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Abstract 

 
We present a system for the automatic generation of 

bottom-up visual attention behaviours in virtual humans. 
Bottom-up attention refers to the way in which the 
environment solicits one’s attention without regard to 
task-level goals. Our framework is based on the 
interactions of multiple components: a synthetic vision 
system for perceiving the virtual world, a model of 
bottom-up attention for early visual processing of 
perceived stimuli, a memory system for the storage of 
previously sensed data and a gaze controller for the 
generation of resultant behaviours. Our aim is to provide 
a feeling of presence in inhabited virtual environments by 
endowing agents with the ability to pay attention to their 
surroundings. 
 
 
1. Introduction 
 

Graphics programming techniques are providing ever 
more sophisticated representations and animations of 
virtual humans. Despite this, a viewer is often left with 
the feeling of dealing with an empty shell when viewing 
such agents. Something is lacking; agents do not appear to 
pay attention to their environment, yet they still appear to 
be able to sense the scene as if by telepathy. Ideally, we 
would like to be given the impression that they are 
interacting with their environment in the same way as 
living, thinking creatures. Although as humans we cannot 
directly see the thoughts of others, we do obtain an 
impression of thought-processes at work through the way 
in which other people behave. We can often tell what 
people are thinking by observing what they attend to as 
they perform their everyday activities. In this way, if the 
agents in our virtual environments do not appear to pay 
attention to anything in the scene, then our sense of 
presence may be severely degraded.  As noted by 
Blumberg et al. [5], “If we provide characters with the 
means to express their mental state, an observer can infer 
their beliefs and desires”. Attention and gaze are 
important factors in achieving this goal. 

We present a system for the automatic generation of 
bottom-up visual attention behaviours for virtual humans. 
Bottom-up attention is behaviourally significant, since it 
constitutes a powerful alerting mechanism that allows 
primates to instantly become aware of unexpected 
predators or dangers [10]. Our attention framework is 
composed of four primary interacting components; a 
visual sensing component, an attention component, a gaze 
generation component and a memory component. The 
sensing component allows the agent to perceive the scene. 
Three renderings of the scene are taken. These renderings 
loosely approximate the scene as seen through the eyes of 
the agent. They allow us to conduct visibility queries for 
objects and also act as inputs to the visual attention and 
memory components. The visual attention component, 
taken from the field of cognitive engineering, processes 
the visible portion of the scene and generates a map of the 
most salient locations based on the features in the scene. 
These locations are passed to the gaze controller, which 
generates the actual motion. The orienting motions consist 
of a mixture of eye and body movements. The memory 
component is used by all three of the other components. It 
acts as a filter for storing details of important objects and 
also for remembering what objects have already been 
looked at and to what extent. In this way, the object of an 
agent’s attention depends on both internal and external 
factors. 

Section 2 reviews background to our research, 
focusing on internal models for perception and processing 
in order to augment movement. We describe our method 
for enabling the visual perception of the environment in 
Section 3. Section 4 covers a key component of the 
system: a computational model for bottom-up attention. 
Section 5 considers the memory component and its 
interactions with the other components. The gaze 
generator is discussed in Section 6, while Section 7 
concludes with a discussion of future work and results 
obtained from the model. 

 
2. Background 
 

A number of authors have explored the use of internal 
perception and processing models for the animation of 



virtual characters. Reynolds [20] presented a behavioural 
model for flocks of birds and herds of animals. Based on 
insights from the real world, his agents, boids, do not 
have access to complete or perfect information about the 
world. Each boid has a spherical zone of sensitivity 
centred at its local origin, which means that the boid only 
senses nearby flock-mates. This approach approximates a 
sensory system while attempting to make the same final 
information available to the boid as its real-life 
counterpart would have. Tu and Terzopoulos [21] animate 
fishes based on a combination of their perception of the 
environment and internal variables such as mental state 
and habit. Each fish has vision and temperature sensors 
allowing behaviour patterns to be interrupted by reactions 
to environmental stimuli, such as cold water or nearby 
predators. The vision sensor provides a 300-degree view; 
any object that is not occluded and has entered this view 
volume is considered visible.  

Researchers have also applied internal sensory and 
processing models to the animation of human characters. 
Renault et al. [19] and Noser et al. [15] provide a 
synthetic vision system allowing actors to navigate 
through a corridor using vision, learning and memory. 
The navigation problem is decomposed into solving 
global and local navigation problems. The local 
navigation algorithm uses direct input from the 
environment to avoid unexpected obstacles and to satisfy 
higher-level goals from the global navigation system. The 
local algorithm does not have access to the scene 
database: instead an internal model of the scene is 
constructed in an octree data structure based on the data 
acquired from the visual system as the actor perceives the 
scene. Kuffner and Latombe [13] extend this work by 
storing sensory information in the form of observations 
and allowing characters to learn about their environment 
using memories of such observations. This system is used 
for the navigation of characters through maze-like 
environments. 

There has also been research in terms of using internal 
models to animate attentive behaviours for human 
characters. Chopra and Badler [6] propose a visual 
attention framework as part of wider research into 
controlling virtual human animation based on movement 
observation and cognitive modelling [3]. A number of 
different types of looking behaviours are implemented 
and the final behaviour is dependent on both top-down, 
volitional attention application and bottom-up, 
involuntary attention capture. Gillies [7] produces 
behavioural animation through the simulation of vision 
and attention. Object features are regarded as the key 
components in deciding what object will be attended to. 
Object features represent abstract and complex reasons as 
to why an object might be looked at, artistic appreciation, 
for example. In this way only top-down attention 
processes are considered as contributing to looking 

behaviours. Actors are endowed with interests and pay 
more attention to some properties than to others. This 
results in actors responding in different ways to an object. 
 
3. Sensing 
 

In order for virtual humans to pay attention to their 
environment, they must first have a means of sensing it. 
There are a number of approaches for providing agents 
with information about the environment. The most 
straightforward is to allow them full access to the scene 
database. The main limitations of this approach are 
realism and scalability. In terms of realism, full access to 
the database is the equivalent of an all-seeing being. If an 
agent’s behaviour is partly defined by their senses and 
they are allowed full access to the scene database, then 
the resulting behaviour will appear to be implausible. In 
terms of scalability, the character’s processing system 
could have a huge number of possible inputs to deal with. 
This could be especially true for large scenes, where the 
number of objects would inevitably be overwhelming. 

In order to solve these problems, usually some form of 
filtering technique is employed to reduce the number of 
objects that the agent must consider [4]. The type of 
filtering technique used helps define the plausibility of the 
sensing system: for example, in the human being, the 
primary information flow direction is to the front. A 
filtering technique that prioritises information flow in this 
way would better approximate the system. It is also 
important to consider the balance between the realism 
with which the sensing takes place and the costs 
associated with the process. Our approach is to provide a 
balance between sensory honesty [5] and speed. In this 
way we ensure that the information obtained by the agent 
is plausible, but also compensate for certain cognitive 
abilities by allowing direct queries on the scene database. 
An example of this is our implementation of motion in the 
periphery: we do not use image-based motion estimation 
techniques, but rather query velocities directly from 
database objects. Our method is based on previous work 
by Noser et al. [15] and is monocular in nature. This 
synthetic vision approach uses renderings from the 
perspective of the agent to provide visibility information 
to that agent. The approach is effective in that it provides 
occlusion of the objects in the scene, while using 
dedicated graphics hardware to do the processing. Also, it 
is not necessary to process the scene at full detail; lighting 
and textures are usually disabled. 

In our system, at each update of the visual system, akin 
to a perceptual snapshot, three renderings of the scene are 
taken from the viewpoint of the virtual human; a 256x256 
full-scene rendering, a 128x128 distinct-mode rendering 
and a 128x128 grouped-mode rendering (see Figure 3). 
The 128x128 resolution distinct-mode rendering and 
128x128 grouped-mode renderings approximate the 



acuity of the eye (see [17] for more details on these vision 
modes). 

The grouped-mode rendering approximates the acuity 
of the eye in the periphery, where only gross object 
characteristics are perceived. In this mode, object colours 
are coded according to their group membership. The 
distinct-mode rendering is generated at a higher resolution 
over a smaller field-of-view than the peripheral rendering. 
In this way it coarsely approximates the area of the scene 
in the fovea. It ensures that elements of the scene missed 
by the peripheral rendering, perhaps due to size, may still 
be sensed. Objects and groups in the scene are assigned 
unique false-colours and are rendered with these. The 
renderings are then scanned to provide visibility 
information about objects and groups in the agent’s field-
of-view. The 256x256 full scene rendering consists of the 
fully rendered scene from the perspective of the virtual 
human, with all effects such as lighting and texturing 
enabled. This full rendering is used to provide 
information on what parts of the scene are likely to solicit 
attention. In order to do this, the rendering is passed on to 
the next phase in the process: the attention model. 
 
4. Attention 
 

The human information processing system is a limited 
resource system [1]. In terms of information, our 
environment contains a great deal more than we could 
possibly hope to process. Nonetheless, we seem to 
manage despite the limits of our cognitive resources. A 
key factor in helping us to do this is our ability to deploy 
our senses to likely areas of important activity. The notion 
of an attentive system would appear to be obvious; 
“…everyone knows what attention is” said famous 19th 
century psychologist and philosopher William James. Yet 
the concept of attention is probably somewhat more 
illusive, as is highlighted by the more cautious approach 
of more recent research… “there may not even be an ‘it’ 
there to be known about” [16].  

From our point of view, attention is a vitally important 
concept if we decide to restrict the sensory information of 
our agents. Agents that either do not pay attention to their 
surroundings or pay attention to the wrong things at the 
wrong times will look mechanistic and clumsy. Worse 
still, they run the risk of not being able to meet with the 
demands that their environment may produce. Consider 
what would happen to the agent who didn’t pay attention 
to the vehicles on the road when crossing it! Under such 
circumstances, random attending behaviour will not 
suffice; motivation must be considered.  

When considering attention, visual attention would 
appear to be a good place to start; the visual modality 
plays a key role in human sensing [18]. In designing such 
a system, it is useful to look to the fields of psychology 
and cognitive engineering, where attention has been the 

focus of a great deal of research. The two-component 
framework theory of attention appears to be a good 
starting point for such investigations. According to this 
theory, attention can be divided into top-down and 
bottom-up components. Top-down, voluntary attention 
occurs when we have a task in mind and direct our 
attention to focus our resources on accomplishing that 
task. In contrast, when considering bottom-up, or 
involuntary attention, locations in our environment appear 
to grab or demand our attention. In this way, our attention 
is drawn to salient parts of our view. These are normally 
viewed as external events, flickering lights or peripheral 
movement for example. Human attentive behaviour 
appears to be composed of a complex mixture of both 
bottom-up and top-down attention processes [10].  

In this paper, we consider a model of bottom-up visual 
attention. Our method is suitable for modelling attention 
when there is no task at hand (e.g. spontaneous looking), 
or for interrupting task-level attention with potentially 
important events. The bottom-up model of attention that 
we use has been provided by Itti, Koch and Niebur [8, 9, 
11] and has been shown to be effective with both natural 
[10] and rendered [23] scenes. Based on a biologically 
plausible architecture proposed by Koch and Ullman [12] 
and by Nieber and Koch [14], it attempts to mimic the 
low-level, automatic mechanisms responsible for 
attracting our attention to the salient locations in our 
environment and closely follows the neuronal architecture 
of the earliest hierarchical levels of visual processing.  

The attention model itself processes an input image, 
calculating local contrast for intensity, orientation and 
colour features respectively. These feature types are 
computed in a centre-surround fashion, providing a 
biologically plausible system that is sensitive to local 
spatial contrast rather than amplitude in a given feature. 
An input image is decomposed into four constituent 
channels, one for intensity, one for orientation and two for 
colour. Each channel is used as the first level in 
constructing a dyadic image pyramid, which is a set of 
images where each successive image is a filtered and 
decimated version of its predecessor. For the intensity and 
orientation channels, a Gaussian filter is applied. The 
orientation channel is filtered with Gabor filters of angles 
0, 45, 90 and 135 degrees. Feature maps representing 
centre-surround differences are then obtained from the 
filtered images. Centre-surround processing is a relative 
measurement that calculates how much a part of an image 
pops out from its neighbouring area. This could be a 
matter of a black dot on a white background, or a single 
diagonal line surrounded by vertical ones. The feature 
maps for each feature (intensity, colour and orientation) 
are then combined respectively into three conspicuity 
maps. Each conspicuity map provides a measurement of 
scene areas that pop out for that feature type. Combining 
the three conspicuity maps produces a unified 



measurement of pronounced parts of the entire scene. 
This result, a 16x16 saliency map, is the primary output of 
the attention model (see Figure 1). Combination strategies 
across feature modalities are of particular significance to 
the model. We will not discuss these here, apart from 
mentioning that we use a global non-linear normalisation 
operator; this provides higher weightings for those maps 
containing fewer, thus more pronounced, areas of 
saliency. The interested reader is referred to [9] and [10] 
for more details. 

The final stage in the bottom-up attention model is a 
winner-take-all (WTA) network of simple integrate-and-
fire neurons. The WTA network finds the maximum of 
the saliency map at any time, which corresponds to the 
current most salient location in the scene. Inhibition of 
return (IOR) may be implemented for spatial locations by 
reducing the chances of success of previous winners. This 
ensures that the focus of attention visits numerous parts of 

the scene and does not remain fixed on the single most 
pronounced location (see [10] for details). In our 
implementation, there are two options for IOR. The 
image-based option inhibits locations in the scene. While 
this is useful for static scenes, there are problems when 
the viewer or the scene moves, since old IOR locations 
may be invalidated. To handle this, we use an object 
based IOR mechanism. Every object in the scene is 
provided with an uncertainty level, which is a measure of 
the completeness of an agent’s mental representation of 
the object. A high uncertainty level indicates that the 
object has not been attended to before, while a low 
uncertainty level signifies that the agent has a relatively 
complete representation of the object. The locations of 
objects with low uncertainty levels are inhibited in the 
saliency map in order to represent the reduced importance 
of parts of the scene that the agent has already been 
familiarised with. This solves the problem of a moving 
scene or viewer, since uncertainty levels are available in 
terms of a global reference frame.  

The attention component carries out two tasks. First of 
all, it directly provides gaze locations and information for 
gaze generation. These are important, not only so that the 
agent can pay attention to a salient part of the 
environment, but also so that it can be seen to pay 
attention. Secondly, as a result of providing gaze locations 
to the gaze controller, it controls what sensory 
information persists in the agent’s short-term memory. In 
this way, a feedback loop is achieved; what an agent pays 
attention to will have an effect on what is stored in its 
memory and the information that an agent has in memory 
will have an effect on what it decides to pay attention to.  
 
5. Memory 
 

Memory is an important feature for both humans and 
agents and is especially important when agents have only 
restricted access to the scene database. We base our 
system of memory on what is called the stage theory of 
memory [2]. This is an influential theory of memory from 
the field of cognitive psychology that proposes 
information storage in 3 stages: sensory memory (STSS), 
short-term memory (STM) and long-term memory 
(LTM).  

The STSS is a short duration memory area where 
information from the senses is converted into signals that 
the brain can understand. This memory has a very fast 
rate of decay, so items in it will be lost unless they enter 
the next stage of memory. In practice, our STSS stage 
takes the fovea and peripheral renderings (see Section 3) 
and extracts view components from them. A view 
component consists of the unique object or group colour 
extracted from the rendering as well as screen-space 
bounding box information. Essentially, at this stage, we 

 
Figure 1. A general schematic of the model of 
visual attention.  



have the identifiers of objects and groups that are visible, 
but they have not yet been resolved.  

The next stage of memory is the STM. The STM 
relates to our thoughts at any time: when an item enters 
the STM it could be said that we are aware of it. In 
contrast to the STSS however, there is a longer 
persistency for items in the STM. In our implementation, 
all objects that are in the fovea are passed from the STSS 
into the STM. Since the fixation of the fovea is 
determined by the attention component, this means that it 
ultimately gets to decide what objects will enter the STM 
(see Figure 2). Note that both the STM and STSS are only 
capable of storing objects; salient locations are not 
explicitly stored. Although the attention component is 
image-based, the memory system is object-based; any 
objects that occupy salient locations are entered into the 
STM. When items enter the STM, they are resolved into 
observations, in a manner similar to [13]. In our system, 
an observation consists of a resolved handle to the object 
in the scene database, as well as its transformation matrix 
at the time of observation, an uncertainty level and the 
world-time that the observation occurred at. Essentially, 
this allows the agent to keep a record of objects that it 
noticed in the environment, as well as when it saw them, 
where they were and how much is known about them. In 
the spirit of sensory honesty, we do not allow the agent 
access to all of the object type data and only under certain 
circumstances allow access to its state data. In this way, 
we seek to balance the costs of replicating database 
information and the realism of the sensing abilities of the 
agent. 

 

 
The final stage of the stage memory model is long-

term memory. Although the LTM is not used in our 
current implementation, we envisage many possible uses 
for it. However, these uses are outside the scope of this 
paper and would be more applicable to a full model of 
attention. 

6. Gaze Generation 
 

The gaze generation component brings together all of 
the other components in order to automatically generate 
gaze animations. It controls and mediates between the 
other components as well as providing high level 
commands such as ‘look at car5’. Three basic types of 
looking behaviour are implemented that vary in terms of 
the duration of the gaze and the amount of motion 
generated for the animation. These types are termed 
glance, look and stare. A glance animation is meant for 
short animations and places most of the emphasis of the 
motion on the eyes. This gives the effect of the agent 
looking out of the corner of his eye and is useful for less 
salient objects that nonetheless solicit some attention. A 
look animation lasts an intermediate amount of time and 
equally distributes the motion between the eyes, head and 
shoulders. Finally, a stare animation lasts the longest and 
biases the motion towards the head and shoulder areas. 
This motion is used when the agent is paying close 
attention to something in the environment. 

These gaze animations are important to the system, 
since they serve functional purposes as well as aesthetic 
ones. This is because the agent’s perception of the 
environment is updated in a snapshot manner. Essentially, 
the gaze generator requests the next most salient object 
from the attention model. When this is returned, the gaze 
generator looks towards that location. Once the location 
has been fixated, a further perceptual snapshot takes 
place. These perceptual snapshots do not necessarily 
entail updates of the bottom-up attention model. For 
example, quick glances to the periphery may resolve the 
salient location without an attention update; the gaze 
manager can continue generating gazes to salient 
locations based on the original attention information, 
provided the scene has not changed in any major ways. 

 
7. Discussion 
 

We tested the visual attention model on two scenes; a 
bar scene and a street scene (see Figure 4). Sample 
animations are available at the following url: 
http://isg.cs.tcd.ie/petersc/casa. A number of timing 
profiles were taken to evaluate our implementation of the 
attention model. These timings were averaged over 50 
tests on a Dell Dimension 8200 2Ghz Intel Pentium 4 
Processor, with 512 MB RAM fitted with an Nvidia 
Geforce 4 Ti 4600 graphics accelerator (see Table 1). 

The saliency generation section of the attention 
algorithm runs in constant time with respect to the 
number of objects in the scene and had an average run 
time of 0.28217 seconds in the street scene.  This is the 
time taken between passing the input retinal image to the 
attention model and receiving the saliency map 
(excluding processing conducted by the winner-take-all 

Figure 2. Interactions between the memory, 
attention and gaze components. The final gaze 
locations may be dependent on a function of 
scene uncertainty and saliency. 



network). Although the creation of the saliency map 
generation routine averaged 92% of the total time, it 
should also be pointed out that the attention algorithm 
does not have to be run every frame. When a new gaze 
location is needed but the attention model does not need 
to be updated, only the sensing and winner-take-all 
network components need to be updated to obtain a new 
salient location. Since the retinal (full scene rendering) 
image does not need to be taken in this case, further 
savings are made. In the street scene, which contained 
1405 polygons, the retinal image averaged 6.7% of the 
total sensing time. The savings would be greater for more 
complex scenes, bearing in mind that the fovea and 
periphery views (which must always be updated) are 
simpler renderings. Due to the nature of the synthetic 
vision model, these renderings could be speeded up using 
a multitude of visibility techniques. In our 
implementation, we distribute the attention processing 
over a number of frames in order to provide updates of 
the scene at interactive rates enabling a real-time 
visualisation of the simulation. 

 
We currently use the attention model with the goal of 

creating gross gaze movements, which include the eyes, 
head and shoulders. In doing this, however, bottom-up 
attention provides only part of a full solution for 
generating plausible gaze motions. For example, the 
current inhibition-of-return technique that we use, based 
on object uncertainties, will tend to visit most of the scene 
as oppose to cycling between the most salient locations. 
While this appears to be realistic for covert attention 
activities, people tend to look repeatedly at interesting or 
informative parts of an image [22].  

Further additions to the attention model and gaze 
controller are envisaged. Time varying stimuli, such as 
flicker, have been accounted for in the updated model 
outlined in [10] and provide important contributions to 
bottom-up attention. These features can be added to our 
system with minor modifications. Perhaps the most 
significant future improvement will be an integrated 
attention model featuring a top-down attention 
component. This could allow us to consider subtle factors 
such as object novelty and task relevance when planning 
gaze motions. A simple first approach may be to use the 
long-term memory to store a field representing whether 
the agent had encountered an object-type before. Objects 
that had not been encountered before may solicit more 

attention. Task-relevant attention could be achieved by 
increasing the importance of certain object types. 

More work would be beneficial on the management of 
the saliency map generator in order to provide a more 
scalable system. In our implementation, the computation 
of the final orientation conspicuity map took on average 
82.2% of the total calculation time for the saliency map. 
There are perhaps cases where only an intensity channel 
and colour channel computation would suffice. 
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Figure 3. The synthetic vision module 
renders the scene from the perspective of the 
agent.  

  
Figure 4. Depiction of the street scene that is 
used to test the attention system.  

 


