined
in section 3.2. Brief pseudocode is given in Algorithm 3.1.



Algorithm 3.1: SUB-VIEW ORDERING()

Compute the initial perceptual qualities with all sub-views in use
while there remain sub-views

do



























































for each remaining sub-view

do


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for each triangle in each touchstone view
that it affects

do

{

Compute the visual degradation
caused by its removal.

Compute the average visual degradation
for this sub-view.

Append the sub-view whose removal causes the
least degradation to the list of ordered sub-views.
Remove that sub-view from the list of remaining
sub-views.

Some book-keeping is necessary to avoid recomputing the percep-
tual quality score over triangles that were not affected by the last
sub-view removal. An array contains the initialPQSof each trian-
gle for each touchstone view obtained when using every input view
for rendering. It is accessed whenever the perceptual degradation
over a triangle needs to be recomputed. We update the following
data structures after each removal:

A1 A cache containing thePQSdegradation over each triangle in
each touchstone view for each primary view to be potentially
next removed.

A2 A cache containing the nextPQS degradation resulting from
the potential removal of each sub-view.

L3 The list of remaining sub-views.

L4 The list of remaining input views ordered byULR blending
weight (Cf. 3.1) for each vertex in each touchstone view.

L5 The sub-list of remaining input views that will affect the ren-
dering of each triangle in each touchstone view.

L6 The list of triangles (grouped by the touchstone view they be-
long to) to whose rendering each remaining sub-view con-
tributes.

A1 only needs to be updated when the last removed sub-view “con-
tained” that triangle. A2 is obtained by averaging thePQS degra-
dations of all triangles of a sub-view over all relevant touchstone
views. It gets updated if the removal of the last sub-view affected
thePQSdegradation of a relevant triangle in any touchstone view.

L3 is self explanatory. L4 is included in order to avoid having to
go through all the remaining input views each time the blending
weights are computed when rendering a triangle. Here, we have
to note that theULR algorithm is designed to approximate epipolar
consistency. This means that if we were to evaluate thePQSon a
touchstone view, while using that very touchstone view as an input
view, it would be selected as first among thek best views and given
the highest weight for each vertex. Removing other input views
would then cause thePQS to increase all the more if their weight
was important, because the relative weight of the touchstone view
itself would be increasing. Such behavior is the opposite of what
we want to measure. To correct it, for each vertex of a given touch-
stone view of L4, we initially remove that touchstone view from the
list of potential input views. This ensures that each touchstone view
is not used by theULR algorithm when rendering a triangle with the
purpose of comparing it with its appearance in that specific touch-
stone view.

L5 is built from L4 by taking the union of the firstk+1 input views
over the vertices of each triangle. Indeed, to compute the newPQS
over a triangle resulting from the potential removal of each single
input view that affects it, we need to render the triangle without that
view, and therefore need the(k + 1)th input view that will fill the
gap for each vertex where the removed view was present.

When a sub-view is selected for removal, other sub-views will make
their way onto the list ofk best views for each vertex in each touch-
stone view it affected. This has an impact on which touchstone
views to render on the next step to evaluate the perceptual degrada-
tion caused by the potential removal of each remaining sub-view.
L6 stores that information and it is therefore updated by identify-
ing which input view “filled the gap” left by the removal of the last
sub-view for each affected triangle in each touchstone view.

The output of the algorithm is a list of all initial sub-views sorted by
the estimated order in which they should be removed to minimize
perceptual degradation.

3.4 Texture atlas generation

The ULR algorithm uses hardware accelerated projective texture
mapping and color blending to achieve interactive frame rates. To
capitalize on the visual redundancy removal achieved by prun-
ing sub-views, input views (now with holes in them) have to be
repacked into a texture atlas to optimize the use of texture memory.

The texture coordinates of each triangle in each input view can be
recovered from the hardware’s automatic texture generation mech-
anism. We adapt Hale’s [Hale 1998] triangle packing heuristic to
our needs. It begins by rotating triangles into “mountain” shapes
and then mirrors them horizontally or vertically to tightly fill image
rows of decreasing height. Since we are taking triangles from many
input views, without modification this method would lead to the big
triangles being packed in the first textures and the small ones in the
last textures, regardless of the input view they belong to. Thus, to
render a view from a certain viewpoint, many more textures than
necessary would need to be in texture memory. We therefore mod-
ify Hale’s height sorting with a condition on the proximity of the
input views’ camera centers.

3.5 Touchstone views selection

The use of our framework raises the question of how to choose the
touchstone views. It is an authoring choice that depends on the fi-
nal purpose of the representation. In graphical applications, image
based representations are particularly well suited to mid-range vi-
sual content: content that is not far enough away to be rendered as
a static billboard, but yet not close enough for the user to interact
with. The ULR algorithm is better suited for this than mostIBR
techniques because of the ease with which it can be incorporated
into a typical hardware accelerated 3D engine.

In this context, parts of the captured objects will end up being oc-
cluded by closer range objects when viewed from the area that users
can navigate. Apart from the obvious choice of limiting the set of
touchstone views to the navigable viewing region, our method lets
the author leverage these known occlusions. By rendering the oc-
cluders in each touchstone view, areas that are irrelevant to visual
quality (because ultimately unseen) can be masked out, as allowed
by our implementations ofSSIM andPDIFF.

If the artist is given information on where users are likely to spend
the most time, and which are the most likely viewing angles, he can
adjust the density of touchstone views accordingly. He can either
discard or enforce high frequency phenomena, such as a glare in



a window, by discarding or choosing to keep the touchstone views
that exhibit it.

The choice of touchstone views is related to the behavior of the
perceptual measurement tool: In our experience, the quality of the
registrations obtained with commercial tracking software was good
enough for the tools we chose to behave well. However, for a scene
where some views are not properly registered, any perceptual met-
ric with a registration requirement acts like a double-edged sword:
If a badly registered view is used as a touchtone view, it will upset
the behaviour of the framework for sub-views taken from a neigh-
bouring viewpoint. If on the other hand the badly registered view
is excluded from the set of touchstone views, its sub-views will be
automatically discarded by the framework, as their removal will in-
crease rendering quality.

Being part of the authoring process, the choice of touchstone views
is very much case dependent. To evaluate the potential of our ap-
proach, we chose to place ourselves in the neutral case where all
views are equally desirable. Thus, we retain one input view out of
every two as touchstone view, in an even distribution.

4 Results

We acquired four video sequences of different scenes using a hand-
held Canon XL1 PAL DV camcorder. Camera poses were recov-
ered using PFTrack 3.0, a commercial camera tracking solution
from The Pixel Farm. Rough geometric proxies were created in
a few dozen minutes with a standard polygon editing tool, using
six to ten reconstructed features and world-space orientation from
PFTrack as construction guides. Since our method bypasses the
view-dependent image-plane triangulation of the originalULR al-
gorithm, our proxies need to have unit depth complexity when seen
from the viewing region of interest. Statistics for each unstructured
lumigraph thus created are summarized in Table 1. Views of these
scenes are shown in Figure 1 and 5.

4.1 User study

We designed and ran an experiment to evaluate the results of our
framework.

We first wished to measure how much better our view selection
technique is to currently available alternatives. As discussed in the
related work section, without accurate geometric knowledge of the
scene and when cameras can be arbitrarily placed, current alter-
natives are limited to techniques that ensure a uniform coverage of
the geometric proxy by the retained views. We therefore picked two
test scenes where uniform coverage could easily be enforced for any
number of discarded sub-views: their initial views were obtained by
evenly trucking the camera respectively in front of a building facade
(Cf. Figure 1) and in the university library (Cf. Figure 5). In this
case, uniform coverage for any number of remaining views can be
maintained by picking them evenly from the initial set. Since our
technique operates at the sub-view level, for a given numbersv of
discarded sub-views, we estimated the numberv of views to dis-
card by dividingsv by the average number of sub-views contained
in each view. Once all the sub-views contained in the evenly picked
v views were discarded, we made up the difference in the follow-
ing fashion: remaining views were browsed in sequence, removing
(or recovering if more sub-views than needed had been discarded)
a single sub-view from each. To ensure the even distribution of
removed (recovered) sub-views, we used a vertex coloring of the
geometric proxy and picked sub-views of the same color, moving
on to the next color when one was exhausted. This heuristic, in-
cluding the graph coloring, took less than a minute to apply to each
test scene. We will call itregular in the remainder of the paper.

Next we wanted to know how different the results of our framework
would be depending on the metric used,PDIFF, SSIM or RMS.

The goal of the experiment was therefore to measure, for each of
the four sub-view discarding strategies (three metrics plusregular),
at which number of discarded sub-views users started to perceive
visual degradation compared to the original dataset. We chose a
double-random staircase experiment design. In a staircase experi-
ment, users are presented with a sequence of stimuli at different lev-
els of intensity. They are asked to perform a two-alternative forced
choice at each step. The sequence of stimulus levels is influenced
by the behaviour of the user: the level is regularly updated in one
direction while the user keeps making the same choice, and direc-
tion changes when the current choice contradicts the last one (this is
called a reversal). Ascending staircases start with the lowest stim-
ulus level and their initial stimulus update direction is up. It is the
reverse for descending staircases. Double-random staircase designs
randomly interleave one staircase of each kind.

In our case, the stimuli presented are pairs of short (two seconds)
rendered video sequences of the test scene, one of which uses the
original dataset, shown one after the other. The number of sub-
views discarded before rendering the second video corresponds
to the stimulus strength. The forced choice consists of deciding
whether the videos are of the same or different quality.

Asking participants to compare the quality of two full size PAL
videos of short duration is problematic because it is difficult to con-
trol where they focus their attention. For this reason, we produced
four sets of smaller videos showing two sub-regions of each test
scene. For theExterior scene, the sub-regions consisted of the win-
dows plus the tree branch (window), and the door plus the tree trunk
(door). For theLibrary scene, they consisted of a section of the up-
per glass barrier (glass), and a section of the upper book stacks
(stacks). The novel camera paths used to produce the videos were
created ad-hoc. The same path was used for both sub-regions of a
test scene. The experiment was setup so that the displayed video
for each sub-region subtended roughly between40 and50.

The full experiment thus consisted of32 staircases:4 sub-view
discarding strategies× 4 test sub-regions× 2 staircases (one as-
cending, one descending), all randomly interleaved to counteract
learning and expectation effects. Each staircase was limited to8
reversals. We chose3200 sub-views as the initial increment (decre-
ment) value of the stimulus level, which was lowered to1600 upon
the third reversal and800 upong the sixth. A few pilot runs of the
experiments yielded an average duration of over an hour. We judged
this too long for the participants to maintain concentration, thus we
split the experiments in two sessions of under40 minutes, asking
participants to come back later during the day for the second ses-
sion (break times varied from40 minutes to2 hours). Each session
consisted of the staircases corresponding to one sub-region of each
scene. Which session each participant sat through first was ran-
domized.16 participants took part within a controlled setup (same
computer, display device and viewing conditions). All were from
the computer science department (3 staff,13 students), seven were
women, all had normal or corrected to normal eyesight.

By fitting a psychometric function to their responses, we estimated
the Point of Subjective Equality (PSE) ı.e. the number of dis-
carded sub-views at which participants had an even chance of re-
porting some visual degradation. Results are summarized in Figure
2. Results for thedoor sub-region were discarded because stair-
cases failed to converge in most cases. We attribute that fact to the
presence of a slight popping artefact in the video obtained with the
original dataset, which could have confused participants.

We performed a two-factor analysis of variance (ANOVA ) with
replication on the results. It shows a significant main effect of



Views Vertices Faces Sub-views
Exterior 143 268 491 18638
Library 91 244 434 15625

Mezzanine 68 444 808 14508
Objects 175 119 214 20674

Table 1: Test scenes statistics (note that we do not count sub-views
that are not blendable for lack of visibility of the whole triangle
ring)

the view discarding strategy factor (F (3, 180) = 15.48, p ≈ 0),
a significant main effect of the sub-region factor (F (3, 180) =
71.24, p ≈ 0), and a significant interaction between the two factors
(F (6, 180) = 36.48, p ≈ 0). Concerning the sub-region factor, it
is natural that a given metric yields different numbers of discarded
sub-views at thePSEon different sub-regions, as those exhibit vary-
ing degrees of view-dependency. The strong significance of the in-
teraction effect means that the relative performances with respect to
each other of the four sub-view discarding strategies depend on the
content.

Post-hoc analysis was then performed using a standard Newman-
Keuls test for pairwise comparisons among means. Regarding the
discarding strategy factor, there were only two cases where two
strategies’ outcomes were not significantly different. One was be-
tweenSSIM and regular on thewindowsub-region (p = 0.057).
This can be attributed to the much higher variance in thePSEs re-
sulting from theregular discarding strategy: participants disagreed
more with each other as to when degradations started appearing
with this strategy than they did with our framework (using any met-
ric). The other was betweenSSIM and PDIFF on thestackssub-
region (p = 0.052), providing the exception to the rule that each
metric used in our framework yielded statistically different results.

A reading of the chart in Figure 2 shows that bothSSIM andPDIFF
yield results that are consistently better than those of theregu-
lar discarding strategy, with a slight overall advantage forPDIFF.
RMS’s performance is very erratic: it is by far the worst strategy for
both theglassandstackssub-regions, yet strongly outperforms the
competition for thewindowsub-region. This could be explained
by the fact thatRMS is a very one dimensional metric compared to
PDIFF or SSIM. In particular, its extremely local focus (pixel differ-
ence) makes it very sensitive to noise and blur. This would explain
why it performs well on thewindow sub-region, which contains
complex patterns of intertwined small branches in the forefront,
whose inaccurate fit with the geometric proxy yields strong blur-
ring as sub-views are discarded.

In Figure 3 we plot the aggregated psychometric function over all
participants for each sub-region. Those plots let us compare the
discarding strategies at different levels of probability that partici-
pants will spot visual degradations. The steepness of each curve at
its point of inflection reflects how consistent participants were with
themselves in reporting when they started noticing degradation: the
steeper, the more consistent and the more predictive the psychome-
tric function. In this respect, theregular discarding strategy caused
the most confusion in participants, whilePDIFF yielded the best re-
sults. Interestingly, this means that the lower the desired probability
of detection, the betterPDIFF compares toSSIM. Thus, in the case
of the stackssub-region, whereSSIM performed better at thePSE,
PDIFF overtakes it for detection probabilities below37%. In the
context of visual content authoring, those are the probability levels
that matter.
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Figure 2: Proportion of sub-views discarded for each strategy for
each test sub-region at thePSE(standard errors are shown).

Exterior Library Mezzanine Objects
RMS ≈ 5 h ≈ 5 h ≈ 6 h ≈ 5 h
SSIM ≈ 6 h ≈ 5 h ≈ 7 h ≈ 6 h
PDIFF ≈ 8 h ≈ 7 h ≈ 9 h ≈ 8 h

Table 2: Approximate time taken to order all sub-views by increas-
ing perceptual importance (hours).

4.2 Impact on rendering performance

The sub-views of each unstructured lumigraph were perceptually
ordered by our greedy pruning process with thePDIFF metric. Pro-
cessing times are given in Table 2. We then navigated the unstruc-
tured lumigraphs while changing the number of retained sub-views
within the ordered list, allowing us to determine the lowest number
before degradations became noticeable.

Resulting texture memory footprints and framerates are summa-
rized in Table 4. They vary significantly because of the wide differ-
ences between the properties of the test scenes. The Mezzanine
scene’s geometric proxy is more detailed and fits the actual ge-
ometry better. The Library contains glass surfaces that introduce
strong view-dependence. In the Exterior scene, the geometric proxy
matches the branches of the tree very poorly. This illustrates the
importance of a human operator to make a judgement call on the
data/quality compromise - a call that our technique facilitates. In-
deed, our use of fidelity metrics lets us compare the importance of
sub-views relative to each other, but does not provide an objective
assessment of the quality of the dataset at a given point during the
pruning process. The high texture memory savings obtained for
the Objects scene is partly explained by the fact that its geometric
proxy does not fill the whole view frustum in most views: unused
areas are not packed in the texture atlas.

Two interesting quantities can be used to measure the success of
our approach. First is the texture memory ratio between the original
lumigraph and its trimmed version. Second, the ratio of blendable
views per vertex. Indeed, the bottleneck of theULR technique lies
in the computation of the blending weights, as the algorithm has
to order each candidate blendable view using a penalty function,
before renormalizing the weights over thek best views. The ratio
of blendable views per vertex is therefore a good hint at the speed-
up that anyULR implementation can expect thanks to our technique.
The framerates quoted in Table 4 illustrate this point: as expected,
the rendering speed-up correlates with the number of vertices of the
geometric proxy. Table 5 contains both ratios.
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Figure 3: Psychometric functions aggregated over the16 participants for each sub-region. The Y axis represents the probability ofa
participant reporting some visual degradation. The X axis shows the number of sub-views discarded.

Exterior Library Mezzanine Objects
11000 11500 3000 10000
59 % 73.6 % 20.7 % 48.4 %

Table 3: Number of retained sub-views for each test scene.

Size (Megabytes) Frames per second
Original Trimmed Original Trimmed

Exterior 164.3 90.9 9.5 11.5
Library 104.5 85.7 10.5 11.5

Mezzanine 78.1 10.5 7 11
Objects 201 29.25 NA 12

Table 4: Results. “Size” stands for total texture memory footprint.
Frames per second are measured on a 3GHz Pentium 4 computer
equiped with an ATI Radeon 9800 XT graphics card. The NA rat-
ing means that there was no sustainable framerate due to texture
swapping.

Figure 4 illustrates the behaviour of our technique on an input view.
In this test scene, the proxy is fitting the ground and the wall, but
is jutting towards the viewer at the tree’s trunk and branches. Our
technique correctly discards sub-views (in red) where little view
dependence is present, ı.e. where the proxy is modeling the scene
properly and the surface there does not exhibit view dependent phe-
nomena. Comparisons of renderings of the three other scenes be-
fore and after discarding sub-views are shown in Figure 5.

5 Discussion and future work

Our method has shown great potential on our test scenes, resulting
in significantly better results than regular discarding when using ei-
ther PDIFF or SSIM, and this consistently over sub-regions of vary-
ing nature. Once it has ordered the initial sub-views by increasing
perceptual importance, an artist can quickly explore renderings of
the scene using varying numbers of remaining sub-views until he is
satisfied with the compromise between visual quality and resource
consumption (memory as well as rendering time).

When it comes to comparing the performance of different metrics
within our framework, Yee and Newman’s PerceptualDiff appears
to win. As acknowledged by Wanget al in their citation of the re-

Exterior Library Mezzanine Objects
Texture 55.3 % 82 % 13.5 % 14.5 %

Views/vertex 55.5 % 71 % 22.5 % 48.4 %

Table 5: Results expressed in terms of texture memory usage ratio
and number of candidate views per vertex ratio.

Figure 4: An input view of the Exterior scence after processing:
the geometric proxy is drawn in white. Triangles in black belong to
vertex rings that contain a triangle that is not fully visible in that
view, which makes them unusable in the first place. Triangles in red
belong to sub-views that were discarded by our technique.

search conducted within the Modelfest framework and by the Video
Quality Expert Group, debate is strong in the field of image fidelity
metrics. It would perhaps be worthwhile to investigate ways to pre-
dict which metric is most appropriate depending on the type of con-
tent, both generally and locally.

As mentioned in the introduction, the closest techniques with which
to compare our work deal with interactive rendering from com-
pressed lightfields. Be they based on vector quantization, DCT
or wavelets, they typically achieve higher memory savings than
what we obtain, thanks to their much finer granularity. The most
dramatic results are however obtained with stronger requirements
about the geometric information than we make. From the point of
view of rendering performance, typical numbers quoted in the liter-
ature hover around 8 frames per second [Xin and Gray 2003]. Since
we chose to implement our framework in Haskell for the prototyp-
ing ease it provides, the performance figures we obtain are proba-
bly not representative of a heavily optimizedULR implementation.
However, at roughly 7 to 15 fps, our approach already appears to be
competitive. There are less easily quantifiable factors to consider
in the comparison. One is the flexibility of theULR representation,
which results in better authoring convenience: the artist has more
freedom to choose a geometryvs. sampling compromise, and he is
not bound by sampling regularity, which light field techniques tend



to enforce rigidly. Another is its higher suitability for inclusion in a
3D engine. A formal comparison of the techniques would be very
worthwhile, but it is a challenge because of the slight variations in
requirements and features that make the choice of test scenarios that
are suitable across the board difficult.

In its current implementation, the main drawback of our method is
its computation time, considering that the number of input views
can grow considerably with the area of the viewing region that the
artist wishes to cover. To combat this, a statistical approach could
be used at each removal step to avoid considering all remaining sub-
views, and only a sub-set of them. It is also possible to considerably
reduce computation time by playing with the number of touchstone
views considered when applying the perceptual metric. This is an
area of future experimentation as the choice of touchstone views, or
possibly their weighting by importance, would be a natural way for
an artist to tune view selection to areas of particular importance in
the viewing region from which the scene is intended to be seen.

Another limitation is our use of a view-independent geometric
proxy, which aggravates a limitation of theULR algorithm men-
tioned in Figure 4, namely that views that do not cover a triangle
entirely cannot be used to texture it. This limitation can however be
worked around during authoring by either taking wider angle pic-
tures of the desired scene or panning the camera. Our framework
ensures that the useless visual information around the edges will be
culled in the final packing.
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Figure 5: Novel views of some test scenes, from top to bottom: Objects, Mezzanine and Library. On the left: original dataset. On the right:
trimmed dataset.


