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Abstract
Collision detection and response is one of the most extensively researched areas in computer graphics but yet, very
little information is available on how to deal with multiple collision situations after they have been detected. In
general such topics are quickly brushed over and are small parts of a much larger topic. This paper aims to break
this trend and to give a thorough and hopefully informative presentation on how to effectively extract appropriate
impulses for multiple point collisions using Linear Complementarity Programming techniques.

1. Introduction

The field of physically based modeling in computer graph-
ics research over the last few decades has grown to become
quite a substantial subject area. This is partially due to the
ever increasing computational speeds of modern day pro-
cessors, which has facilitated the growth of feasible real
time processing of what once was considered quite com-
putationally complex systems. Much research has gone into
the reproduction of physically correct behavior of both rigid
and non-rigid structures and many dynamics packages have
been made available to the general community from such re-
search. Cohen et al6 and Hudson et al12 are examples of pa-
pers describing the more popular non-commercial packages
available at time of writing (these packages are actually col-
lision handling packages, a subset of physically based mod-
eling research). Many major computer games and motion
picture companies have now started to realise the potential
within the area and have started to utilise this vast research
in their productions. This in turn has provided a market for
many new commercial ventures which have emerged over
the last few years to provide such companies with commer-
cially viable packages.

One of the most extensively researched topics in physi-
cally based modeling has been that of collision detection13

5 15 and collision/contact response2 1 14. This paper aims

† email: Thanh.Giang@cs.tcd.ie
‡ email: Gareth.Bradshaw@cs.tcd.ie
§ email: Carol.OSullivan@cs.tcd.ie

to address in a clear and concise manner the problem of de-
termining viable contact impulses during multiple point col-
lisions. This is not to be confused with the determination
of contact forces which prevent interpenetration. Both ap-
proaches are analytically similar and one can be easily ex-
tended to incorporate the other. The approach we adopt is
analogous to that described by Baraff1. However, in this pa-
per we endeavor to provide a more comprehensive treatment
of the problem. We first briefly present the basic architecture
of how a collision response module fits into the simulation
chain and then strive to give an inclusive description from
first principles of the underlying solution formulation to the
multiple collision point problem.

2. Background

There have been many papers produced in the past years
that have in one way or another extensively dealt with the
problem of response after a detected collision event14 9 11

17. However, many of these papers do not give a thorough
study to the problem of multiple contact collisions or else
completely neglect the subject matter altogether. We only
concern ourselves with the formulation of multiple collision
impulses for rigid body collisions and leave flexible body
collision problems for future work.

One of the earliest complete treatments of the subject of
collision detection and response for physically based simu-
lations can be found in11 and 17. Both papers give exten-
sive consideration to the problem of dealing with response
for single point collisions and both very briefly suggest so-
lutions to the problem of multiple point collisions.17 tack-
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Figure 1: Broad overview of how response module architec-
ture fits into a typical dynamics package. The resolver mod-
ule is the main module which formulates the final problem
description which it then passes into the LCP solver.

les this problem by”inventing” a series of individual non-
related impulses that act exclusively on each point of contact
which is then incorporated into the matrix of 15 linear equa-
tions to be solved for.11 on the other hand suggested the
solution of obtaining an impulse for each point individually
and then summing up the resultant impulses that acted on the
same body. This however was only suggested for situations
whereby a body was in simultaneous contact with multiple
other bodies at a single point per contact and the idea was
not extended to account for multiple contact points for each
pair of contacting bodies.

The most comprehensive treatment to date on the issue of
tackling the tricky situation of response impulses for multi-
ple point collisions can be found in1. The author models si-
multaneous collisions on each colliding body as a collection
of impulses acting at each colliding point, each having an
effect on how the other behaves. This method is based very
much on the same non-penetration techniques presented for
resolving contacting forces to prevent inter-penetration in
resting contact situations, which is the main body of the pa-
per. As such, the bulk of derivative details and assumptions
for the simultaneous collision impulse section in the paper
are omitted and left to the readers’ own devices. This how-
ever, is far from trivial.

3. Task of the collision resolver

Within a typical dynamics simulator, the collision resolver’s
job is to determine the outcome of a simulation once a colli-
sion has been detected and then to feed back to the simulator

the necessary data to resolve this outcome (see Figure 1). It
is the job of the collision detection module in the simulator
to detect any potential collisions and to determine the neces-
sary contact/collision points along with any other necessary
information needed by the resolver. This information is fed
into the resolver which then goes ahead and determines the
necessary data that will satisfy the final outcome for the situ-
ation at hand. Note that here we ignore all other possibilities
like object interpenetration and back-stepping and presume
that the collision detection module has taken care of all this
for us.

The essential primary data that any collision resolver
needs may be as follows:

- the ”common” point of contact
- a pointer to colliding object A
- a pointer to colliding object B
- the normal of contact
- the coefficient of restitution for this collision

The above object pointers point to some rigid body structure
whereby all necessary state information about the object can
be accessed quickly and conveniently. For non-moveable ob-
jects, like walls and floors, the above pointers may point to a
dummy rigid body whereby the mass of that body is infinite
and the normal of contact is set to point away from the non-
moveable structural object(s) (see Figure 2). Also, it may be
worth noting that by convention, we consider the normal of
contact to always point away from the contacting surface of
object B. This is a trivial but important point.

When dealing with simultaneous collisions at multiple
points on a body we may consider, for structural conve-
nience, this data to be encapsulated within acontact node
which itself is part of a list of all colliding points. This is
dispatched from the collision detection module to the colli-
sion response module.

4. Basic collision impulse assumptions

At collision time tc there may be two or more bodies col-
liding with one another. If this is the case, then we treat
all bodies that are in a state of collision simultaneously and
view each point of contact on the colliding bodies and the
influences through those points (i.e.impulses) as affecting
the overall outcome of the collision between that body and
the body or bodies which it is colliding. So for each collid-
ing point on the colliding body, that point has an influence
on how all other colliding points on that body behave and
vice versa. Figure 3 illustrates the relation between body A
and B during a collision. For data structural convenience, in
eachcontact nodethat we set up for each collision point, we
only ever consider at most two bodies per point. However,
in our collision equations we take into account all other pos-
sible collision points and the resultant influence produced
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from those points. This will become clearer later on. If there
are more than two colliding bodies per point we simply pro-
duce a separatecontact nodefor every permutation of pairs
of bodies that collide at that point. At the end of this pro-
cess we will have a list ofcontact nodeswhich correspond
to points of contact for each pair of colliding objects. This
list, as mentioned previously is then fed into our response re-
solver which then solves for the correspondingimpulsesthat
act at each collision point. In order to get a better grasp of
the final impulse equation formulations, let us initially start
from first principles:

Figure 2: contact normal direction of collision between a
moveable and non-moveable object at multiple points

For any pair of bodies, A and B, during a collision at time
tc, the ith point of contact on body A should be such that it
is equal to the ith point of contact on body B (see Figure 3).
Let pi denote the ith point of contact at timetc on a pair of
bodies A and B so that

pAi (tc) = pBi (tc) = pi(tc) (1)

wherebypAi (tc) andpBi (tc) denote the ith point of contact at
collision timetc of bodies A and B respectively.

Now let us consider the velocity of each body. At any time
t, the velocity of any point on an unrestricted moving body
ξ may be expressed as

ṗξ (t) = vξ (t)+ωξ (t)× (pξ (t)−xξ (t)) (2)

wherevξ (t) is the linear velocity of bodyξ at timet, ωξ (t)
is the angular velocity at timet and xξ (t) is the center of
mass of the object at timet. For notational convenience let
us denote(pξ (t)−xξ (t)) as the variablerξ (t) from now on.
Also, let us represent pre- and post-collision events using

the superscripts− and + respectively. So the pre-collision
velocity of point i at timetc is denoted as ˙p−i (tc) and post-
collision velocity isṗ+

i (tc).

With this in mind, let us consider what happens during a
collision event. According to Newton’s law of restitution for
frictionless collisions, at timetc:

v+
rel(tc) =−εv−rel(tc) (3)

vrel being therelative velocity in the normal directionof the
colliding objects which can be expanded to be

vrel =~n· (ṗA− ṗB) (4)

andε being what is known as thecoefficient of restitution.
This variable, measured between 1 and 0, determines how
elastic a resultant collision is and can be viewed as how
bouncy the materials from both colliding bodies are. For a
perfectly elastic collision,ε = 1, and for a perfectly inelastic
collision ε = 0. For a detailed proof please see8.

Figure 3: contacting points and normal directions during
collision between two objects. Collision at p1 affects how
p2 reacts and vice versa. Both points p1 and p2 are the same
for both objects A and B at collision.

Before we continue any further, it may be advantageous to
clarify the definition of an impulse to prevent any confusion
that may arise later on. Informally speaking, the incoming
velocity of a body during a collision event is perturbed by
an impulseΨ. This differs from constraint forces that en-
force non-penetration during continuous contact modeling
(i.e. resting or sliding contact). We may simply look atΨ as
a very large force acting over a very small interval of time,
applied to two newly colliding objects, in such as way as to
instantaneously change the approach velocities of both ob-
jects so that they each push the other apart. Impulses relate
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to momentum so in fact a more formal definition of an im-
pulse would bethe instantaneous change in momentum over
a very small time period. The direction in whichΨ acts re-
lates to the direction of the normal of contact. Recall that we
said by convention we always consider the normal of con-
tact to be pointing away from the surface of object B. All
this may be expressed as

Ψ = F∆t = M∆v = f~n (5)

In the above equation,F∆t denotes a large force acting
over a very small time period,M is simply the mass of
the colliding body,∆v being the change in velocity of the
colliding body andf the magnitude of the resultant impulse
due to the collision. Though the resultant impulse variable
Ψ is a vector term, the variablef (the impulse magnitude)
is an unknown scalar and is such thatf ≥ 0. This is what
our resolver wishes to solve for. So, according to Newton’s
third law of motion, the final calculated impulse(s) should
act positively on one body and equally but oppositely on
the other. Let us say thatΨ acts positively on body A
and equally but oppositely on body B, thus conforming to
Newton’s third law of motion. Thus for body A,ΨA = f~n
and for body B,ΨB =− f~n.

Now, let us deduce the change in velocity due to an ap-
plied impulse during a collision at timetc. It is possible to
use the information thus far to derive the change in velocity
as an expression in terms of the resultant impulseΨ. Thus
the change in velocity,∆v, at any point on a bodyξ due to
an imparted impulseΨ at timetc is

∆vξ (tc) =
Ψξ (tc)

Mξ

+ I−1
ξ

(tc)
(
rξ (tc)×Ψξ (tc)

)
× rξ (tc) (6)

Where
Ψξ (tc)

Mξ
is simply the linear component of the change

and the second part,I−1
ξ

(tc)
(
rξ (tc)×Ψξ (tc)

)
× rξ (tc) is the

angular component. The variableI−1 is the inverse inertia
tensor of the object and all other variables are as described
previously. Knowing this, the equation for thepost collision
velocity of pointi on bodyξ at timetc can be expressed as

ṗ+
ξi
(tc) = ṗ−

ξi
(tc)+∆vξi

(tc) (7)

We now havev+
rel as a linear function off .

5. Simultaneous collision points

Recall that during a collision event,v+
rel(tc) =−εv−rel(tc). We

will need to extend this assumption to fit our multiple colli-
sion point criteria. Let us first make the assumption that the

coefficient of restitution,ε, relates to each collision point in-
dividually on the colliding body rather than the body as a
whole. Since each colliding point on the colliding body in-
fluences the other, so too mustε by virtue of relation. So,
in short, for each colliding point on the body during a colli-
sion event, that point may possess a different elasticity to any
other point on that body even though it is part of the same
body. Furthermore, the colliding body may be pushed away
by a third (or more) body or bodies in a simultaneous, more
powerful, collision thus cancelling the effect of the previous
collision and breaking the rule in Equation (3). To account
for this, let us change the constraint imposed by Equation (3)
to one that reflects this situation better:

v+
rel(tc)≥−εv−rel(tc) (8)

Of course this implies that ifv+
rel(tc) exceeds−εv−rel(tc), then

our impulse magnitudef for that point must be zero as the
initial collision contact assumption no longer holds. We can
write these constraints down as

v+
rel(tc)+ εv−rel(tc)≥ 0 (9)

f (tc)≥ 0 (10)

f (tc)
(
v+

rel(tc)+ εv−rel(tc)
)

= 0 (11)

From this point onwards, for the sake of clarity, let us
drop thetc variable from our equations as they are going
to get quite messy. Instead, it will be assumed that all
equations from here onwards refer to timetc.

Back to the problem at hand. The above three constraints,
(9), (10), (11) formulate what is referred to as aLinear
Complementarity Problem. More formally, an LCP can be
stated as:

Given a known vectorb ∈Rn and a known matrixA ∈Rn×n

the problem is to find a vectorf ∈ Rn such that

w = Af + b ≥ 0 (12)

f ≥ 0 (13)

fT(w) = 0 (14)

or to show that no such vectorf exists.

Cottle et al.7 and Murty16 both give excellent detailed ex-
planations of LCPs and various solution methods.†

† The latter book is unfortunately out of print but is however, freely
available in electronic form on the web
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Our solver’s job is to take constraints (9), (10), (11) and
formulate the appropriateA matrix andb vector, giving them
to the LCP solver to thus finally solve for vectorf , the list
of required impulse magnitudes. Let us now extend thepost
collision velocityequation (7) so that it accounts for simul-
taneous multiple colliding points. Recall that we said each
impulse acting on each colliding point on a colliding body
will influence all other colliding points on that same body.
This must be taken into account in the updated equation for-
mulation. So updating (7) will gives us

ṗ+
ξi

= ṗ−
ξi

+
n

∑
j=1

fξ j
~n j

Mξ

+ I−1
ξ

n

∑
j=1

(rξ j
× fξ j

~n j )× rξi
(15)

If we substitute equation (15) into equation (4), the resul-
tant formulation describes the relative velocity at pointi in
the normal direction after the collision, taking account of all
other influences acting through all other contacting points on
the colliding objects.

v+
reli

= v−reli
+~ni ·

(
n

∑
j=1

f j~n j

MAi

+λAi

n

∑
j=1

(r∗A j
f j~n j )−

n

∑
j=1

− f j~n j

MBi

−λBi

n

∑
j=1

(
r∗B j

(− f j~n j )
)) (16)

where λAi = r∗TAi
I−1
Ai

, λBi = r∗TBi
I−1
Bi

, fA j = fB j = f j and

v−reli
is as in Equation (4). Note that we negate the impulse

magnitudef acting on objectB in the above formulation so
as to conform to Newton’s third law of motion. To neglect
to do so would give us an improper model of the resultant
impulses acting on each object.

The above equation (16) has been rearranged for nota-
tional convenience and clarity. The reader should have no
problem in seeing that it was got by simple substitution. Per-
haps the only confusing thing is the variables with the∗ su-
perscript. Barzel et al3 name this”transformation” as the
dual of a vectorand hence we follow suit here. This formu-
lation is just a convenient way for us to express a cross prod-
uct of two vectors as a matrix vector multiplication. Equa-
tion (17) below might perhaps give a better picture of what
is happening. The appendix B in3, as well as giving a brief
description of vector dual properties, also gives a very good
overview of point behavior on a rigid body which is highly
applicable to the equation formulations presented in this pa-
per. The reader may want to refer to chapter 4 of Goldstein10

for the proof of why this vector cross product duality relation
holds.

a×b = a∗b =

 0 −a3 a2
a3 0 −a1
−a2 a1 0

 b1
b2
b3

 (17)

We now take the above equation (16) and substitute for
the left hand side of equation (3). This brings us one step
closer to obtaining our requiredb vector andA matrix in our
LCP problem. The last thing for us to do is to bring over the
right hand side of equation (3) and further rearrange to give:

bi +
n

∑
j=1

f jAi j ≥ 0 (18)

where

bi = v−reli
(1+ εi) (19)

and

Ai j =~ni ·

(( ~n j

MAi

+λAi (r
∗
A j

~n j )
)
−
(−~n j

MBi

+λBi

(
r∗B j

(−~n j )
)))
(20)

Each elementi j in the A matrix can be got from the above
by straightforward substitution.

The above Equation (20) may still seem a bit overwhelm-
ing so let us further simplify the equation by further variable
substitution. Let

AAi j = ~n j

MAi
+λAi r

∗
A j

~n j

ABi j = −~n j

MBi
+λBi r

∗
B j

(−~n j )

so that equation (18) can now be expressed as:

bi +
n

∑
j=1

f j~ni ·
(
AAi j −ABi j

)
≥ 0 = wi (21)

We now have all the information we need to be able to
solve for the impulse magnitudef . The collision resolver
module, given the appropriate list of collision nodes, will use
the above formulae to determine the appropriate constraint
formulation to give to the LCP solver. The LCP solver itself
in turn will then solve for vectorf , the list of appropriate im-
pulse magnitudes, which it can either return back to the re-
solver to pass on to the main update module in the simulator
or return the information to the main update module directly.
If the resolver was given only one collision point, then the re-
sponse problem simply reduces down to one linear equation
in one unknown which can be solved very efficiently and
mirrors the more traditional single point impulse resolution
methods. The impulse magnitudes calculated through the re-
solver will then be applied as appropriate to the states of the
rigid bodies in the simulation so as to change their momen-
tum to reflect a collision (remember, impulses are related to
momentum).
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6. Conclusions and Future Work

We have set up many experimental animations using the
LCP resolution method for simultaneous collisions as de-
scribed in this paper and the results to date have been most
favorable. Physical plausibility has been maintained, if not
improved, for all produced animations. Figure 4 shows stills
from an animation of two Stanford bunnies‡ falling onto a
ramp using the simultaneous multiple collision point reso-
lution method as described in this paper. Figure 5 shows
the same animation but this time with considered collision
points shown. We use a sphere-tree collision detection model
9 4 so the number of collision points at each narrow phase
collision is vast (as can be seen by yellow points) but how-
ever is reduced down to at most an approximate 4 points
(these are marked in red). Informal tests have shown that
collision response done on multiple collision points simul-
taneously rather than on a per point basis in general gives a
more pleasing outcome.

Linear Complementarity Programming techniques have
been utilised as a solution method in resolving simultaneous
contact forces to enforce non-interpenetration constraints1

2. However, very little has been seen of them (to our knowl-
edge) when it comes to utilising them as a solution to re-
solving simultaneous collision impulses. Baraff’s 1989 pa-
per1 has been the only paper which we are aware of to have
touched on the subject.

For all the technique’s merits however, the necessity of a
specialised linear equation solver along with the seemingly
complex maths involved may explain why LCP based reso-
lution methods for simultaneous collision impulse responses
have not been explored or mentioned more in the past. It is
our hope that people with little maths background will be
able to take what we have presented here and just simply
”plug” each variable in the final formulation into their code
or project the necessary data to enable them to account for
more than one contact point in a collision. At the very least,
we hope that this paper has improved their understanding of
how to deal with impulses for multiple collision points.

We are currently in the process of integrating this tech-
nique into a dynamics framework and hope in the future
to research further into the possibility of speeding up the
method by perhaps making the simulation as well as the col-
lision detection time critical.
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Figure 4: Stanford bunnies falling onto ramps

Figure 5: Stanford bunnies falling onto ramps with considered collision points shown


