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ABSTRACT

Failure in materials under cyclic loading occurs by the growth and propagation of
cracks. If they are sufficiently numerous, the cracks can be considered to be
continuously distributed in the material. In this paper, a mathematical model is
proposed to predict failure in materials with defects in the form of randomly
distributed pores. The model includes anisotropic damage accumulation, the effects
of crack closure and the coupling of elasticity with damage. Defects are modelled as
pre-existing isotropic damage. A numerical implementation of the model is used to
predict failure in specimens with both high and low defect densities, under a cyclical
load. Comparison of the predicted failure time with the experimental values shows
that the approach captures the variability found in the failure of the specimens.
Therefore the model provides a computational scheme that can be used to predict the
variability in the failure of load-bearing structures operating under cyclical loads.

1. Introduction

Prediction of structural failure is one of the central problems in the mechanics of

solid materials. The first work on failure prediction for materials that undergo plastic
deformation before failure was reported by Huber and others at the turn of the

nineteenth century [27], but it was not until Wöhler [29] that a model was proposed

for how materials would fail in response to cyclically varying loads. He reported

diagrams of stress (S) versus number of cycles to failure (N), and now S�/N (Wöhler)

curves are the most usual approach for predicting failure in engineering applications.

However, Wöhler’s approach was empirical and did not involve a mathematical

model of damage evolution in the material. In a component subjected to a cyclical

load, cracks grow from various internal flaws until one crack becomes dominant.
This dominant crack becomes critical in the sense that, when it reaches a particular

length, it becomes unstable and propagates rapidly. Griffith [8] proposed that the

stress intensity in front of a crack could be compared with the fracture toughness to

determine whether or not the crack is critical. Later, Paris and Erdogan [21]

presented a fatigue crack growth equation relating the rate of crack growth to the

stress intensity ahead of a crack tip.

There are many instances, however, where the failure of a component is not

governed by the growth of a single crack; rather, many microcracks grow
simultaneously and coalesce. In particular, the high strength materials used for
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nuclear power stations are designed to be damage-tolerant and therefore to

accumulate damage before failure. In the analysis of these failures, Kachanov [9]

introduced the concept of damage continuously distributed throughout the solid and
proposed a damage variable as an internal state variable describing the state of

degradation of the material. The continuum damage, D; may be considered as the

local loss of cross-sectional area, giving an effective stress, s̃; as

s̃�
s

1 � D
(1:1)

where failure occurs at D�/1. Lemaitre and Chaboche [13] describe how vector and

tensorial representations of damage may be developed and show damage evolution

equations for components under cyclical loading.

An issue yet to be fully addressed in problems relating to failure of mechanical

engineering components under cyclical loading is that real failures occur with

significant variation. Even for components where the stress state is well controlled

(such as samples used for materials testing) the stress vs cycles-to-failure data is

usually very scattered. This is because the process of damage accumulation is
stochastic in nature. In this paper we use continuum damage mechanics to develop a

computational methodology for prediction of degradation of materials under cyclical

loading. The approach is tested against experimental data obtained for fatigue tests

of polymethylmethacrylate (Perspex) [18], which has been shown to be prone to

fatigue damage accumulation from pores [15; 19].

2. Methods

2.1. Coupling of elastic properties with damage

An assumption of elastic strain energy equivalence [7; 25] was used to account for loss

of material stiffness in planes with damage. This approach defines an effective stress

tensor, s̃; and effective strain tensor ẽ; such that the strain energy of the damaged

material is equivalent to the strain energy of the undamaged material:

1

2
s : e�

1

2
s̃ : ẽ; (2:1)

where

s� Ẽ : e and s̃�E : ẽ; (2:2)

and s , e , E , and Ẽ are the Cauchy stress tensor, small strain tensor, elastic stiffness
tensor and effective elastic stiffness tensor, respectively. If a fourth-order damage

effect tensor, M , is assumed to transfer the stress tensor to its effective counterpart as

s̃�M :s; (2:3)

then suitable manipulation yields [25]

Ẽ�M�1 : E : M�T : (2:4)
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In general, s̃ need not be symmetric according to (2.3)*/to avoid the added

complexity of polar media, M can be chosen so as to maintain symmetry for the

effective stress. Several symmetry preserving transformations have been proposed
based on the values of a second-rank damage tensor, d [28]. This allows a relatively

simple and physically intuitive method of representing anisotropic damage. In the

current model the damage effect tensor is assumed to take the following form [28]:

Mijkl �(dik�dik)�1=2(djl �djl)
�1=2; (2:5)

where dij is the Kronecker delta. This expression takes its simplest form in a

coordinate system aligned with the principal damage directions. However, the

anisotropy induced by damage requires that equation (2.4) most often be evaluated

in a reference coordinate system. Assuming the undamaged material is isotropic, the

matrix form of (2.4) can be expressed in the principal damage coordinate system as

[Ẽ]�
Q1 0

0 Q2

� �
; (2:6)

where

[Q1]�
(1�d11)

2
E11 (1�d11)(1�d22)E12 (1�d11)(1�d33)E12

(1�d11)(1�d22)E12 (1�d22)
2
E11 (1�d22)(1�d33)E12

(1�d11)(1�d33)E12 (1�d22)(1�d33)E12 (1�d33)
2
E11

0
@

1
A;

[Q2]�
(1�d11)(1�d23)E44 0 0

0 (1�d22)(1�d33)E44 0
0 0 (1�d33)(1�d11)E44

0
@

1
A

and

E11�
E(1 � n)

(1 � n)(1 � 2n)
; E12�

En

(1 � n)(1 � 2n)
; E44�

E

2(1 � n)
;

where E and n represent Young’s modulus and Poisson’s ratio, respectively.

For planar microcracks, it is possible that cracks may close under compressive

loading. This should cause the material to regain stiffness normal to the cracked

plane. Several approaches have been proposed to account for this effect, e.g. [12; 16;

24]. However, these models have been shown to exhibit either discontinuities in stress

response on closure or loss of symmetry in the stiffness tensor [4]. A spectral

decomposition of the stiffness tensor using the principal planes of the damage tensor

has been shown to avoid these problems [5] and has formed the approach taken in
this study. Firstly, a fourth-order projection tensor, Pd

i (superscript di implies the ith

principal damage component), can be constructed from the ith normalised principal

damage vector, ê di ; as

Pdi � ê di � ê di � ê di � ê di : (2:7)

The strain normal to this plane, ed
i , can be decomposed from the total strain tensor

according to
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edi �Pdi : e: (2:8)

In writing the matrix form of (2.8) the strain tensor is written in the form of

engineering strains, i.e. fggT �fe11; e22; e33; 2e12; 2e23; 2e31g; which gives the following

form for the projection matrix:

fgdig�[Pdi ]fgg; (2:9)

where {gd
i } is the projection of engineering strain for the ith principal damage

direction and

[Pdi ]�

a4 a2b2 a2c2 a3b a2bc a3c

a2b2 b4 b2c2 ab3 b3c ab2c

a2c2 b2c2 c4 abc2 bc3 ac3

2a3b 2ab3 2abc2 2a2b2 2ab2c 2a2bc

2a2bc 2b3c 2bc3 2ab2c 2b2c2 2abc2

2a3c 2ab2c 2ac3 2a2bc 2abc2 2a2c2

0
BBBBBB@

1
CCCCCCA
; (2:10)

where {a, b, c} are the coefficients of ê di :
The model proposed in [5] takes the form

Ẽ�Ẽ�
X3

i�1

H(�Tr(Pdi : e))Pdi : (E�Ẽ) : Pdi ; (2:11)

where Tr() is the trace operator and H() is the Heaviside function (equal to zero for
positive normal strain and one for negative strain). The effect of this transformation

can be understood by consideration of the simplest case of a principal damage

direction that is coaxial with one of the global reference axes. For example, consider

the case ê d1 �/{1,0,0}. Evaluation of (2.10) leaves only the a4 term, and substitution

into (2.9) gives

fgd1gT �fe11; 0; 0; 0; 0; 0g: (2:12)

Thus, it can be seen that the trace of the above projected strain is the strain normal to

a crack. Substituting d11�/1 into (2.6) gives the matrix form of

[E]�[Ẽ]�

E11 E12 E12 0 0 0

E12 0 0 0 0 0

E12 0 0 0 0 0

0 0 0 E44 0 0

0 0 0 0 0 0

0 0 0 0 0 E44

0
BBBBBB@

1
CCCCCCA
: (2:13)

The matrix form of the projection contained in (2.11) is thus

[Pd1 ]T ([E]�[Ẽ])[Pd1 ]�

E11 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0
BBBBBB@

1
CCCCCCA
: (2:14)
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This simple case illustrates that the effect of the projection operation is to restore

only the stiffness normal to the crack plane when closure occurs.

2.2. Damage growth

Many materials have been observed to sustain microcrack damage perpendicular to

tensile principal stress*/this behaviour will be the subject of the current model.

Dependence on tensile principal stresses requires the use of a coordinate system

defined by the principal stress directions. After rotation of the damage tensor to a

coordinate system aligned with the principal stress vectors, the damage growth rate in

the plane normal to each principal stress direction conformed to an empirically

derived damage evolution equation,

@dii

@n
�ai

nai�1

N
ai

Fi

: (2:15)

where NFi
is the number of cycles required to cause failure at the applied maximum

principal stress, sM
ii , n is the number of applied loading cycles and ai�f (sM

ii ) is a

stress dependent exponent [17]. Nonlinear accumulation results from the stress

dependence of the exponent for arbitrary loading sequences (e.g. high stress followed

by low stress) [3]; this requires special treatment when adding damages for arbitrary

load sequences. Each damage component normal to a tensile principal stress was

calculated from

dii�
�

n
eq
i � Dn

NFi

�ai

; (2:16)

where neq
i is the number of cycles required to achieve an equivalent damage on

the damage curve for the current stress (see Fig. 1) and Dn is the applied cycle
increment. The definition of a (s) used here is:

a(s)�
s� b

g
; s�b�g; and (2:17a)

a(s)�1; 0Bs5b�g: (2:17b)

Note that the second of these expressions prevents the unphysical phenomena of very

rapid damage growth at low stresses (see Fig. 2) and instantaneous rupture at a�/b

(i.e. if only (2.17a) were used).
For the general case of continuously changing principal stress directions, the

rotation of principal stresses must be taken into account when applying the damage

growth equation. Skrzypek [25] proposed the following form for an objective damage

rate tensor, d
9

:

d
9
�

@d

@n
�dT �S�ST �d; (2:18)

where @d
@n

is the damage rate tensor of (2.15) and S is a skew symmetric spin tensor due

to rotation of principal stress directions.
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FIG. 1*/Definition of equivalent number of cycles used in equation (2.16), i.e. moving from point A on the

initial curve to a point of equivalent damage, B, on the second curve and defining the equivalent elapsed

number of cycles to cause this damage. Point C corresponds to failure of the specimen. This also illustrates

the nonlinear load-sequence effect of the damage rule, i.e. life fractions do not sum to unity, as would be

the case for the well known Palmgren�/Miner cumulative damage rule.
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FIG. 2*/Nonlinear damage curves for three stress ranges. Note the very rapid rise in damage for sB/b�/g .

Furthermore, substitution of s�/b into (2.17a ) would result in an instantaneous rupture, i.e. dii�1:
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2.3. Porosity

The material reported in the experiments of Murphy and Prendergast [18; 19] fails

from cracks originating from pores formed on polymerisation. This type of damage
accumulation has also been observed when the material forms a layer in a more

complex structure made of several other materials [15]. These random defects were

introduced into the model, and the interaction between porosity and damage

accumulation was achieved through coupling porosity with elastic properties. Pores

were modelled as isotropic damage tensors with the capability of crack closure

removed. Equation (2.5) was then used to calculate a pore effect tensor, Mp,

replacing dii with pii , and (2.4) was used to calculate the stiffness loss due to porosity.

The effective stress was calculated by first evaluating the effective strain and then
substituting into (2.2), i.e.

ẽ�M�T
p : e and s̃�E : ẽ: (2:19)

The principal values of this stress tensor were then used in the calculation of damage

accumulation according to equations (2.16) and (2.17).

2.4. Numerical solution

A finite element code was written to carry out the simulations of damage

accumulation [14]. The cycle increment was estimated by finding the next integration

point in the finite element mesh that would reach a critical principal damage value.

Damage was assumed to remain uncoupled from elastic properties in a given

direction until complete failure was predicted for that direction, at which time

coupling was introduced according to Section 2.1. First, damage had to be rotated

from a global reference coordinate system to a coordinate system defined by the

principal stress axes. An equivalent number of elapsed cycles was then calculated
for each principal stress direction, and the damage growth equation (2.16) was used

with a trial cycle increment, Dn: To account for possible rotation of the damage

tensor, the principal damage directions were checked for every trial cycle increment

to see if any additional cracks had been initiated. A bisection algorithm was

then applied to find the cycle increment required to cause at least one new crack in

the integration point. The minimum cycle increment for the mesh was then

chosen as the global cycle increment; damage accumulation of all points was then

calculated.
A random number generator was used to generate a distribution of pores within

the material. Two parameters were used to control the type of porosity generated:

mean specimen porosity (% volume) and pore radii. First, a distribution was

generated to determine whether a particular integration point contained a pore by

specifying a tolerance about the mean value of the distribution*/points with values

inside the tolerance were deemed to contain a pore. A second distribution was used

to assign pore radii to the points, and these values were used to calculate individual

pore volumes. To decrease the dependence on a particular mesh discretisation,
pores with volumes larger than the volume attributable to a given integration point

of the finite element model were allowed to populate regions occupied by neigh-

bouring integration points. On completing a pass through the mesh, the total
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specimen porosity was checked. If the value lay within two standard deviations of the

desired mean, the pore distribution was accepted; otherwise the tolerance was

adapted to accept either more or less pores and iteration continued until an
acceptable distribution was achieved. Porosity tensors were then generated for

integration points by setting the normal (diagonal) components equal to the

volumetric fraction of a pore for each point:

pii�
vp

vip

(2:20)

where vp is the pore volume and vip is the integration point volume; other components
were set to zero.

2.5. Application of the modelling scheme to fatigue of an acrylic polymer

Acrylic bone cement is a self-curing acrylic resin, chemically similar to Perspex (i.e.

consists primarily of polymethylmethacrylate), and is prone to developing widely

differing porosity distributions depending on preparation technique. Failure data

for two preparation techniques were available [18]: (i) high-porosity, due to

entrapment of air during mixing, and (ii) low-porosity, due to evacuation of air
during mixing. The relationship between stress and number of cycles to failure for the

pore-free cement was

s��6:04log10 NF �53:46: (2:21)

A Young’s modulus of 2.8GPa and Poisson’s ratio of 0.33 were used. A uniform

tension was applied to one face of the specimen to give the required nominal stress in

the central section of a pore-free specimen. Nodal displacements on the opposite face

were set to zero in the direction of the load; nodes defining the central axes of the
restrained face were also fixed in the other two orthogonal directions to prevent rigid

body motions.

To replicate the experiments carried out in the laboratory, eight simulations

for each of four stress levels (25MPa, 21MPa, 17.5MPa, and 13MPa) were performed

for both high defect density and low defect density cement. Each of the 64

simulations had a different pore distribution generated by the methods described

in Section 2.4.

The parameters used to generate the pore distributions were obtained by fitting
the mean and standard deviation of total volume fraction of porosity as well as

mean and standard deviation of pore radius at one stress level (21MPa). When

similar maximum and minimum failure lives were predicted from a set of eight

simulations the parameters were applied to the rest of the stress levels. One set of

specimens (high-porosity) were characterised by a large number of small pores,

whereas the other set of specimens (low-porosity) were characterised by a few pores

of relatively large radius (Fig. 3). The values used to achieve these distributions,

and the resulting average total specimen volume fraction of pores, are shown in
Tables 1 and 2.

Simulations of damage accumulation were carried out for all specimens for each

of the characteristic defect distributions shown in Fig. 3.
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3. Results

For high-porosity specimens, damage always initiated from pores, sometimes from

several sites simultaneously (Fig. 4a). However, low-porosity specimens sometimes

failed from the sites of nominal peak stress, predicted to be the point of tangency

FIG. 3*/Simulated porosity distributions of (a) high-porosity specimens and (b) low-porosity specimens

for the 13MPa stress level. A greyscale from 0 to 1 is used to indicate pore volume fraction averaged at

nodes.

TABLE 1*/Mean and standard deviation (SD) of percentage porosity and pore radius used as input for

high and low defect densities.

High porosity Low porosity

Mean SD Mean SD

Porosity (% vol) 5.00 (2.00) 0.25 (0.125)

Radius (mm) 0.20 (0.60) 1.75 (0.05)
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between the straight central section and the curved sections; these can be seen as the

symmetric damage patterns (end-point damage patterns shown in Fig. 4b). In

general, failure occurred either within or near the gauge for both high-porosity and

low-porosity specimens.

Damage evolution curves show that, for higher stresses, damage accumulated

more nonlinearly for high defect density and low defect density specimens (Fig. 5).

TABLE 2*/Mean and standard deviation (SD) of total specimen volume fraction of pores for each mixing

method achieved in the simulations. No radius data is presented as only pore volume fractions were stored

in the simulations.

High porosity Low porosity

Mean SD Mean SD

Porosity (% vol) 5.76 (2.02) 0.34 (0.10)

FIG. 4*/Simulated damage distributions of (a) high-porosity specimens and (b) low-porosity specimens for

the 13MPa stress level. A greyscale from 0 to 1 is used to indicate damage averaged at nodes.
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A much greater magnitude of damage accumulation before failure is apparent for the

samples at the low stress level in the low-porosity data. This can be explained by the

symmetric damage patterns of these specimens (Fig. 4b), as well as the more uniform

stress that occurs in the gauge of the specimen. Because of the relatively uniform

stress in the gauge, damage accumulation is also more uniform, while for the case of a

critical pore outside the gauge, the stress raising effect and consequent damage

accumulation are more localised.

The modelling approach captured the variable failure life behaviour of

polymethylmethacrylate. Least squares regression lines were used to compare
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FIG. 5*/Simulated damage evolution for (a) high-porosity specimens and (b) low-porosity specimens for

25MPa and 13MPa stress levels. Damage was calculated as the trace of the damage tensor for each integra-

tion point and summed over all integration points. The larger scale for the low-porosity data set is due to

the three specimens with symmetric damage patterns (Fig. 4b).

LENNON AND PRENDERGAST*/Damage in materials with random defects 165



the overall fit of both experimental and numerical results (Fig. 6). Quite similar stress

vs cycles-to-failure curves to those found experimentally were predicted for both

high-porosity and low-porosity sets (see Fig. 6). The regression equations for the high
defect density specimens are:

Experiment s��3:76log10 NF �34:95 (3:1a)

Simulation s��3:58log10 NF �33:19 (3:1b)

and for the low defect density specimens are:
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FIG. 6*/Comparison of (a) high-porosity and (b) low-porosity regression lines of [18] with regression lines

fitted to data of simulated tests.
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Experiment s��2:86log10 NF �33:06 (3:2a)

Simulation s��2:99log10 NF �33:97 (3:2b)

where s is the applied stress and NF is the number of cycles to failure.
Significance tests were used to determine whether or not the simulated data could

be statistically discriminated from the experimental data. For such a test, significance

values of p �/0.05 would indicate that the results from experiment and simulations

cannot be distinguished and higher p values indicate a greater probability that the

specimens are similarly distributed. Direct comparison of average failure life at each

stress level for the simulated data set with the corresponding experimental data set

shows that the experimental and simulated results are likely to form part of the same

distribution (Table 3).
Finally, plotting regression lines through the means of the experimental data at

each stress level shows a clear increase in average fatigue life for the low-porosity

specimens*/a similar increase was predicted by the simulations (Fig. 7).

4. Discussion

A modelling scheme was developed to predict the variability of failure of materials

with random defect distributions. However, several limitations apply to it:

(1) Damage was defined as a local internal state variable and therefore the effect

of crack interactions at high damage concentrations is neglected. The lack of

nonlocality in the definition of damage can also result in localisation
instability and mesh dependent solutions [2; 22]. It has been shown that the

ill effects of local damage definitions can be avoided if localisation limiters,

such as a weighted volume averaging of damage, e.g. [23], are incorporated.

Relatively coarse discretisation in comparison to the observed microstruc-

tural damage, as used in this study, can also inhibit localisation instability

and mesh dependency [1].

TABLE 3*/Mean and standard deviation (SD) of failure life for each data set and significance (p) values for

a student’s t -test.

Stress (MPa) Experimental Simulated

Mean SD Mean SD p

High porosity

13 462,054 (398,793) 419,686 (318,887) 0.82

17.5 43,683 (26,058) 20,006 (31,839) 0.12

21 8,985 (6,398) 3,918 (3,690) 0.07

25 1,580 (868) 1,097 (532) 0.20

Low porosity

13 2,628,680 (1,928,225) 2,652,430 (2,009,684) 0.98

17.5 333,132 (285,597) 503,379 (402,804) 0.35

21 23,841 (24,282) 46,329 (78,481) 0.45

25 20,631 (21,053) 26,961 (26,290) 0.60
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(2) The assumption that damage remained uncoupled from elastic properties

until complete failure for a particular plane is justifiable only for materials

that show a sudden loss in stiffness near failure, which is the case for

polymethylmethacrylate [14] and for fatigue of many other materials. For this

type of behaviour, an uncoupled model has been shown to give equivalent

results to continuously coupled models with the benefit of reduced

computational time [20].

(3) The form of the damage evolution equation considers only maximum tensile

stress and thus neglects the possibility that compressive stress could affect

damage accumulation (e.g. to resharpen blunted cracks). A possible

improvement to the model would be to reformulate the damage evolution

equation of Murphy and Prendergast [19] in terms of both stress amplitude

and mean stress, such as has been proposed by Chaboche and Lesne [6].

Furthermore, dependence on shear stress is not incorporated in the model of

multiaxial damage growth. A more general formulation could incorporate

one or more stress invariants. However, a disadvantage of invariant

formulations is that they do not always provide a direct prediction of the

orientation of the dominant fracture plane.

(4) Anisotropy is limited to orthotropic stiffness reduction, since a second order

damage tensor is used to represent the damage state. However, according to

Kachanov [10], orthotropic damage is often an acceptable simplification for

non-interacting cracks in an isotropic matrix.

(5) Due to the fitting procedure used to obtain the input parameters for the

model, the comparison with experimental results cannot strictly be con-

sidered as an independent corroboration of the model. However, the fitting

procedure was limited to fitting an equivalent range in failure life at one

stress level only (i.e. 21MPa). No fit was made to the average failure life at

this stress level, and failure at the remaining stress levels was simulated
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fatigue life for vacuum-mixing found experimentally.
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without any change in the input parameters. A review of average percentage

porosity and mean and maximum pore radius for the two types of defect

distribution simulated found that the input parameters were within the range

of reported values [14].

In spite of these limitations, several comparisons can be made between the

predictions and the experimental data. The computational scheme proved capable of

predicting:

(1) similar average lifetimes, and variability in lifetime, as shown by the

correspondence between the predicted regression lines and the experimental

regression lines (see Fig. 6),

(2) similar ranges of failure life (i.e. maximum and minimum lifetimes, see Fig.

6), and

(3) the average increase in fatigue life for low-porosity specimens over high-

porosity specimens (see Fig. 7).

An interesting feature of the experimental results was that the high-porosity

specimens, although having lower average fatigue life, were statistically more reliable

than low-porosity specimens because of their lower variability [18]. This type of

behaviour was also predicted by the mathematical model presented here (see Table 3

and Fig. 6). Some explanation for this can be found in the way that defects affect the

damage tolerance of a material. The introduction of pores can be considered as

creating spatially varying fatigue strength. Krajcinovic [11] has shown that increasing

the bandwidth of failure strengths in a material can increase the damage tolerance.

Although such materials fail at lower peak loads, they typically undergo much

greater and more stable damage accumulation before eventual failure because

energy is dissipated continuously from an early stage in a controlled process. In

contrast, he showed that materials with relatively uniform strength, i.e. with very few

defects, were prone to sudden brittle failure with very little deformation. Failure

of such a material may often be governed by a single critical defect; once the

failure strength is exceeded at the defect, the initiated crack grows unimpeded.

Variation in the size and location of the critical defect between specimens can then

lead to more pronounced variability in failure. The low-porosity specimens

correspond quite well to this concept so that this may explain the more widely

distributed failure life data for the low-porosity specimens in comparison to the more

uniformly porous high-porosity specimens found in both the experiments and the

numerical simulations.

Finally, incorporation of the proposed modelling approach should be useful

in improving existing fatigue damage models for structures containing materials

prone to variable defect distributions. For example, a recent model deve-

loped by Stolk et al. [26], which included viscoelastic creep in addition to fatigue

damage of acrylic bone cement, was applied to the investigation of failure of

cemented orthopaedic hip replacements. Their model could be readily adapted to

include variable pore distributions using the approach proposed here and this may

help in understanding why large variability is seen in clinical failures of such

implants.
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5. Conclusions

A mathematical model approach was developed to predict failure times of a material

that is prone to random defect distributions. The differences in fatigue life behaviour

occurring with changes in the characteristics of the defect distributions (i.e. high

porosity vs low porosity) were simulated. The results of the simulation were found to

be very similar to experimental results. The model is proposed as a method for

simulating damage accumulation in components and structures containing materials
with defects.
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