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Hierarchical object representations play an important role in performing efficient collision han-
dling. Many different geometric primitives have been used to construct these representations,
which allow areas of interaction to be localized quickly. For time-critical algorithms, there are
distinct advantages to using hierarchies of spheres, known as sphere-trees, for object representa-
tion. This paper presents a novel algorithm for the construction of sphere-trees. The algorithm
presented approximates objects, both convex and non-convex, with a higher degree of fit than ex-
isting algorithms. In the lower levels of the representations, there is almost an order of magnitude
decrease in the number of spheres required to represent the objects to a given accuracy.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geometry and
Object Modeling - Object Hierarchies; 1.3.7 [Computer Graphics|: Three-Dimensional Graphics
and Realism - Animation

General Terms: Algorithms
Additional Key Words and Phrases: Animation, Collision Handling, Object Approximation, Me-
dial Axis Approximation, Simulation Level-of-Detail

1. INTRODUCTION

Collision handling is a major bottleneck in any interactive simulation. Ensuring
that objects interact in the correct manner is very computationally intensive and
much research has addressed the issues involved with trying to reduce the computa-
tional requirements. Researchers often utilize hybrid collision detection algorithms
to tackle the problem in various phases. The initial phase of such an algorithm,
the broad phase, aims to efficiently cull out pairs of objects that cannot possibly be
interacting. A number of different techniques have been used to achieve this coarse
grain detection. These include Sweep & Prune [Cohen et al. 1995; Ponamgi et al.
1997], global bounding volume tables [Palmer and Grimsdale 1995] and overlap
tables [Wilson et al. 1998].

Having determined which objects are potentially interacting, the hybrid algo-
rithm uses a finer grained algorithm to narrow in on the regions of the objects
that are in contact. This narrow phase processing typically traverses hierarchical
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(a) Level 1 (b) Level 2 (c) Level 3

Fig. 1. Example of a dragon approximated with 3 levels of spheres.

representations of the objects, such as that shown in Figure 1, to hone in on the
regions of interest. This reduces the amount of work that is required to perform
the “exact” collision detection using such algorithms as those described by Palmer
and Grimsdale [1995] and Moore and Wilhelms [1988].

Many different geometric primitives have been used for constructing the “Bound-
ing Volume Hierarchies” (BVH) used to perform narrow phase processing. These
include: Spheres [Quinlan 1994; Palmer and Grimsdale 1995; Hubbard 1995a;
1995b; 1995¢; 1996a; O’Sullivan and Dingliana 1999], Axis Aligned Bounding Boxes
(AABBs) [van den Bergen 1997], Oriented Bounding Boxes (OBBs) [Gottschalk
et al. 1996; Krishnan et al. 1998], Discrete Oriented Polytopes (k-DOPs) [Klosowski
et al. 1998], Quantized Orientation Slabs with Primary Orientations (QuOSPOs)
[He 1999], Spherical Shells [Krishnan et al. 1998] and Sphere Swept Volumes (SSVs)
[Larsen et al. 1999].

There is often a trade-off between the complexity of the bounding volume prim-
itives and the tightness of fit that they can achieve. Simpler primitives, such as
spheres and AABBs, are quite inexpensive to test for intersections. However, as
they provide relatively poor approximations, large numbers are often required to
approximate the objects effectively. More complex bounding volume primitives re-
quire more expensive intersection tests but, as they often provide tighter approxi-
mations, fewer primitives (and hence intersection tests) are required. The following
equation has been used by Gottschalk et al. [1996], van den Bergen [1997] and
Klosowski et al. [1998] to evaluate various types of bounding volume hierarchies:

T =N, xCy,+ N, xC,, (1)
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where :

is the total cost of collision detection between two objects,
is the number of primitives updated during the traversal,
is the cost of updating a primitive’s position/orientation,
is the number of overlap tests that are performed,

is the cost of an overlap test between a pair of primitives.

Qahza-

Simple primitives, such as spheres, exhibit low values for C,, and C,. As spheres
are rotationally invariant, a node can be updated simply by translating its center
point to reflect the change in the object’s position and orientation. Testing spheres
for overlap is also computationally inexpensive, requiring only a simple distance
test. However, as these primitives often do not fit objects well, N,, (and hence N,,)
can be quite large. More complex primitives, such as OBBs and SSVs, represent
the objects more closely and hence N, and N, are lower, but the overlap tests and
update costs are generally higher. The table! below compares spheres and OBBs
(using the Separating Azis Test [Gottschalk et al. 1996]) with respect to Equation 1:

[ Primitive || Cu [ Co ]
Sphere 21=1%t 10
OBB 75=3*r + 1*t | 80-200

Although spheres often do not provide particularly tight bounding volumes, there
are a number of distinct advantages to their use. Not only are they computationally
inexpensive to use at run-time, but each level of the sphere-tree can be used to
generate an approximate response [O’Sullivan and Dingliana 1999; Dingliana and
O’Sullivan 2000].

This is particularly advantageous when using the interruptible collision detection
algorithm. This algorithm, introduced by Hubbard, uses a time-critical traversal of
the sphere-trees that is terminated when the allotted time-slice has expired, allowing
consistent frame-rate to be maintained [Hubbard 1995a; 1995b; 1995¢; 1996a]. As
the collisions may never be resolved down to the surface of the objects, the spheres
are used to approximate the collisions.

This paper presents a novel sphere-tree construction algorithm, based on Hub-
bard’s original medial axis method. The algorithm maintains a medial axis ap-
proximation that can be refined as the sphere-tree construction progresses. This
ensures that there will always be enough information for the construction of a tight
fitting approximation. The rest of the paper is organized as follows: Section 2
discusses the requirements of a good bounding volume hierarchy and gives a brief
overview of some of the existing algorithms for the construction of sphere-trees.
Section 3 overviews the process of sphere-tree construction within our frame-work
and discusses how object sub-division is managed. Section 4 presents the adaptive
medial axis approximation algorithm, which extends the existing algorithm to al-
low the approximation to be updated as required. Section 5 presents a number of

n this table, r is the cost of rotating a point/vector in 3D and t is the cost of applying a 3D
rotation and translation to a point. Therefore r» and ¢ are 18 and 21 floating point operations
respectively.
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new algorithms for the generation of sphere sets from the medial axis approxima-
tion. Section 6 evaluates the new algorithms for the approximation of objects, the
construction of sphere-trees and their use within interactive simulations. Section 7
presents information about how we construct our sphere-trees for use in real-time
interactive simulations. Finally, Section 8 presents conclusions and mentions some
future work.

2. EXISTING ALGORITHMS

A number of algorithms have been used for the construction of sphere-trees. Any
algorithm that constructs bounding volume hierarchies for collision detection must
meet three basic requirements [Hubbard 1995b]:

—the hierarchy conservatively approximates the volume of the object, each level
representing a tighter fit than its parent;

—for any node in the hierarchy, its children should cover the parts of the object
covered by the parent node;

—the hierarchy should be created in a predictable automatic manner, not requiring
user interaction;

—the bounding volumes within the hierarchy should fit the original model as tightly
as possible, representing the original model to a high degree of accuracy.

For interactive simulations the emphasis is on achieving high and consistent
frame-rates. Therefore, a major concern is how well the hierarchy facilitates this
goal. In an interruptible collision handling system the narrow phase algorithm may
not fully resolve the collisions. Thus, the approximate collision information, avail-
able from the BVH, needs to approximate the points and types of contact (contact
modelling) and the resulting response at every level of the approximation [Dingliana
and O’Sullivan 2000].

The simplest algorithm for construction of sphere-trees uses the Octree data-
structure. The octree is constructed by using recursive sub-division of the object’s
bounding cube into 8 smaller cubes. The cubes that cover part of the object are then
further sub-divided, continuing down to the required depth. At each level, the nodes
of the octree become smaller and hence form successively tighter approximations of
the object. The sphere-tree is then constructed by placing a sphere around each of
the nodes of the octree. This method has been adopted by Palmer and Grimsdale
[1995], Hubbard [1995b] and O’Sullivan and Dingliana [1999]. The simplicity of the
algorithm allows it to be quickly and easily implemented and for the sphere-trees to
be updated when objects deform. However, as the algorithm does not explicitly use
the object’s geometry, the sphere-trees produced often fit the object quite poorly.

Quinlan [1994] also uses sphere-trees for collision detection. The sphere-trees
are constructed by first covering the surface with a set of uniformly sized spheres,
which represent the leaf nodes of the hierarchy. This set of spheres is divided into
two roughly equal sub-sets by dividing it along the longest axis of its bounding
box. Trees are constructed for each of the two sets and these trees are used as
children of the root node. Rusinkiewicz and Levoy [2000] use a similar strategy for
constructing sphere-trees for visibility culling and level-of-detail rendering.
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Along with the octree method, Hubbard also explored two other methods for
the construction of sphere-trees. The first used simulated annealing to improve
the fit of the spheres constructed with the octree method. This produced mixed
results and so a new algorithm, which makes use of the object’s medial axis, was
developed. This algorithm makes explicit use of the object’s geometry, in the
form of its medial axis, and produces much tighter fitting sphere-trees than the
octree method. However, there are a number of difficulties associated with the
construction of the medial-axis approximation and the resulting sphere-tree. This
paper presents an algorithm that addresses these problems by using an adaptive
medial axis approximation that ensures a tight fitting sphere-tree.

3. HIGH-LEVEL CONSTRUCTION ALGORITHM

This section gives an overview of the new sphere-tree construction algorithm. The
algorithm consists of a number of layers. The top layer decomposes the construction
into a number of sub-problems by sub-dividing the object into regions. These
regions are then approximated with a set of spheres, which are used to further
divide the object and hence construct the sub-trees.

The root node of the sphere-tree is the smallest sphere that will enclose the
object. This is found using White’s minimum volume enclosing ball routine [White
www]|, which implements the algorithm described by Weltz [1991]. The first level
of spheres, the children of the root sphere, are constructed by calling a sphere
generation algorithm to approximate the object with at most N, spheres?.

These spheres are then used to segment the object into a number of regions. Each
region defines the areas of the object that must be covered by a set of children
spheres. These spheres form the next level of the hierarchy - as children of the
sphere that defined the region.

This generic high-level algorithm, outlined as Algorithm 1, forms the basis for
all the sphere-tree construction algorithms we use. The generic nature of the top-
level algorithm allows different sphere generation algorithms to be implemented and
slotted into place. While a number of different sphere generation algorithms have
been explored, only the medial axis based algorithms will be discussed in this paper.
Prior to this we will detail how the sphere-tree construction algorithm segments the
object into regions for approximation.

3.1 Object Segmentation

For each node in the sphere-tree, sphere generation algorithms are used to construct
a set of children spheres. In order to ensure that the entire object is approximated,
the children must cover the region covered by their parent. Hubbard achieved this
by segmenting the medial axis based on how the parent sphere was constructed.
To allow for a more generic algorithm, we choose not to use any knowledge of
how the sphere was constructed. This makes it much easier to use different types
of algorithms from within the top level algorithm and allows the spheres to be
post-processed prior to their inclusion in the sphere-tree, e.g. to allow further
optimization algorithms to be employed.

2N, is the number of children spheres to be generated for each node of the hierarchy, i.e. the
tree’s branching factor.
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Algorithm 1 Sphere-tree construction

¢ Construct set of sample points to cover object’s surface.

¢ Construct initial Voronoi diagram to contain 4nitiallNumber
spheres (adaptive algorithm) .

¢ Construct bounding sphere object to represent root of
sphere-tree.

¢ FOR each level of the sphere-tree
¢ FOR each sphere in the level (parent sphere)

¢ Determine object region covered by the parent sphere.

¢ Update the Voronoi diagram to cover the parent’s region
with at least minSpheresPerNode spheres (adaptive
algorithm) .

¢ Generate reduced set of spheres from the Voronoi
diagram so that the parent’s region is approximated with
treeBranchFactor spheres (sphere reducer).

¢ Perform post-processing as desired e.g. run an optimizer
further reduce the error.

¢ Add reduced set of spheres to sphere-tree as children of
the parent sphere.

Therefore, we need to be able to determine the regions of the object covered
by each sphere in an arbitrary set of spheres. If we were to cover every region
contained within the each sphere, we would introduce a lot of duplication into the
hierarchy by approximating the overlapping regions multiple times. This would be
very wasteful as the same area would be covered many times, further contributing
to the overlap.

A more desirable situation is to divide the object into sub-regions with as little
overlap as possible. This is achieved by dividing any overlapping regions between
the spheres. In a region covered by a number of spheres, each part of the object need
only be covered by one set of children spheres. While it is advantageous to have
the interior of the object filled with spheres, to prevent tunnelling, we require that
only the surface of the object be completely covered. Some algorithms, particularly
those based on the medial axis, usually fill the interior of the object quite well
anyway.

The surface of the object is represented by an arbitrarily large set of sample
points. To segment the object into regions we simply choose the sub-set of points
that represents the surface within that area. Any points that lie in the overlap
between two spheres can be covered by either of the sets of children. To determine
which points are to be covered by each set, a dividing plane is constructed through
the intersection. Points are distributed based on which side of the plane they lie
on.

Figure 2 shows how a triangular object is divided into four regions. The dividing
planes, shown in Figure 2(a), are constructed so that they pass through the points
of intersection of the circles (spheres in 3D). As each set of spheres can be of
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Fig. 2. Dividing the object into distinct regions using dividing planes.

arbitrary configuration, the spheres tend to be of varying sizes. In this case the
region associated with the large central sphere is much bigger than the regions
associated with the other spheres. Thus, the children of this sphere will potentially
have a looser fit than the other child sets. It is very desirable that the regions divide
the object as evenly as possible without affecting the fit of the spheres. A simplex
based optimization algorithm is used to move the dividing plane between each pair
of spheres so as to make the division as even as possible, as shown in Figure 2(b).

Once we have established the regions to be covered by each of the spheres, re-
placement spheres can be created. These new spheres are only required to cover
parts of the surface that are not covered by any other spheres, which allows tighter
fitting spheres to be created, as shown in Figure 2(c).

4. ADAPTIVE MEDIAL AXIS CONSTRUCTION

The medial axis of an object represents its skeleton and can be defined as the cen-
ters of a set of maximally sized spheres that fill a figure [Blum and Nagel 1978].
Constructing the medial axis for a polyhedral model is a complicated and com-
putationally expensive task. For the purposes of constructing sphere-trees, an ap-
proximate medial axis suffices. Hubbard used a static medial axis approximation
for the construction of sphere-trees. We have extended this to allow the medial
axis approximation to be updated during the sphere-tree construction. Like Hub-
bard, we use a Voronoi diagram to represent the medial axis. This section gives an
overview of how the Voronoi diagram is used to approximate the object. For full
construction details see [Hubbard 1995b; 1996b).

A Voronoi diagram is constructed from a set of forming points. Each cell within
the Voronoi diagram represents the region of space that is closer to its forming
point than any of the other forming points. When the set of points is distributed
over the surface of the object, a sub-set of the faces, which lie between the cells,
forms an approximation of the medial axis.

The Voronoi vertices that are inside the object approximate its medial axis. These
vertices represent a good location to place spheres. As the vertex is equidistant from
each of its 4 forming points, a sphere centered on the vertex touches the surface
at these 4 points. Therefore the internal vertices, and hence the spheres created
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Fig. 3. Spheres are placed on the Voronoi vertices that are inside the object.

around them, approximate the object’s shape. Figure 3 shows an example of this
in 2D, where circles are placed around the internal vertices and touch the surface
in (at least) 3 places.

There are a number of difficulties associated with the construction of a medial-
axis approximation for generating sphere-trees. The problems arise when choosing
the set of points from which to make the Voronoi diagram. It is extremely difficult
to find a set of points that results in a set of spheres that will completely cover the
object. This results in an approximation that contains holes which will allow objects
to interpenetrate. It is also impossible to determine a priori how to construct a
medial axis approximation that will lead to a tight fitting sphere-tree. We favor an
adaptive medial axis construction algorithm, which addresses these problems.

This algorithm ensures that the medial spheres, and hence the sphere-tree will
always cover the entire object. It also allows the medial approximation to be up-
dated so that there is always a sufficient number of spheres from which to construct
the sphere-tree, and that the spheres fit the object to a high degree of accuracy.

The adaptive medial approximation algorithm is iterative in nature. It starts
with an existing medial axis approximation or a single sphere that encloses the
object. The first part of the algorithm is to ensure that the set of medial spheres
covers the object’s surface. The set of medial spheres, the spheres around the
internal vertices, is not guaranteed to cover the entire surface and so extra spheres
are placed around external vertices to complete the coverage. The second phase
of the adaptive algorithm is to improve the current approximation by adding more
sample points. The position of each new sample point is chosen so that the worst
sphere in the current approximation will be replaced with tighter fitting ones.

4.1 Completing Coverage

In order to ensure that the set of medial spheres is complete, it must cover the
entire surface. This is achieved by representing the object as a densely packed set
of points distributed across its surface. The surface is considered to be covered
when all these points are covered. Obviously, there may be small gaps between the
surface points, but as the number of points increases these gaps will become smaller
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and less frequent.

Using this representation makes it simple to ensure that the model is completely
covered. Points that are not covered can be dealt with by adding additional spheres
to the medial set. Fach Voronoi cell has a number of vertices, which between them
represent a set of spheres that cover the entire cell. Thus, to cover a point, only
the vertices that make up the cell containing the point need to be considered.

There are several criteria that could be used to choose the sphere to cover each
point. The smallest sphere, or the sphere with the lowest error, would help to
produce a tight fitting approximation, whereas choosing the largest sphere would
potentially cover a number of other uncovered points, requiring less of the spheres
in the approximation to be “coverage spheres”. As the adaptive algorithm is able
to replace poor fitting spheres, these spheres will subsequently be replaced if they
affect the quality of the approximation.

4.2 lterative Improvement

The second phase of the adaptive medial axis approximation algorithm is the itera-
tive improvement step. During each iteration of the algorithm, having marked the
medial (and coverage) spheres, the sphere with the worst fit is replaced®.

To replace the chosen sphere, a new point is inserted into the Voronoi diagram.
Recall, the vertex will be used to construct a sphere whose radius is equal to the
distance from the vertex to its forming points. If the center of the sphere is inside
the object, an upper bound on how far this sphere hangs outside the surface of the
object is given by:

e=1—|g=u (2)

where:

is the distance the sphere protrudes past the surface,
is the radius of the sphere,

is the vertex being used to make the sphere,

is the surface point closest to v.

Qo< "o

Inserting a new sample point at ¢ results in a new cell being added to the Voronoi
diagram. The spheres created around the vertices of this cell will pass through ¢
and so reduce the error to 0 at that point, as seen in Figure 4(b).

Figure 5 shows a comparison between the adaptive and static algorithms. The
adaptive algorithm clearly produces a closer approximation of the object, with the
static algorithm producing a very uneven and bumpy result.

5. SPHERE GENERATION

The top level sphere-tree construction algorithm, detailed in Section 3, divides the
object into regions which must be approximated with a specified number of spheres.
We have explored a number of generation algorithms [Bradshaw 2002], a sub-set of
which will be discussed in this section.

3As each sphere is associated with a Voronoi vertex, the vertices of the Voronoi diagram have a
flag to classify it as internal, external or cover and a variable to store the error associated with
that sphere.
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(a) Before (b) After

Fig. 4. Addition of a new point to reduce the error of the approximation.

(a) Static (b) Adaptive

Fig. 5. Comparison between static and adaptive sampling (1,000 spheres).

The sphere generation algorithms maintain a Voronoi diagram that approximates
the medial axis of the object. When the sphere generator is asked to approximate a
region of the object, this Voronoi diagram is updated, using the adaptive algorithm
discussed in Section 4, so that the set of medial spheres is of sufficient quality to
allow a tight approximation. Typically we specify that the set of spheres contains
10 times the target number of spheres and that the worst sphere in the set has
an error that is a fraction (typically % or i) of the parent sphere’s error. Having
updated the medial axis approximation, the sphere generation algorithms construct
the group of spheres for the sphere-tree.

5.1 Merge

The “Merge” sphere reduction algorithm, loosely based on Hubbard’s algorithm,
reduces the sub-set of medial spheres by successively combining pairs of spheres.
Each sphere is allowed to merge with a number of other spheres, its neighbors.
Initially, each sphere is given a set of neighbors that correspond to the vertex’s
neighbors within the Voronoi diagram.

Each of the medial spheres covers a sub-set of the surface points. When a pair
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of spheres is merged, a new sphere, covering the union of these two sets, is con-
structed. Hubbard used Ritter’s approximate bounding sphere algorithm for the
construction of this sphere [Ritter 1990]. We favor a more accurate method, which
constructs three spheres and uses the one with the tightest fit. Two of the spheres
are constructed by growing the existing spheres to cover the combined set of points.
The third sphere is constructed using White’s minimum volume enclosing ball al-
gorithm [White www]. This scheme allows the sphere to remain close to the medial
axis unless it is beneficial to move it, which allows for a tighter approximation.

As the merging of a pair of spheres produces a new sphere, the set of merges must
be updated. The neighbors of each of the merged spheres will become neighbors
of each other, resulting in new potential merges. In order to ensure that we are
always able to reduce the sphere set, any spheres that end up with no neighboring
spheres are given a new set of neighbors, containing any of the remaining spheres
it intersects. In the event that this results in an empty set of neighbors, the sphere
is made a neighbor of all the remaining spheres in the set. The reason for limiting
the pairs of spheres that may be combined is to reduce the computational cost of
the reduction process. As the number of pairs is O(n?) it would be very expensive
to consider every pair. However, when the number of spheres becomes sufficiently
low, it becomes feasible to consider every pair for merging. This is typically done
when we reach 2 or 3 times the target number of spheres.

At each iteration of the merge algorithm, a pair of spheres is combined to reduce
the number of spheres by one, using a greedy algorithm. At each iteration, the
merge that results in the lowest error is used. We give special consideration to
merges that actually reduce the error in the approximation and we refer to these
as “beneficial merges”. As an approximation is only as good as its worst error, we
favor merges that improve the worst spheres in the approximation. We do not treat
other beneficial merges as a special case as we have found that this can adversely
affect the final results.

5.2 Burst

One of the limitations of the merge algorithm is that when a pair of spheres is
merged, the increase in error is localized to the new sphere rather than being dis-
tributed across the object. Take for example, the arrangement shown in Figure 6(a).
When the set is reduced a new sphere is created to cover the area previously covered
by two spheres. This results in a sphere with a much larger error than the rest, as
shown in 6(b).

The “Burst” algorithm aims to address this problem by allowing more of the
spheres to absorb the increase in error. Removing (or bursting) one of the spheres
and using the surrounding spheres to fill in the gap will better distribute the error
introduced by decreasing the number of spheres. Figure 6(c) shows the result of
removing one of the spheres from the set. In this scenario the worst error in the
approximation has been reduced.

When removing a sphere, coverage of the surface must be maintained. The re-
moval of a sphere will leave a number of the surface points uncovered. These points
must be covered by the remaining spheres. As there are a number of spheres left in
the set, determining the optimal sphere to cover each point is very computationally
expensive so a simpler approach is used. To try to minimize the increase in size of
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Fig. 6. Merge vs. Burst.

the remaining spheres, each point will be assigned to the sphere that is closest to
covering it. Finding this sphere involves measuring the distance from the point to
the shell of the spheres as follows:

D(S,P) = |IS. - P|| - S, 3)
where:

D(S,P) is the distance from sphere S to point P,

Se is the center of sphere S,

S is the radius of sphere S.

The value of D(S, P) will become negative if the point P is already contained
within the sphere S, which will indicate that the point should definitely be assigned
to that sphere. Finally, each sphere that is assigned new points must be updated
so that it covers the new set of points.

This algorithm operates in a similar fashion to the merge algorithm, removing
the sphere that will introduce the least error at each iteration. Unlike the merge
algorithm, the burst algorithm benefits greatly from the use of beneficial bursts.
Ordinarily the cost of a burst is defined as the sum of the errors of all the spheres
involved. A beneficial burst is defined as a burst that reduces the worst error of the
spheres used to fill in the gaps created. Thus, at each iteration of the algorithm,
the burst that reduces this error by the largest amount is chosen. If there are no
beneficial bursts available, the burst with the lowest cost is chosen.

5.3 Expand & Select

The burst algorithm for sphere reduction was designed to allow the error intro-
duced by the removal of a sphere to be distributed amongst some of the remaining
spheres. While there are a number of situations where this will improve on the
merge algorithm, it allows only the neighboring spheres to absorb the increase in
error. A much better strategy would be to select a set of spheres that distribute
the error evenly between them.

If the error within the reduced set of spheres is perfectly distributed across the
object, each sphere will have the same error associated with it, allowing for a tight
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fit. Equation 2 gave us a metric to measure the distance from a sphere to the surface.
This equation can be rearranged to allow us to compute the radius required, for a
given sphere, to make it hang over the surface by a given amount, e. Thus for a
given value of e, the radius of a sphere that will hang over the surface by at most
e can be computed as:

r=e—lg—c| (4)

where:

is the radius of the sphere,

is the distance the sphere protrudes past the surface,
is the center of the sphere,

is the point on the surface.

o 0 0o R

To approximate the object, the medial spheres are expanded to the desired stand-
off distance (e), using Equation 4, and the spheres that do not uniquely cover any
part of the object are discarded. For convex bodies the stand-off distance is exactly
equal to the worst distance from the sphere to the surface. For non-convex bodies,
the stand-off distance is an over-approximation of this error.

Is it not possible to pre-determine the value for e that will result in the required
number of spheres being selected. In order to construct a set containing a certain
number of spheres, we must search for the correct value of e. A simple search
algorithm, derived from the Binary Search, finds the lowest value of e that results
in a set containing the required number of spheres.

The job of selecting the minimum number of expanded spheres that cover an
object is a complicated one. As the set of spheres from which the reduced set is
drawn is potentially quite large, it would be very expensive to try every combination
of spheres. Instead of looking for this global optimum, we can try to find a good
minimal set of spheres, which will be a set from which none of the spheres can be
removed without exposing part of the surface.

A greedy algorithm allows us to choose the set of spheres without having to eval-
uate a large number of combinations. The algorithm maintains the set of currently
selected spheres and additional spheres are chosen from the remaining ones until
the desired region is completely covered. In order to decide which sphere to choose,
each sphere must be ranked according to its potential to keep the set of spheres
small. The first obvious choice would be to rank each candidate by the area of
previously uncovered surface contained within it. This will allow the algorithm to
cover the largest amount of the object at each iteration. As with all greedy algo-
rithms, this aims to make the biggest gain at each stage but does not guarantee to
find the global optimum.

However, this heuristic suffers from one major drawback. Consider how the algo-
rithm will choose spheres to approximate a cylinder with rounded ends. The first
two spheres will be chosen to cover the ends. The problem arises when choosing the
third sphere. There exists a large number of candidate spheres along the remaining
section of the surface that all have the same ranking. Thus, it is possible to choose
a sphere next to one of the first two spheres or one that is towards the middle. The
first option, illustrated in Figure 7(a), will require one additional sphere to com-
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Fig. 7. When selecting a set of spheres to cover the object, the choice of sphere may result in gaps
being formed, which will require extra spheres to fill them.

plete the approximation. However, the second option, illustrated in Figure 7(b),
will require two more spheres, one on either side of the third sphere.

Another way of approaching this is to rank the spheres by the number of remain-
ing spheres that it makes redundant. Ranking the spheres in this way will tend to
select spheres that cover complicated areas of the object first, especially when the
set of spheres has been constructed using the adaptive medial axis approximation
algorithm. It will also tend to choose spheres that cover areas near previously se-
lected spheres as these spheres will help the new sphere to eliminate more of the
remaining spheres, increasing its ranking. This will favor the configuration shown
in Figure 7(a). These heuristics have been called MazCover and MaxElim respec-
tively, the latter being used as it produces marginally better results in practice.

6. EVALUATION

This section compares the various algorithms for both object approximation and
sphere-tree construction. The algorithms have been compared using a number of
simple geometric shapes including a cube, an ellipsoid, a cylinder, a torus, a cone,
an “S” shape created from NURBS surfaces and an “L.” with square cross sections.
A number of complex models have also been used, including a Bunny*, a Cow, a
Dragon®, a lamp, a shamrock, a teapot and various letters of the alphabet. To
allow a large number of bodies to be used in real-time simulations, the models of
the bunny, the cow and the dragon were simplified using Garland’s QSlim software
[Garland 1999] to reduce the number of faces that need to be rendered. A selection
of the models used can be seen in Figure 8.

There are a number of factors that must be considered when approximating an
object with spheres. As stated in Section 2, the spheres should approximate the
object’s surface to a high degree of accuracy and should cover the entire object.
The tightness of fit can be measured as the maximum distance from the surface
of the spheres to the actual surface of the object, as illustrated in Figure 9(a).
This represents an upper bound on the distance between two objects when they
are falsely thought to be involved in a collision, which has been found to be one of
the most important factors influencing a viewer’s ability to perceive bad collisions
[O’Sullivan and Dingliana 2001]. The amount of the object not covered by the
approximation can be either the volume of the object that is not contained within
the union of the spheres, or the amount of surface area that is not covered by this
union. For this evaluation we will choose the latter, illustrated in Figure 9(b), as

4Data from http://graphics.stanford.edu/data/3Dscanrep/
5Data from http://graphics.cs.uiuc.edu/~garland /research/quadrics.html
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Fig. 9. Measuring error and coverage in sphere approximations.

it is not critical to fill the object entirely as long as the surface is well covered.

The initial analysis is concerned with the geometric properties of the approxi-
mations and sphere-trees that result from the various algorithms. Later analysis
considers the use of the resulting sphere-trees in an interruptible collision handling
system.

6.1 Medial Axis Construction

Section 4 detailed the adaptive medial axis construction algorithm, which addresses
the problems associated with the previous approaches. The algorithm aims to create
a set of spheres that approximate the object closely and does not contain any gaps.

Figure 10 shows the amount of the model that is left uncovered by the existing
medial axis approximation, both in terms of surface areas and volume. For the more
complex models, the static sampling scheme often provided rather poor coverage
of the object. As the number of samples increases the coverage generally improves,
but a large amount of uncovered surface can remain.

Figures 11 - 13 compare the fit of the approximations made using the adaptive
sampling algorithm with those created using static sampling. The first graph (a)
in each set compares the algorithms in terms of the maximum distance from the
surface of the spheres to the surface of the object. The adaptive algorithm generally
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Fig. 10. Coverage statistics for the sets of medial spheres.

exhibits a lower worst error than using static sampling, although for some models it
starts out worse and then improves quite quickly. The adaptive algorithm also often
exhibits a decrease in the variance across the approximation, shown in the second
graph (b). This is due to the algorithm choosing to improve the worst fitting sphere
at each iteration. Thus spheres with large error are replaced while those with lower
values are left alone. Although there is not a massive decrease in either error or
variance, the adaptive algorithm does maintain coverage of the object whereas the
static sampling method can often leave areas of the objects uncovered.

6.2 Sphere Reduction

Having constructed a large set of spheres, which approximate the geometry of
the object, the sphere-tree construction algorithm needs to reduce the number of
spheres down to the size required for the sphere-tree. Section 5 presented a number
of algorithms that aim to improve on Hubbard’s original algorithm.

Figures 14 - 16 compare these sphere reduction algorithms. FEach algorithm
generates the required number of spheres from a set of 500 medial spheres, which
were generated using the adaptive sampling algorithm. The first graph (a) compares
the algorithms in terms of the distance from the spheres to the surface. The second
graph (b) compares the variance of these distances across the approximation.

As expected, the new merge algorithm shows an improvement over Hubbard’s
merging strategy. This algorithm certainly reduces both the worst error and vari-
ance in the sphere sets. The expand algorithm generates sets of spheres with very
low error variance. For convex shapes this variance will be zero, but for non-convex
objects some variation is experienced. This is a result of the equation used for
computing the sphere’s radius, Equation 4, which over-approximates the error for
non-convex bodies. The expand algorithm generally exhibits a lower worst error
than either Hubbard’s or the merge algorithm. This is due to the way that the
algorithm distributes the error evenly between all the spheres in the resulting set.
The burst algorithm further improves the fit of the reduced sets of spheres. Al-
though the variance in the set of spheres is higher than the expand algorithm, the
worst fit is often better.

It is evident that the expand algorithm suffers from a number of difficulties.
Firstly, it is sometimes very difficult to choose the set of spheres, so the worst error
can actually be higher than those created with the merge algorithm. Also, the
algorithm has difficulty creating large sets of spheres. For example, in Figure 14
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there are no values greater than 25. When trying to fit a set of say 30 spheres, the
algorithm can find a set of either 25 or 55 spheres. The algorithm opts for the set
of 25 spheres, as it is within the acceptable size, but these cases are omitted from
the graphs.

6.3 Sphere-Tree Construction

The top level sphere-tree construction algorithm uses the sphere reduction algo-
rithms to generate the sets of spheres that make up the sphere-tree. Figures 17 - 19
compare the sphere-trees generated using various algorithms. All tests were con-
ducted with a tree branching factor of 8. This number was used as it provides
a reasonable level of sub-division without incurring too much computational costs
within the traversal algorithm. All the algorithms used a set of 5000 — 10000 points
to represent each object.

For the bunny, Hubbard’s algorithm used a medial axis approximation containing
circa 2500 spheres, for both the dragon and lamp this was increased to circa 20000
as both models contained regions that were hard to cover. For the other algorithms
the medial axis initially contained 500 spheres and was dynamically refined so that
each region had % the error of the parent sphere and at least 100 spheres from
which 8 were to be produced.

The first graph (a) in each set shows the number of spheres generated for each
level of the hierarchy. It is clear from the graphs that the algorithms do not always
produce a complete sphere-tree, i.e. a sphere-tree that has the maximum allowable
nodes for a given branching factor. The merge/burst algorithms often create sets of
spheres that contain contain redundant spheres. These spheres contribute nothing
to the approximation as all the areas of the surface that they cover are also covered
by other spheres. Thus these spheres are discarded and their descendants are not
computed. The expand algorithm often has difficulty choosing a set of spheres that
contains the maximum number of spheres and so it chooses the largest set of spheres
that contains less than the maximum allowable number of spheres.

The new merge algorithm shows significant improvements over the original al-
gorithm. For complex models, such as the Bunny, the 3% level spheres produced
by the new merge algorithm exhibit about % the error of those constructed with
the best existing algorithm. In fact, the worst case for the new algorithm’s level 2
spheres is roughly the same as that of Hubbard’s level 3 spheres (see Figure 17(b)).

Thus the new algorithm produces the same tightness of fit using around %th the
number of spheres. For the simpler shapes evaluated, the new algorithm’s level
2 spheres are significantly tighter than Hubbard’s level 3 spheres. The burst and
expand algorithms also show improvements over the existing algorithm. The burst
algorithm seems to behave best at the higher levels of the sphere-tree where the
spheres tend to span the object and are centered near the medial axis. This results
in lower errors than with spheres that are located near the surface of the object as
these spheres tend to hang over the surface quite far. A combined algorithm is also
included in the graphs. In this algorithm, both the merge and expand algorithms
are used for sphere fitting. For each node of the hierarchy, a set of spheres is gen-
erated using each of the algorithms and the one with the best fit is chosen for the
sphere-tree. The motivation for including this algorithm is simple. As the expand
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Bunny | Dragon | Lamp
Hubbard 69 1629 1454
Merge 473 595 428
Burst 2083 2000 456
Expand 284 342 1474
Combined 2131 1353 894

Table I.  Sphere-tree construction times (in seconds).

algorithm keeps the spheres in their original position, on the approximated medial
axis, there are a number of situations where the resulting set of spheres may be
fairly poor. For example, when creating a small set of spheres to cover a tube, a
good arrangement of spheres would have them centered in the hollow part of the
tube. The expand algorithm would center the spheres in the walls of the tube and
so result in a very poor approximation. The merge algorithm is a lot more general
purpose, and can be used when the expand algorithm fails to produce a good set
of spheres.

The times taken to construct the sphere-trees can be seen in Table 1. When
Hubbard’s algorithm is used with a small set of medial spheres, the time taken is
very small, e.g. for the Bunny. However, for larger sets the algorithm can take 30
minutes to construct the sphere-tree. The overall processing times of our algorithms
are comparable to that of Hubbard’s algorithm while providing tighter fitting ap-
proximations. The burst algorithm is often the slowest of our new algorithms as it
has a lot of house-keeping information to maintain.

6.4 Simulation

To further evaluate the sphere-tree generation algorithms, the behavior of the
sphere-trees during simulation was also tested. During these simulations, objects
were positioned and oriented randomly about a sphere and were given a random
velocity towards its center. The motions of the objects and their response to col-
lisions were computed using a commercial dynamics system that uses an “exact”
collision detection algorithm and a complex-friction dynamics model.

At each time-step, the colliding pairs were created by testing their bounding
spheres. The sphere-trees for these objects were then traversed as they would be
in the interruptible collision detection algorithm. The sphere-tree traversals were
interrupted at regular intervals and the approximate collisions evaluated. The er-
ror associated with each pair of colliding spheres is computed as the sum of the
spheres’ errors. As the error associated with a sphere is the largest distance from
the surface of the sphere to the surface of the object (Hausdorff distance) this pro-
vides an upper-bound for the true separation between the objects. Each of the
new algorithms are compared to a reference sphere-tree, i.e. that constructed with
Hubbard’s algorithm. For each interruption time, the average improvement is com-
puted. This is expressed as the fraction of the reference tree’s error that is present

for the new sphere-trees. For example, for each frame (at a given interruption inter-

Erroryperge

val), the merge sphere-tree is evaluated by computing . These values

TTOTReference

6These times were measured on a 2.0GHz Pentium IV, with 512MB RAM running Windows XP.
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are then averaged over the frames of 5 simulations, using a new random position
(and orientation) for each object for each run.

Figures 20 - 22 present results for simulations containing 20 objects. The hori-
zontal axis of each of the graphs shows the interruption interval, expressed in terms
of the number of primitive operations performed, i.e. sphere updates and overlap
tests. The amount of work done before interruption is computed using Equation 1,
where the values of C,, and C,, are 2 and 1 respectively. These values represent
the relative number of floating point operations performed in updating a sphere’s
position (21 floating point operations) and in testing two spheres for overlap (10
floating point operations). The first graph (a) in each set shows the fraction of the
worst error present in the approximations and the second (b) shows the relative
number of colliding pairs produced by the different algorithms.

Each of the new sphere-reduction algorithms show a definite reduction in error.
For complex models, such as the Bunny, the combined algorithm quickly falls to as
little as 50% of the error resulting from the existing algorithm (see Figure 20(a)).
For the simpler shapes, this value has been as low as 20%. The algorithms also
show significant reductions in the numbers of pairs of colliding spheres that result
from the traversal. This represents a reduction in the amount of work that will
need to be done by the later stages of the collision handling system, i.e. contact
modelling and collision response. For the models shown, the number of resulting
collisions has decreased to as little as 20% as the tighter fitting sphere-trees produce
less false positives in the collision detection.

6.5 Interruptible vs. Exact Collision Detection

As stated in Section 1, interruptible collision detection algorithms allow us to per-
form collision detection in a time-critical fashion. This limits the time that can
be spent performing the collision handling so that the desired frame-rate can be
maintained.

Normally in an interactive simulation the interruptible algorithm will be given
a time-slice that maintains the desired frame rate. The algorithm approximates
the collisions as well as it can within the allowed time. The interruptible algo-
rithm, implemented as part of our real-time collision handling framework, has been
compared to two existing algorithms, namely RAPID[Gottschalk et al. 1996] and
SOLID[van den Bergen 1997]. Both these packages provide narrow-phase process-
ing based on bounding volume hierarchies, RAPID uses OBB-trees whereas SOLID
uses AABB-trees.

Figure 23 shows the amount of time each algorithm spent performing collision
detection between a large number of bodies. As with the previous graphs, the sim-
ulation was controlled by a commercial dynamics package. The simulation started
out with 200 bodies positioned randomly above the open end of a cone. As the
simulation progressed the bodies fell, under gravity, and piled up in the bottom of
the cone, which caused the number of interactions to grow dramatically.

The graphs show the time taken to perform narrow phase collision detection using
RAPID, SOLID and our interruptible algorithm. The time-slice for our interrupt-
ible algorithm was limited to 0.1, 0.05 and 0.025 seconds, labelled 10 fps, 20 fps and
40 fps respectively.

As the interruptible algorithm uses time critical processing it spends no longer
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Fig. 23. Algorithm comparisons.

than the allotted time doing the collision detection. As the number of collisions
increases the time increases until it reaches the desired maximum. The traditional
algorithms are not able to stop during their processing and therefore the time
continues to increase. This results in the collision detection taking an increasing
amount of time, which will adversely effect the frame-rate of the simulation. For
example, from Figure 23(a) it can be seen that RAPID required almost 0.15 seconds
to perform collision detection for frame 1000 which means that it would be impos-
sible to have a frame rate higher than about 7fps in any simulation that contains
such a large number number of interactions between the bodies. Obviously, RAPID
and SOLID return the exact points of contact whereas only approximate data will
be returned by the interruptible algorithm. However, an approximate response may
be computed from this data, thus allowing for graceful degradation of the collision
handling [Dingliana and O’Sullivan 2000].

7. SPHERE-TREE CONSTRUCTION FOR REAL-TIME ANIMATION

The sphere-tree construction algorithms presented in this paper can be configured
to construct sphere-trees with different attributes. As our aim is to approximate
objects for performing collision handling within real-time interactive animations,
our goal has been to approximate the object as tightly as possible at each level of
the sphere-tree. This optimizes the approximation to allow interruption to occur at
any stage of the processing. If the simulations were to contain only a few complex
objects, interruption would generally occur quite far down the tree and it may be
advantageous to loosen the fit at the top levels if it improved the fit lower down.

It is quite difficult to decide how many branches and levels there should be in the
sphere-tree. We have found that for most objects, a branching factor between 6 and
10 is sufficient to sub-divide the object and maintain a tight fit. If the branching
factor is too big then the trees are very bushy and produce a lot of work for the
traversal algorithms. If, however, the branching factor is too small the object may
not be approximated well. For example, it is very difficult to approximate a cube
using 5 spheres. Medial based algorithms typically approximate a cube well using
a set of 9 spheres with a large one in the center and 8 smaller ones at the corners.
For all the examples in this paper we have used a branching factor of 8.

One of the major difficulties with using the medial axis for sphere-tree construc-
tion is determining how many spheres to use in the medial axis approximation.
If too many spheres are used the sphere-tree construction will take a long time.
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However, if too few are used the approximation might be very poor. The adaptive
algorithm tackles this problem by dynamically increasing the number of spheres to
keep the approximation tight. Through our experiments we have found that an
initial approximation containing 500 — 1000 spheres is sufficient for generating the
top level of spheres, and that using more spheres does not significantly affect the
results.

We have explored many different algorithms for constructing the sphere-tree from
the medial axis approximation. We have found that using a combination of two
different algorithms generally gives the best results. The expand algorithm, detailed
in Section 5.3, generally produces very tight fitting approximations. There are
situations, however, where the underlying geometry can cause problems and so we
fall back to using the merge algorithm, detailed in Section 5.1. This algorithm
is more general purpose and can produce a better fit when the expand algorithm
encounters difficulties.

Prior to the creation of each set of spheres within the sphere-tree, we must update
the medial axis approximation to ensure that it is sufficiently detailed to lead to a
tight fitting sphere-tree. when constructing a set of spheres within the sphere-tree,
the medial axis is updated to contain a desired number of spheres. We have found
that 100 to 200 spheres is usually sufficient for this task. We also include a criterion
that the sub-section of the medial axis should fit the object with % to i the error
that was present in the previous level of the sphere-tree. This allows us to ensure
that the worst sphere in the medial axis has a fraction of the error of the parent
sphere so that the children sphere will form a tighter approximation than their
parent.

8. CONCLUSIONS & FUTURE WORK

This paper has presented some novel work in the areas of medial axis approximation
and sphere-tree construction. The adaptive medial axis approximation algorithm
addresses a number of problems that existed with previous algorithms. The al-
gorithm guarantees to produce approximations that cover the object completely,
i.e. do not contain gaps, without adversely affecting the fit to the original object.
This results in sphere-trees that always represent a complete approximation of the
object.

The adaptive nature of the medial axis approximation algorithm allows the ap-
proximation to be refined during the sphere-tree construction process. Combining
this with our improved sphere generation algorithms, which generate sub-sections
of the sphere-tree from the medial axis approximation, provides significant improve-
ments in the resulting sphere-trees. The new sphere-trees typically exhibit about
% the error of those generated with the best existing algorithm. This represents
almost an order of magnitude decrease in the number of spheres required to approx-
imate an object to a desired level. The tighter fitting sphere-trees have been proven
to provide a significant reduction in the number of false positives generated by the
collision detection algorithm and reduce the errors present in the approximated
collisions.

There are a number of interesting areas of research that can build upon this
work. A number of the algorithms presented may be applicable to areas other than
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collision detection. The adaptive sampling algorithm, combined with the expand
algorithm, provides a method for approximating rigid objects with very low vari-
ances. It is often very desirable to be able to approximate objects with a high level
of consistency. It would also be interesting to explore a combined collision detection
strategy that uses different representations for different classes of objects, allowing
static objects, such as buildings, to be modelled more efficiently. Another area of
interest would be to use the same sphere-trees for collision handling and rendering,
using an algorithm such as that presented by Rusinkiewicz and Levoy[2000; 2001].
Many researchers have used bounding volume hierarchies, ranging in complexity, as
a means of performing efficient collision detection. Swept sphere volumes, used by
Larsen et al. [1999], provide a number of different types of bounding volume, which
can be chosen to best approximate individual regions of the objects. However, all
their primitives are based on spheres. Using a wider range of bounding volumes
could provide a more efficient means of approximating the objects.
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Fig. 24. Sample approximations for levels 2 & 3 of the test models.
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Fig. 25. Yet More Example Approximations
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