
also in Case-Based Reasoning Research and Development, Lecture Notes in
Artificial Intelligence, M. Veloso & A. Aamodt (eds), pp401-410, Springer Verlag,
1995.

On the use of CBR in optimisation problems such
as the TSP

Pádraig Cunningham *, Barry Smyth **, Neil Hurley **

**Department of Computer Science, Trinity College Dublin, Ireland

**Hitachi Dublin Laboratory, Trinity College Dublin, Ireland

Abstract. The particular strength of CBR is normally considered to be its use in
weak theory domains where solution quality is compiled into cases and is
reusable. In this paper we explore an alternative use of CBR in optimisation
problems where cases represent highly optimised structures in a huge highly
constrained solution space. Our analysis focuses on the Travelling Salesman
Problem where difficulty arises from the computational complexity of the
problem rather than any difficulty associated with the domain theory. We find
that CBR is good for producing medium quality solutions in very quick time. We
have difficulty getting CBR to produce high quality solutions because solution
quality seems to be lost in the adaptation process. We also argue that experiments
with CBR on transparent problems such as the TSP tell us a lot about aspects of
CBR such as; the quality of CBR solutions, the coverage that cases in the case-
base offer and the utility of extending a case-base.

1 Introduction

Normally in CBR cases represent high quality solutions in weak theory domains.
CBR is useful in situations where analytical models of interactions in the problem are
difficult to determine and cases represent compiled quality solutions that are adaptable.
It is a basic tenet of CBR that this solution quality should survive the adaptation
process.* This paper examines solution reuse in a very different context; we explore
case reuse in optimisation problems where cases can represent highly optimised
structures in a large highly constrained search space.

There has already been some CBR research on scheduling, a particularly important
category of optimisation problem. Two distinct approaches to case-based scheduling
can be identified from the literature. The first one is used in Koton's SMARTplan
(1989). Cases are used to propose preliminary schedules which are then adapted
(refined and repaired) to satisfy the target schedule requirements. The second approach
does not uses cases to propose schedules, but instead to adapt schedules proposed by
other methods (for example, Sycara & Miyashita, 1994).  In other words cases can
encode actual schedules (the first approach) or they can encode repair procedures (the
second approach). In this research we are interested in the first approach where the
cases represent actual optimised structures in the problem domain.

So far we have looked at graph traversal problems (shortest path) and Travelling
Salesman Problems (TSP). These are not weak theory domains because these

* Typical examples of this are; CAPLAN/CBC as described in (Muñoz, Paulokat &
Wess; 1994) or Déjà Vu (Smyth & Cunningham, 1992)



problems are easy to model and the way in which solution components contribute to
good quality solutions is easily understood. The problems are difficult because they
involve a search through a huge highly constrained solution space. The fact that in
optimisation problems solution components may be reusable in other situations
suggest that CBR may be applicable. The transparency of these problems compared to
problems in weak theory domains means that an analysis of the application of CBR
in these areas can tell us a lot about CBR itself. In particular, it can tell us something
about the quality of CBR solutions, the coverage that cases in the case-base offer and
the utility of extending a case-base.

In this paper we focus on the use of CBR on Travelling Salesman Problems. Our
findings have been mixed. Our CBR solution has been excellent from the point of
view of speed but the solution quality has not been great. The CBR system produces
good but not excellent solutions very quickly. In the next section we present a
description of our CBR solution for the TSP. The cases are produced using Simulated
Annealing (SA) and the performance of CBR system is compared with SA. The SA
algorithm we use is described in an Appendix at the end of the paper. In section 3 we
present a statistical analysis of case coverage. The performance of the CBR system is
analysed in detail in section 4. The paper concludes with a summary of our findings
and an indication of some future directions for research.

2 A Model for CBR in TSP

The basic idea behind a CBR approach to a problem like TSP is to shift problem
complexity from the time domain into the space domain; that is, by storing cases we
expect to find significant improvements in problem solving time. There is the worry
however that the combinatorics of TSP will force the need for prohibitively large
case-bases, in order to achieve significant performance improvements, thereby
rendering a CBR solution infeasible in all but the simplest of TSP domains. We will
defer discussion on the size problem to section 3 and describe our model of case reuse
here.

The TSP problem involves sequencing a set of objects in order to minimise a cost
function. There are many manifestations of this problem; for instance the problem of
scheduling N jobs on a single machine where job set-up time is sequence dependent is
a TSP (Cunningham & Browne, 1986). This is an example of a non Euclidean TSP
in that solutions cannot be graphed in 2-dimensional space. This scheduling problem
is also asymmetric in that the 'distance' from A to B is probably not equal to the
'distance' from B to A. The context of this scheduling problem motivates a case based
solution. Typically schedules will be produced on a weekly or monthly basis and the
set of jobs to be scheduled may be similar to a set scheduled in the past. The CBR
solution described here is valid for non-Euclidean asymmetric TSPs even though the
examples presented in the paper are shown as graphs.

In Figure 1 we show a 'world' of 100 cities, an optimised tour of 40 cities and a target
problem of 40 cities. There is an overlap of 19 cities between the base and the target.
In T-CBR the size and distribution of this overlap is the measure of similarity used in
case retrieval. The first step in the adaptation process is to produce a skeleton tour
from the overlap of the base and target; this is shown in the Figure. The first CBR
solution is produced by adding the remaining cities on the target to this tour.



The algorithm for this is as follows:-

function Add-cities(tour, rem-cities)
{

if rem-cities {

best-city ← Select-best-city(tour, rem-cities)

rem-cities ← Remove-city(best-city, rem-cities)

tour ← Insert-city(tour, best-city)
Add-cities(tour, rem-cities)

}
}

The Select-best-city function takes each remaining city in turn and finds the point
on the tour where it can be inserted with the minimum cost. The best city is the one
that can be inserted in the tour with least cost. This first CBR solution is shown in
Figure 2.

Target City

Base City

Base Tour

Skeleton 
Tour

Fig. 1. A 'world' of 100 cities, a target problem of 40 cities and a base with 19 cities in
common with the target.

This T-CBR solution is 365 units in length. The SA algorithm produced a solution
of 338 units. This T-CBR solution is 8% longer than the SA solution. This
adaptation mechanism is inspired by the geometric techniques for solving TSPs used
by Norback and Love (1976). However it will work for non geometric or non
symmetric problems. T-CBR goes on to improve this initial solution by examining
each pair of cities in turn and testing to see if reversing the section of path between
these two points produces an improved solution. We call this gradient descent
'Freezing' by analogy with what happens in Simulated Annealing.



Target City

Base City

Base Tour

Skeleton 
Tour

Target Tour

Fig. 2. The first CBR solution for the target shown in Figure 1.

3 An Analysis of Case Coverage

The size of the case-base depends on a number of quantities: n, the number of cities; r
the tour lengths of cases and target problems; and k the desired overlap between a
target problem and a retrieved case. That is:-

For a domain of n cities and a tour size of r, how many cases are required to ensure
the presence of at least one case that shares k or more cities with the target?

First of all the total number of possible tours of size r in this domain (of n cities) is
given by equation 1.

(1 ) Total tours =  
n

r






The total number of tours that share exactly k elements is shown in equation 2. The
first factor is the total number of ways of choosing k cities from tours of r cities, and,
given that k cities have now been fixed, the second factor is the total possible ways of
filling the remaining r-k tour positions.

(2 ) Total tours sharing k cities =  
r

k






•
n − k

r − k








The total number of tours that share k or more cities is thus given by equation 3.

(3 ) Total tours sharing k or more cities =  
r

i






i=k

r

∑ •
n − i

r − i






For a particular target specification of r cities, the probability of picking a random
tour that shares at least k cities with this target is shown in equation 4; this is termed
the probability of success and is denoted by S.

(4 ) S =  

r

i






i=k

r

∑ •
n − i

r − i






n

r






Now in a CBR scenario, a case-base of C  random cases means that we have
essentially C attempts to find a successful tour, a tour that overlaps by at least k
cities with the target. We would like the probability of failure (in other words the
probability of there not being a suitable case) to be less than some fraction ε . So if
(1-S)C is the probability of a finding no such case over C trials* then the relationship
between ε  and S is the simple one shown in equation 5.

(5 ) 1 -  S( )C  <  ε

So from this we can form the function in equation 6 that computes the case-base size
necessary to ensure that a suitable case is present for every target problem, all but
ε •100% of the time.

(6 ) C =  
log ε( )

log(1- S)

Figure 3 (A) & (B) illustrate how this function behaves for various values of n, r, and
k. In each graph, the error value, ε , is kept static at 0.05, and n is varied from 50 to
500 in increments of 50, a separate curve is drawn for each n value and marked with
that value. Both graphs plot the case-based size on the y axis, which is
logarithmically scaled.

Figure 3(A) plots case-base size against the tour length (that is the case and target
sizes). The desired overlap between target and case, k, is assumed to be 30% of the
tour length. As expected there are large variations in the size of the case-base as n and
r increase. It is interesting that for this 30% overlap restriction, the size of case-base
needed for a given n peaks when r is 12.5% of n and trails off rapidly as r increases
towards n. For example, for n = 500, the case-base size offering 30% overlap, peaks at
r = 40, where over 105 cases are needed to provide the desired problem coverage.
However, when the tour size is 100, less than 600 cases are needed.

* (1- S) is the probability of not selecting a successful tour in one attempt so (1-S)C

is the probability of failure after C consecutive attempts.



C
 (

C
as

e-
B

as
e 

S
iz

e)
0

105

0 1
0

20 3
0

40 5
0

K (Tour Overlap)

0

101

50

1
00

15
0

20
0

C
 (

C
as

e-
B

as
e 

Si
ze

)

R (Tour Size)

1010

1015

102

103

104

105

106
(B)(A)

50

1 00

15 0

200

250

3 00

400

35 0

5 00

450

5 0
10 0

15 0

20 0

250

300

350

400

4 50

5 00

Fig. 3. Variations in case-base size.

Figure 3(B) plots the case-base size against varying overlap. For each curve r is fixed
at 20% of n and the overlap, k, is varied from between 0 and r/2. So for example, the
curve corresponding to n = 500 corresponds to a system where the tour length (that is
the sizes of the cases and the target problems) is 100, and a varying overlap of
between 0 and 50 cities. Again, as expected the case-base size rises exponentially with
k. In a system where n is 500, r is 100, and k is 50 (that is 50% of the tour length), a
case-base of over 1014 cases is required. However, as was mentioned above, if an
overlap of 30 cities is acceptable for this system then less that 600 cases are needed.

A pessimistic interpretation of these results might suggest that CBR and TSP do not
mix well, owing to the enormous case-bases required to provide adequate coverage and
significant performance improvements. However this is not necessarily true in
general, and there exist a great many TSP problems which are amenable to a case-base
solution, at least in the sense that the case-base is of an acceptable size. In particular,
this is true if the route size, r, is greater than roughly 20% of n and k is less that
about 40% of r.

4 Evaluation

In order to evaluate the T-CBR process an artificial world of 500 cities was created and
a case-base with 600 tours of 100 cities each was constructed. Good solutions for
these tours were produced using the SA algorithm described in the Appendix. The
case-base size was chosen to offer good target-base overlap. In fact, on average, about
10 cases are found that overlap the target by 29 or more cities.

The evaluation that we describe here has two parts. In the first part the potential of T-
CBR to produce very quick medium quality solutions is considered. In this evaluation



it is compared with SA and a Myopic algorithm that selects a starting city at random
and chooses the nearest remaining city at each step. This is the standard quick solution
to the TSP. This evaluation is described in section 4.1. We then attempted to use T-
CBR to produce good quality solutions by seeding a Low Temperature version of the
SA algorithm with solution produced from the case-base. This is described in section
4.2.

4 . 1 Producing quick & nasty solutions

In this situation we are evaluating five alternatives;

• the full Simulated Annealing
• the initial T-CBR solution
• the initial Myopic solution
• the T-CBR with Freezing
• the Myopic with Freezing

One hundred target tours were generated at random and solutions were produced using
each of these algorithms. The average solution times and tour lengths are shown in
Figure 4. The SA solution was used as a base-line for comparing the alternatives. The
CBR+Freezing produces solutions that are within 6% of the SA solutions but in one
tenth of the time. The Myopic+Freezing is extremely fast but the solutions are over
11% longer than the baseline. So CBR scores well as a means of producing medium
quality solutions quickly.

L
en

g
th

0

100

200

300

400

500

600

S
A

CB
R

M
yo

pi
c

C
B

R
+ 

F
re

ez
e

M
yo

pi
c+

 
F

re
ez

e

123%

108% 111%106%100%

0

5

10

15

20

25

30
S

o
ln

. T
im

e
Time
Length

Fig. 4.  Costs and lengths associated with different algorithms

4 . 1 Producing good quality solutions

The obvious question arising from this evaluation is whether T-CBR can be improved
to produce high quality solutions. The strategy we came up with was to use the initial



CBR solution to seed a Low Temperature version of the Simulated Annealing
algorithm (LTSA). After experiments with different temperatures we settled on a
starting temperature of 1.0 for the LTSA. Temperatures much below this were akin to
Freezing the solution while values greater than 1.0 allowed the structure of the good
solution produced by T-CBR to deteriorate.

The experiment reported here describes tests over a range of target tour lengths from
40 to 160, with 20 tests being done at each length. This also illustrates the flexibility
of T-CBR where base cases can be adapted to targets of different lengths. The main
results of this experiment are shown in Figure 5. T-CBR+LTSA performs quite well
with solutions found on average 2.5 times faster than SA. These solutions are now
within 1-3% of the SA solutions. This would be great news for CBR except that we
discovered that Myopic+LTSA (Low temperature SA seeded with a Myopic solution)
produced solutions of similar quality. Myopic+LTSA is faster than T-CBR+LTSA
and does not need a case base. This suggests that the main contribution to the good
solution is the LTSA and not the CBR.

No. of Cities

L
en

g
th

0

100

200

300

400

500

600

700

40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

CBR
Myopic
SA

No. of Cities

T
im

e

0

10

20

30

40

50

60
40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

CBR

SA

Myopic

Fig. 5.  A comparison of the cost and quality of solutions from the three high quality
techniques.

5 Discussion

We have described a CBR solution to the TSP that provides good but not great
solutions in very quick time. This is not surprising because the effect of the CBR
solution is to shift the problem complexity from the time domain into the space
domain. Indeed we have pointed out that this CBR solution is not practicable for
many TSP problems because the required case-bases can be prohibitively large.

The more interesting issue raised in this paper is the fact that our CBR technique does
not manage to produce solutions of high quality. Some of the solution quality is lost
in the adaptation process. We have described a technique combining case retrieval and



Low Temperature Simulated Annealing that does produce very good solutions but we
have argued that this is more due to the power of the SA than the contribution of the
retrieved case.

It seems that the experience of research on Genetic Algorithms (GA) is informative in
this regard. What is happening in T-CBR is that the retrieved case represents a highly
optimised structure that is disrupted or broken in the adaptation process. GA research
emphasises the importance of building blocks in the GA process. These building
blocks are manipulated blindly in the process of reproduction and crossover to produce
compositions of building blocks that are highly optimal. It is recognised that it is
important for individual building blocks not to be broken in the crossover process
(Goldberg, 1989). In our adaptation process the solutions are manipulated naïvely and
building blocks representing optimal structure are broken. However, this is probably
inevitable where there is so little intersection between the base and target problems.
The base case provides a skeletal solution for the target problem but the detailed
optimal structure from the base case is not transferred into the target.

This analysis suggests that a change in approach to the reuse of base cases might be
fruitful. Instead of considering the base case as the source of a skeleton on which a
target tour can be built several base cases could be used to provide tour segments to
build into a good quality target solution. This alternative approach seems promising
but there are new problems associated with combining tour fragments taken from
different cases.

Conclusions

CBR can be used to produce medium quality solutions to optimisation problems. In
the approach described here the base case provides a skeletal solution on which a
solution for the target problem can be built. Efforts to use CBR to produce high
quality solutions for optimisation problems need to focus on ensuring that solution
building blocks survive the optimisation process. This might be achieved by using
several cases to contribute to the target solution.

We have argued that the naïve manipulation of the solutions in the adaptation process
results in the target solutions being of lower quality than the solution in the base
case. This is evident in T-CBR because of the transparency of the problem domain. It
is interesting to speculate on how prevalent this is in other CBR applications in
domains that are not so transparent.

References

Cunningham P., Browne J., (1986)  A LISP-based heuristic scheduler for automatic
insertion in electronics assembly, International Journal of Production Research,
Vol.24, No.6, pp1395-1408.

Goldberg D.E., (1989)  Genetic Algorithms in Search Optimization & Machine
Learning, Addison Wesley, Reading Massachusetts.

Kirkpatrick S., Gelatt C.D., Vecchi M.P.,  (1983)  Optimization by Simulated
Annealing, Science, Vol. 220, No. 4597, pp671-680.



Koton, P. (1989) SMARTplan: A Case-Based Resource Allocation and Scheduling
System. Proceedings of the Case-Based Reasoning Workshop, pp 285-289, Florida,
USA.

Muñoz H., Paulokat J., Wess S.,  (1994)  Controlling Nonlinear Hierarchical
Planning by Case Replay,  in working papers of the Second European Workshop on
Case-based Reasoning, pp195-203, Chantilly, France.

Norback J., Love R., (1977)  Geometric Approaches to Solving the Travelling
Salesman Problem, Management Science, July 1977, pp1208-1223.

Smyth B., Cunningham P., (1992)  Déjà Vu: A Hierarchical Case-Based Reasoning
System for Software Design, in Proceedings of European Conference on Artificial
Intelligence, ed. Bernd Neumann, John Wiley, pp587-589.

Sycara, K. & Miyashita, K. (1994) Case-Based Acquisition of User Preferences for
Solution Improvement in Ill-Structured Domains. Proceedings of the 12th National
Conference on Artificial Intelligence, pp. 44-49. Seattle, USA.

Appendix A: The Simulated Annealing Algorithm for the TSP

The Simulated Annealing Algorithm is a modification of a basic gradient descent
search based on some ideas from statistical mechanics (Kirkpatrick, Vecchi & Gelatt,
1983). A notion of temperature is introduced into the process and the system is
gradually cooled to freeze at a near optimal solution. The key modification to standard
gradient descent is the possibility that some dis-improvements in solution are
accepted. The probability of this is greater at higher temperatures (see Step 3 below).
This allows the gross features of the solution to be determined at high temperatures
while details are worked out at low temperatures. The details of our implementation
are as follows:-

1. Set temp ←  NCITY • longest − dist

10
nsucc ←  10•NCITY
ntries ←  100•NCITY

Generate a pseudorandom feasible solution T.

2. Generate a new feasible solution T' by reversing a section of T.
nt ← nt + 1.

3. ∆E ←  Efinal  - Einitial      (where E is the cost of the solution)

If ∆E  ≤  0   accept the move;

If ∆E  >  0   accept the move with prob. P(∆E ) = e
-∆E/T

ns ← ns + 1.

4. Repeat from 2 while  nt < ntries and ns < nsucc

5. When nt reaches ntries or ns reaches nsucc drop temperature
(i.e. temp ← temp •0.9), set ns & nt to 0 and start a new loop from 2.

Terminate on the first pass that produces no successes.


