
Crowd Creation Pipeline for Games

R. McDonnell†1, S. Dobbyn1 and C. O’Sullivan1

1Interaction, Simulation & Graphics Lab, Trinity College Dublin, Ireland

Abstract

With the increase in realism of games based in stadiums and urban environments, real-time crowds are becoming
essential in order to provide a believable environment. However, realismis still largely lacking due to the com-
putation required. In this paper, we describe the pipeline of work neededin order to prepare and export models
from a 3D modelling package into a crowd system. For our crowd, we use ahybrid geometry/impostor approach
which allows thousands of characters to be rendered of high visual quality. We use pre-simulated sequences of
cloth to further enhance the characters appearance, along with perceptual metrics to balance computation with
visual fidelity.

1. Introduction
In the games industry, real-time crowds are increasing in
popularity due to the emergence of new level of detail (LOD)
techniques. Currently, the humans that occupy crowd sys-
tems in games use skinned meshes for their clothing, often
resulting in rigid and unnatural motion of the individuals in
a simulated crowd. While there have been advances in the
area of cloth simulation, both offline and in real-time, inter-
active cloth simulation for hundreds or thousands of clothed
characters would not be possible with current methods. We
addressed this problem in previous work by devising a sys-
tem for animating large numbers of clothed characters using
pre-simulated clothing.

In Dobbyn et al. [DMK∗06], we added realism to our
crowd simulations by dressing the individuals in realistically
simulated clothing, using an offline commercial cloth simu-
lator, and integrating this into our real-time hybrid geome-
try/impostor rendering system ( [DHOO05]). We have also
improved the quality of the impostors in the system by
using perceptual metrics described in [HMDO05, MDO05,
MDSC06] in order to drive the impostor rendering. In this
paper, we discuss the necessary steps to advance from a sin-
gle character in a modelling package such as 3D Studio Max,
to a perceptually guided crowd of thousands of clothed char-
acters in a real-time system. This useful step by step guide
will enable others to incorporate pre-simulated deformable

† Rachel.McDonnell@cs.tcd.ie

clothing and perceptual metrics into their crowd systems.
Our results show a system capable of rendering large real-
istic clothed crowds in real-time.

2. Pipeline
We present the pipeline of work needed to achieve real-time
crowds of clothed characters. In [MDSC06] we performed
a rigorous series of psychophysical experiments in order to
determine the most appropriate representations to use for
depicting the deformations of cloth. We found that a hy-
brid combination of impostor and detailed geometry meshes
would be most suited to our purpose since participants were
unable to tell the difference between this type of crowd and
a crowd containing all high resolution geometry.

The system is an extension of the crowd system detailed
in [DHOO05], and this paper describes all of the alterations
necessary to convert that crowd of skinned characters, to a
crowd of characters with deformable clothing.

There are three main stages in the pipeline process (see
Figure1):
1. Stage 1: Model Prepping: The first stage involves mod-

elling the character and adding a suitable animation for
use in a crowd. The character’s clothes are then con-
structed and fitted, and finally simulated in response
to the underlying motion. Our novel technique detailed
in [DMK∗06] for constructing a cyclical cloth animation
is also applied here.

2. Stage 2: Exporting the Data: The second stage is con-
cerned with exporting the human mesh, skeletal anima-



2 R. McDonnell & S. Dobbyn & C. O’Sullivan / Crowd Creation Pipeline for Games

Figure 1: Pipeline stages.

tion, cloth mesh and simulation, and impostors into a suit-
able format for use in the system.

3. Stage 3: Crowd Rendering: The final stage involves de-
tails on how the crowd is rendered in real-time.
The following three sections will describe the stages
in detail. We also present some images of the fi-
nal crowd system integrated into the Virtual Dublin
Model [Ham05].

3. Stage 1: Model Prepping
Stage 1 of the process is concerned with the processing that
is necessary in order to prepare a virtual character to be ex-
ported into the system.

3.1. Preparing the Human
Choosing a suitable model is the first thing that needs to be
done. Characters in a crowd should look different from each
other but should have the same overall style (e.g., a cartoon
style character and a photorealistic character will not look
good together in a crowd).

We discovered in [MDO05] that characters of lower reso-
lution around the joints are not as capable as those with more
detail of displaying subtle motion variations. Therefore, the
character should be detailed enough for both realism and the
accurate deformation of the mesh around the joints in or-
der to produce good animations. However, when choosing
how detailed the character will be, it should be remembered
that, for a hybrid system, a number of the high level of detail
characters will be displayed on-screen at one time, as well
as many low level of detail characters. Therefore, the detail
of the character is limited to what is achievable in real-time.
Our characters ranged in detail from roughly 2000 to 9000
polygons, depending on the number of characters needed for
the crowd. However, we also found in [MDO05] that the res-
olution that we were using for our highest characters was
actually perceptually equivalent to lower resolution charac-
ters. Therefore, there is a tradeoff between the number of

polygons necessary for the virtual human to look good in
appearance and the number necessary for displaying sub-
tle motion information. This should be remembered when
choosing the resolution of the high resolution character. We
will use the example of a female character model calledAn-
gelawith 6500 polygons for the remainder of our description
of the pipeline process.

Figure 2: (a) material IDs assigned to mesh, (b) mesh with
greyscaled textures and diffuse colours set to white, (c) mesh
with skeleton fitted.

Once a suitable character is chosen, it can be altered in
one of the packages for 3D modelling. We used 3D Studio
Max but any other modelling package with built-in scripting
language or custom designed system could be used.Angela
was purchased as a correctly texture mapped mesh. How-
ever, in order to prepare her for exporting, some alterations
had to be made.

Depending on the method used for colour modulation for
the impostors in the system, two different approaches can be
used at this stage to prepare the character’s mesh. The first is
to group the different coloured regions of the mesh together
and use different materials for each region. This method was
used by Dobbyn et al. [DHOO05] for the purpose of eas-
ily specifying the different colour regions when generating
the impostor images and the mesh can be rendered using the
OpenGL fixed function pipeline. The second method is to
apply a single texture map image to the character, with dif-
ferent colour regions specified in the texture’s alpha channel.



R. McDonnell & S. Dobbyn & C. O’Sullivan / Crowd Creation Pipeline for Games 3

This technique was used by [dHCSMT05] for the prepara-
tion stage of their characters for a crowd of low resolution
geometry. For our clothed crowds, we use this approach in
order to add pattern variety (detailed in Section5.2). We will
describe both techniques for completeness.

3.1.1. Grouping Triangles
The character’s triangles are first organised into groups,
where each group is a body part that can be coloured differ-
ently from its surrounding parts. ForAngelawe had 8 differ-
ent groups: eyes, head and shoulders, arms, fingernails, legs,
top, shorts, and shoes (Figure2(a)). Each of these groups
were assigned different diffuse materials or texture maps.
The reason for organising the triangles in this way is that
it improves rendering when exported into the real-time sys-
tem, due to the minimization of OpenGL states. Also, it al-
lows for colour modulation, as each different group can have
a palette of colours assigned to it, in order to create colour
variety when duplicating characters in the crowd. The dif-
fuse colour of each material is set to white, and each texture
map is greyscaled to allow for colour modulation without the
loss of detail (Figure2(b)).

3.1.2. Specifying Regions in a Single Texture Map
The alternative method is to apply a single texture map to
the character. Some models are purchased with a single tex-
ture map, but if not, it can be custom designed in an appli-
cation like Photoshop to suit the character. The basic idea
is to combine all of the texture maps into a single compact
texture map (see Figure3(left)). The coloured areas with
no detail are simply areas that have a single diffuse colour.
The alpha channel of this texture is then manually encoded
with different colour regions (Figure3(right)). Since we are
using a single pass to render the impostors in the system
(see [DHOO05]), as many regions as the user requires can
be specified at this stage. Once this custom designed map
has been created, it can be applied to the character. The tex-
ture coordinates of the character need then to be matched
up to the texture, which can be a time-consuming task. This
matching can be accomplished in 3D Studio Max using the
Unwrap UVWmodifier.

3.1.3. Skinning and Animating
The character now needs to be skinned, in order for an ani-
mation to be applied. Typically, a biped skeleton is first fit-
ted to the character (Figure2(c)), and then the vertices of
the character mesh are weighted and linked to the different
bones of the skeleton. This can be achieved in 3D Studio
Max using thePhysiqueor Skinmodifier. We used both mo-
tion capture from our Vicon system and keyframing in 3D
Studio Max to obtain the animation for our character. The
choice of animation depends on the type of crowd scene that
is being produced. The amount of animation data also has to
be restricted due to the memory limitations for the display
of large crowds. In our system, an animation is typically one
second long and then looped in the system to create long
sequences. The animations should be cyclical in order that

Figure 3: (left) Example of a single greyscaled texture map
for Edith, (right) Corresponding alpha channel.

flickering animation artifacts do not occur when looping the
animation in the system.

The amount of floor space that can be captured using a
motion capture system is often quite limited. Therefore, cap-
turing long sequences of humans walking is difficult, unless
a treadmill is used. We can typically capture about 4 steps of
a human walk, so it is unlikely that a cyclical walk could be
extracted. Some postprocessing is usually necessary in 3D
Studio Max, where we choose one walk cycle, and paste the
pose at the start frame to the end frame and try to interpolate
the motion curves to make it fit without loosing too much of
the individuality and naturalness of the captured walk.

3.2. Preparing the Deformable Clothing
The commercial software that we used (ClothFX [Clo])
provided tools for constructing garment segments, and for
changing the different material parameters, along with accu-
rate collision detection. We simulated many different types
of clothing using this software, including silky skirts, stiff
dresses, sweaters and shorts. Cloth simulation is still limited
in what it can achieve, and therefore the choice of clothing
and materials is often compromised depending on the anima-
tion of the virtual human. For example, a character perform-
ing a back-flip in a tight fitting long dress would not produce
nice results - cloth by its nature is resistant to stretching, but
not to bending. We found that a lot of tuning was necessary
to produce nice cloth animations, for the human animations
that we wanted.

3.2.1. Template creation
In [EWS96, KFW04, GFL03, PLAPMT02, VCMT05] and
in most commercial packages, 3D virtual clothes are con-
structed from planar garment segments (often referred to as
‘patterns’, however we will not use this term to avoid con-
fusion with the ‘pattern’ or motif variety detailed later). As
this is the way real clothes are manufactured, virtual gar-
ments can therefore be designed to match real clothing. It
also makes texture mapping particularly easy as correct tex-
ture coordinates can be obtained automatically at the planar
rest state.



4 R. McDonnell & S. Dobbyn & C. O’Sullivan / Crowd Creation Pipeline for Games

The shape of the segment is usually drawn by the user us-
ing splines or imported from a software package designed
for cloth manufacturers like Modaris or PAD [MOD,PAD].
Seams and seam connections are then specified by the user.
A seam is usually an edge on a piece of fabric and can be
attached to another seam using virtual sewing threads. The
planar segments are then positioned around the virtual char-
acter at approximately correct positions. A good initial po-
sition for the clothing is very important and can determine
how well the clothing fits. In order to achieve this, the seg-
ments should first of all not collide with anything (the virtual
character or each other). They should also be as close as pos-
sible to the virtual character’s body and the sewing between
seams should not penetrate the character. The start pose of
the character can be changed in order to satisfy these rules;
usually a T-pose is best.

Figure 4: Fitting a garment using ClothFX.

Once the segments and sewing are lined up, the garment
can be joined along the seam lines. In [KFW04] sewing is
achieved by merging the segments along the seam lines. For
every pair of vertices along the seams, the matching trian-
gles are coupled and the seams are moved halfway between
the two original points, as shown in Figure4. The segment
pieces are attached and attain a shape influenced by the form
of the body.

3.2.2. Material Modelling
The mass-spring model is the most commonly used tech-
nique for deforming garments. It consists of a simple par-
ticle system, where the particles correspond to the vertices
on a cloth mesh. These particles are connected by different
springs: structural springs for tension, diagonal springs for
shearing, and interleaving springs for bending. The forces
exerted by the particles are determined by the type of spring
that connects them. Forces for structural springs are very
large, whereas bend and shear forces are small, which can
lead to contradicting effects. In order to have a more gen-
eral system, the mass-spring system can be thought of as
a network of interwoven threads, where a thread is a chain
of structural springs. Different threads can then interact at
mass points. More complex forces are necessary to model
this kind of behaviour.

The Kawabata Evaluation System (KES) for fabric is
a technique used in the garment industry for measuring
fabric mechanical properties through normalised proce-
dures [Kaw80]. In this system, five experiments are con-
ducted using different instruments, and from these experi-
ments 15 curves are obtained, which allow 21 parameters of

fabric to be determined. These experiments measure shear-
ing, bending, friction, compression, and deformation. These
energies can be modelled in the particle system using a rec-
tangular grid, where each particle interacts with its four di-
rect neighbours.

In commercial software, coefficients that describe these
21 parameters can be changed in order to produce cloths that
behave differently. For example, for a material like silk the
resistance to bending would be set to low, whereas it would
be set to high for a stiffer material like burlap.

Good collision detection is also necessary when mod-
elling clothing. When clothing a virtual human with de-
formable garments, full and self collision detection need to
be implemented in order for the clothing not to penetrate
the human or itself. Commercial cloth simulation packages
usually have full and self collision built-in. This is the most
time-consuming task of cloth simulation, and is a major rea-
son why real-time simulation of clothing is so difficult.

4. Cyclical Cloth Sequences
In order to prepare the clothing generated for our charac-
ters to be exported into the system, the animation had to be
cyclical. As previously described, in a real-time crowd sys-
tem, the characters’ animations are often cyclical in nature,
so that they can be smoothly linked to allow them to move in
a fluid manner. Cyclical animations are commonly obtained
by manually altering the underlying skeletal motion so that
they loop in a realistic looking manner. However, creating
looping animations for characters with pre-simulated cloth-
ing is a more difficult task, as manual cleanup of the cloth
to make it cyclical is very time-consuming, particularly for
very deformable items of clothing like skirts, and can re-
sult in unrealistic effects. In [DMK∗06], we describe an au-
tomatic method for generating cyclical sequences of cloth
simulation. This method should be used at this point before
proceeding to export the animations.

5. Stage 2: Exporting the Data
At this point, we have pre-simulated the deformation of both
the virtual human’s skin mesh using linear blend skinning
and its cloth mesh using the physical simulator, based on
the motion of its underlying skeleton. The cloth and human
motion sequences are cyclical and the character should also
have its triangles organised into the appropriate groups or
has a single texture with specific alpha mapped coloured re-
gions. The character is ready to be exported from 3D Studio
Max into files that can be loaded into the crowd system.

5.1. Exporting the Geometry
The virtual human was exported the same way as in [Dob06].
A new plug-in was written to export the keyframes of the
cloth mesh. This plug-in simply stored the world-space po-
sition of each vertex with respect to the root object for
each keyframe of animation in an organised manner. By pre-
calculating and storing the deformation of the cloth mesh in



R. McDonnell & S. Dobbyn & C. O’Sullivan / Crowd Creation Pipeline for Games 5

poses, this avoids the cost of simulating the clothes at run-
time. However, this also means that all animations are pre-
determined and cannot be changed at run-time, which limits
the motion variation in the crowd.

5.2. Exporting the Impostor
Generating the impostor representation of our character in-
volves capturing two types of images from a number of
viewpoints around the model: a detail map image to capture
the detail of the model’s diffuse texture and a normal map
image whereby the model’s surface normals are encoded as
an RGB value. For more information on how these images
are generated and rendered in the system see [DHOO05].
This section will describe any improvements to the algo-
rithms and the necessary changes that were made in order
to incorporate deformable cloth.

Figure 5: Mesh after each vertex has been automatically
painted with an RGB value corresponding to its normal.

Tecchia et al. [TLC02] saved on texture memory when
generating impostors by exploiting the symmetric nature of
the human body performing a walk animation (both the ani-
mation and the body are symmetric). They halved the mem-
ory needed by mirroring the animation: 32 samples were ac-
quired by sampling the mesh at 16 different points along one
side, and mirroring these images to produce the samples on
the other side. This worked very well for skinned humans, as
the human and the clothing could be made symmetric quite
easily (i.e., by mirroring one side), and would remain so for
the animation. This approach could not be taken for gener-
ating impostors of humans wearing deformable clothing, as
the folds in cloth are rarely symmetric in nature and mirror-
ing them would produce artifacts at run-time. We tried gen-
erating a mirrored cloth animation using tools in 3D Studio
Max, but it involved too much manual tuning and the results
were not convincing. Therefore, the human was sampled on
both sides to create the cloth impostor images, which in-
creased texture memory consumption, but avoided artifacts.

In [MDSC06], we performed a psychophysical experi-
ment that determined the optimal impostor update frequency,
balancing texture memory consumption with visual fidelity.
We found that an update rate of 17◦ was necessary to pro-
duce smooth transitions for normal pedestrian characters,

where as 9◦ was necessary for characters with large width
to depth ratios. The number of impostor images to be gener-
ated at this stage in the pipeline should be chosen based on
these metrics.

Incorrect back-facing polygons was another issue which
arose when implementing cloth impostors. The previous im-
postor plug-in did not account for back-facing polygons as
it was not a noticeable problem for skinned clothing, which
clung tightly to the body and did not turn inside-out at any
point. However, for flowing garments, this occurred quite
regularly and resulted in incorrect normals in the impostor
image. A simple approach was used to solve this, by testing
the direction of the normal and flipping if it was back-facing.

The normal maps in [DHOO05] took considerable time to
generate, as per-pixel look ups and operations were needed,
so we improved the algorithm using a less computation-
ally intensive technique. A copy of the character’s mesh
and cloth at the current frame was first needed. Each ver-
tex normal was first converted into eye-space coordinates, to
find the normal with respect to the camera, and then con-
verted into an RGB colour (using the equations described
in [Dob06]). Per-vertex colouring was then used to paint the
RGB colours onto the vertices of the copied meshes (3D Stu-
dio Max’s VertexPaintmodifier was used to do this). These
vertex colours were interpolated over the polygons, creating
a character mesh with normal map colours (Figure5). The
normal map image was then generated by rendered an image
of this mesh, from the current viewpoint. Per-vertex colour-
ing and interpolating are operations that are performed very
quickly, as they are supported by graphics hardware. This
meant that the image could be produced almost immediately,
without the need for slow per-pixel operations.

The new technique for adding hardware assisted pattern
variety to the impostors that we developed in [DMK∗06] in-
volves a slightly different process for generating impostor
images. The detail map image is replaced with a texture co-
ordinate map orUV map. This is similar to a normal map just
described. However, this time it is the texture coordinates
that are converted into an RGB colour and then painted onto
the vertices of the mesh. Similar to the normal map images,
these images were generated for each viewpoint.

6. Stage 3: Crowd Rendering
We are finally at the stage where all data is ready to be im-
ported into the crowd system and used to display crowds
of clothed characters. A number of alterations needed to be
made to the crowd system in order to incorporate our per-
ceptual metrics and the pattern variation technique. In this
section, we will first give a broad overview of how the sys-
tem was written, then we will look at how each of the levels
of detail were rendered and how switching was achieved.
This work was based on the approaches detailed in [Dob06].

6.1. Setup
The framework was based on a perceptually driven LOD
approach, whereby the viewer’s perception is exploited to



6 R. McDonnell & S. Dobbyn & C. O’Sullivan / Crowd Creation Pipeline for Games

compute less accurate models when they would not be no-
ticed. The highest level of detail was the mesh model and the
lowest was the impostor, as previously described. The sys-
tem is a C++ application running on the Win32 API, where
the OpenGL rendering library is used as the core compo-
nent of the rendering subsystem. The number of humans
in the crowd is first specified and they are then given ran-
dom initial positions in the scene. Algorithms can be imple-
mented to make sure that no human intersects, or that they
are all oriented in a certain way. Each crowd individual is
then randomly allocated a human template model, and vari-
ety is added by randomly choosing a specifiedoutfit, which
is a set of colours for each of the different parts of the body.

6.2. Rendering the Geometric Human and Cloth
Models

The system is optimised by taking advantage of the fact that
crowd individuals perform a default walk animation. Pre-
viously, we used static meshes, where the deformation of
the mesh is pre-calculated. However, with advancements in
graphics hardware we now calculate the deformation of the
mesh on the GPU using linear blend skinning. The cloth ani-
mation is stored as pre-baked poses directly from 3D Studio
Max, as described in Section5.1. The rendering speed is im-
proved by using Vertex Buffer Objects (VBOs) to store the
key-frames of animation for both human and cloth poses.
The idea behind VBOs is to provide buffers (regions of
VRAM) accessible through identifiers. A buffer is made ac-
tive through binding (in a similar manner to display list
binding). This allows graphics drivers to optimise internal
memory management and also to choose the most suitable
type of memory to store the buffers. At run-time, the cor-
rect VBO pose is selected and rendered, depending on the
current frame of animation of the virtual human.

Adding colour variation to the mesh involves first creat-
ing different outfits, which specify the different colours to
be used for each different region in the mesh. For example,
an outfit for Angela would consist of: eyes coloured blue,
head and shoulders coloured pale pink, arms pale pink, fin-
gernails red, legs pale pink, top white, shorts blue, and shoes
white. Many different outfits can be specified for each dif-
ferent template human as described in [Dob06].

As mentioned in Section3.1, there are two techniques for
setting up the virtual humans’ colours. We will now describe
the two corresponding techniques to colour the human at
run-time.

The first technique grouped together the triangles of the
different regions of the mesh and then tagged them with
IDs. At run-time, the OpenGL fixed function pipeline is used
for rendering the mesh, where the diffuse colour of each
mesh region is changed depending on its material ID and
corresponding outfit colour. This was the technique used
in [DHOO05] and is suitable for meshes that will be used
alongside detail mapped impostors.

The second technique is needed to match the geometry
with the UV mapped impostors. This method should be used

if texture variation is important to add variety, as in the case
of adding different designs to clothing. This technique uses
programmable graphics hardware to add variation. As de-
scribed in Section3.1, a single texture map was applied to
the character, where the alpha channel of the texture speci-
fied the different colour regions. The shading sequence for
the geometry is shown in Figure6.

Figure 6: Geometric mesh shading sequence.

6.3. Rendering the Impostor
In order to render the impostor, the correct viewpoint image
needs to be found. Using the camera position and the vir-
tual humans position and direction, the most suitable view-
point image can be calculated and retrieved from the large
texture containing the pre-generated viewpoint images. This
image is then mapped onto a quadrilateral. To dynamically
orientate the quadrilateral towards the viewer, the amount
to rotate can be calculated using the camera and virtual hu-
mans position. See [DHOO05] for detailed descriptions of
the equations.

6.3.1. Switching Between Representations
Ulicny et al. [UdCT04] noted that impostors were an effi-
cient approach for rendering crowds of far-away humans, but
that their pixellated appearance when displayed close to the
viewer prevented them from being used for detailed crowds.
Dobbyn et al [DHOO05] solved this problem by using a
hybrid impostor/geometry system, similar to that described
in this paper. In crowd scenes where the humans and the
camera are moving, the distance from impostors to viewer
will change throughout the viewing time. Thus, a switching
mechanism was employed to allow impostors to switch to
geometry and vice versa when they reach a certain distance.

In Hamill et al. [HMDO05], we found a perceptual met-
ric for the optimal pixel to texel ratio at which to switch
representations, which ensures that users will not notice the
switch. This ratio was one-to-one, which means that geome-
try can be switched to impostor representation when one of
its texels is displayed on one pixel on the screen. A seamless
transition is achieved by matching the pose of the impostor
to the geometry at the point of switching. This technique did
not need to be altered for our clothed characters, as the poses
of the cloth were inherently linked to the human poses.

In [MDSC06], we validated this metric by performing a
system experiment which examined participant’s perception
of level of detail representations in different sized crowds.



R. McDonnell & S. Dobbyn & C. O’Sullivan / Crowd Creation Pipeline for Games 7

We found that participants did not notice the difference be-
tween a hybrid crowd of impostor/geometry and a crowd of
all high resolution geometry, when the camera was zooming
in and out of the crowd, which meant that popping between
representations was not noticed.

7. Discussion
In this paper, we provided a useful step by step approach to
realising crowds of clothed characters incorporating percep-
tual principles. This pipeline should be of use to game devel-
opers, to create and/or improve the quality of their crowds.

Our technique of adding pre-simulated clothing improved
the realism of our crowd system. The visual quality of the
clothed crowd is maintained by creating cyclical cloth mo-
tions to avoid discontinuous motion artifacts. Additionally,
the use of the impostor’s UV map complements the use of
impostors with its mesh representation in a LOD crowd sys-
tem, since it allows the matching of texture and colour varia-
tion between the cloth and skin. In Figure7 we show our vir-
tual model of Dublin city inhabited by crowds of pedestrian
characters wearing deformable clothing. All of the walk cy-
cles were captured using a motion capture system, and pat-
tern variety was added using our UV mapping technique.
This pipeline could also be used to create characters with
pre-simulated hair or fur, by replacing the cloth creation
stage with hair simulation.

References
[Clo] ClothFX, cloth simulation software. Size8Software,

2004.

[dHCSMT05] DE HERAS CIECHOMSKI P., SCHERTEN-
LEIB S., MAÏM J., THALMANN D.: Reviving the ro-
man odeon of aphrodisias: Dynamic animation and vari-
ety control of crowds in virtual heritage.VSMM (2005),
601–610.

[DHOO05] DOBBYN S., HAMILL J., O’CONOR K.,
O’SULLIVAN C.: Geopostors: a real-time geometry / im-
postor crowd rendering system. InSI3D ’05: Proceedings
of the 2005 symposium on Interactive 3D graphics and
games(2005), pp. 95–102.

[DMK ∗06] DOBBYN S., MCDONNELL R., KAVAN L.,
COLLINS S., O’SULLIVAN C.: Clothing the masses:
Real-time clothed crowds with variation.Eurographics
Short Papers(2006).

[Dob06] DOBBYN S.: Hybrid Representations and Per-
ceptual Metrics for Scalable Human Simulation. PhD the-
sis, University of Dublin, Trinity College, 2006.

[EWS96] EBERHARDT B., WEBER A., STRASSER W.:
A fast, flexible, particle-system model for cloth draping.
IEEE Computer Graphics and Applications 16, 5 (1996),
52–59.

[GFL03] GROB C., FUHRMANN A., LUCKAS V.: Auto-
matic pre-positioning of virtual clothing. InSCCG ’03:

Proceedings of the 19th spring conference on Computer
graphics(2003), pp. 99–108.

[Ham05] HAMILL J.: Level of Detail Techniques for Real-
Time Urban Simulation. PhD thesis, University of Dublin,
Trinity College, 2005.

[HMDO05] HAMILL J., MCDONNELL R., DOBBYN S.,
O’SULLIVAN C.: Perceptual evaluation of impostor rep-
resentations for virtual humans and buildings.Computer
Graphics Forum, (Eurographics 2005) 24, 3 (2005), 623–
633.

[Kaw80] KAWABATA S.: The standardization and analy-
sis of hand evaluation.The Textile Machinery Society of
Japan(1980).

[KFW04] KECKEISEN M., FEURER M., WACKER M.:
Tailor tools for interactive design of clothing in virtual en-
vironments. InVRST ’04: Proceedings of the ACM sym-
posium on Virtual reality software and technology(2004),
pp. 182–185.

[MDO05] MCDONNELL R., DOBBYN S., O’SULLIVAN

C.: LOD human representations: A comparative study.
Proceedings of the First International Workshop on
Crowd Simulation(2005), 101–115.

[MDSC06] MCDONNELL R., DOBBYN S., S. COLLINS

C. O.: Perceptual evaluation of LOD clothing for
virtual humans. Proceedings of the 2006 ACM SIG-
GRAPH/Eurographics Symposium on Computer Anima-
tion (2006), 117–126.

[MOD] LECTRA SYSTEMS MODARIS Version 4.
http://www.lectra.com/en/pds/modaris_fashion.html.

[PAD] PAD system Inc. http://www.padsystem.com/.

[PLAPMT02] PROTOPSALTOU D., LUIBLE C.,
AREVALO-POIZAT M., MAGNENAT-THALMANN

N.: A body and garment creation method for an internet
based virtual fitting room.Computer Graphics Interna-
tional Conference Proceedings, Springer Verlag(2002),
105–122.

[TLC02] TECCHIA F., LOSCOSC., CHRYSANTHOU Y.:
Visualizing crowds in real-time.Computer Graphics Fo-
rum (Eurographics 2002) 21, 4 (2002), 753–765.

[UdCT04] ULICNY B., DEHERAS CIECHOMSKI P.,
THALMANN D.: Crowdbrush: interactive authoring of
real-time crowd scenes. InProceedings of the 2004 ACM
SIGGRAPH/Eurographics Symposium on Computer Ani-
mation(2004), pp. 243–252.

[VCMT05] VOLINO P., CORDIER F., MAGNENAT-
THALMANN N.: From early virtual garment simulation
to interactive fashion design.Computer-Aided Design 37,
6 (2005), 598–608.



8 R. McDonnell & S. Dobbyn & C. O’Sullivan / Crowd Creation Pipeline for Games

Figure 7: Example screenshots from our clothed pedestrian crowd inhabiting a virtual model of Dublin city. The city is popu-
lated by four template models processed through our pipeline.


