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Abstract -The research presented in this paper describes 
audio-visual speaker identification experiments carried out 
on a large data set of 251 subjects. Both the audio and 
visual modeling is carried out using hidden Markov 
models. The visual modality uses the speaker> lip 
information. The audio and visual modalities are both 
degraded to emulate a train\test mismatch. The fusion 
method employed adapts automatically by using classijer 
score reliability estimates of both modalities to give 
improved audio-visual accuracies at all tested levels of 
audio and visual degradation, compared to the individual 
audio or visual modality accuracies. A maximum visual 
identification accuracy of 86% was achieved. This result is 
comparable to the perjormance of systems using the entire 
face, and suggests the hypothesis that the system described 
would be tolerant to vaving facial expression, since only 
the information around the speaker S lips is employed. 

Keywords: Multi-modal, fusion, audio-visual, person 
identification, classifier combination, lip modality. 

1 Introduction 
Biometrics is a field of technology devoted to 

verification or identification of individuals using biological 
traits. Verification, a binary classification problem, involves 
the validation of a claimed identity whereas identification, a 
multi class problem, involves identifying a user fiom a set 
of subjects. Due to this fact, speaker identification is 
inherently a more difficult task, particularly when the 
number of registered subjects is large. Speaker 
identification systems based on the analysis of audio signals 
achieve high performance when the signal to noise ratio 
(SNR) of the audio signal is high. However the 
performance degrades quickly as the test set SNR decreases 
[l 11, which we refer to as an audio train\test mismatch. 

The area of audio-visual signal processing has received 
much attention over the past ten years. Recent state of the 
art reviews indicate that much of the research carried out 
focuses on audio-visual speech recognition [XI, [6]. The 
most important issues are, how to account for the 

reliabilities of the two modalities and at what level to cany 
out the fusion. The benefits of audio-visual fusion for the 
purpose of speaker identification have been shown in [l l] .  
However, the fusion method employed used modality 
weightings found by exhaustive search to optimize the 
fusion scores. While this highlights the potential of audio- 
visual fusion, it is not useful in a practical real world 
scenario. Other audio-visual speaker identification 
approaches that use more automated fusion techniques [4] 
do not address the issue of an audio train\test mismatch. In 
[22], audio visual speaker verification experiments are 
carried out on 36 subjects, however, only an audio train\test 
mismatch was tested, whereas a visual train\test mismatch 
was not considered. In [7], robust audio-visual classifier 
fusion under both audio and visual train\test mismatch 
conditions is described. The adaptive fusion results were 
encouraging, with improved audio-visual scores better than 
either modality alone. However, the experiments were 
carried out on small database of just eight subjects. The 
work presented in this paper describes audio-visual speaker 
identification experiments on a large data set of 251 
subjects from the XM2VTS audio-visual database [16]. In 
the context of this paper, the visual modality refers to a 
sequence of mouth images extracted fiom a video utterance. 
Both, the audio and visual modalities are degraded to 
emulate train\test mismatches. 

This paper is organized as follows. In Section 2, the audio- 
visual corpus employed is described. Sections 3 and 4 
describe how we performed the audio and visual 
identification respectively. Section 5 investigates audio- 
visual fusion techniques and describes bow the fusion is 
carried out in this study. In Section 6 we present our results 
and fmally in Section 7, the paper is summarized and some 
conclusions are offered. 

2 Audio-visual Corpus 
The XM2VTS audio-visual database [16] was used 

for the experiments described in this paper. The database 
consists of video data recorded fiom 295 subjects in four 
sessions, spaced monthly. The fust recording per session of 
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the thud sentence (“Joe took fathers green shoe bench 
out”) was used for this research. This sentence was used 
because it was phonetically balanced. Some sentence 
recordings had the start of the word Joe clipped and in 
some cases it was totally missing. Due to this and other 
errors in the sentences, only 251 out of a possible 295 
subjects were used for our experiments. 

3 Audio Identification 
Audio based speaker identification is a mature topic [5], 
[ZO]. Standard audio methods have been employed in this 
paper. The audio signal was first pre-emphasized to 
increase the acoustic power at higher frequencies using the 
filter H(z) =1/(1-0.97~ -I). The pre-emphasized signal was 
divided into frames using a Hamming window of length 20 
ms, with an overlap of 10 ms to give an audio kame rate of 
100 Hz. Mel-frequency cepstral coefficients (MFCC’s) [9] 
of dimension 16 were extracted from each frame. The 
energy [23] of each frame was also calculated and used as a 
17’h static feature. Static features refer to features extracted 
from individual audio frames that do not depend OD other 
frames. Seventeen fust order derivatives or delta features 
were calculated using W, adjacent static frames, where WD 
is the delta window size. The delta frames were appended 
to the static audio features to give an audio feature vector of 
dimension 34. These were calculated using the available 
HTK functions [23] employing a WD value of five frames. 
Cepstral mean normalization [23] was performed on the 
audio feature vectors (to each audio utterance) in order to 
compensate for long term spectral effects ofthe channel. 

A text dependent speaker identification methodology was 
tested. For text dependent modeling [5], the same utterance 
is spoken by the subject for both training and testing. It was 
employed, as opposed to text independent modeling [ZO], 
due to its suitability to the database used in this study. 

The N subject classes SI, i = 1,2, ..., N, are represented by N 
speaker hidden Markov models (HMMs) [19], where N = 

251 here. There was one background or global HMM. The 
first three sessions were used for training and the last 
session was used for testing. The background HMM was 
trained using three of the sessions for all N subjects. The 
background model was initialized using a prototype model. 
A prototype HMM consists of the initial HMM parameters. 
The background model captures the audio speech variation 
over the entire database. Since there were only three 
training utterances per subject, there was insufficient 
training data to train a speaker IIMM directly from a 
prototype model. For this reason, the background model 
was used to initialize the training of the speaker models. 
Since HMM classifiers are employed, the classifier output 
scores are in log-likelihood form, denoted by Il(0jSJ. The 
classification task is the calculation of maximum likelihood 

class. The audio speaker models were trained on the 
“clean” audio speech, which was the original audio data. 
Additive white Gaussian noise was applied to the clean 
audio at S N R  levels ranging from 48 dB to 21 dB in 
decrements of 3 dB. All models were trained using clean 
speech and tested using the various S N R  levels. This 
provides for a mismatch between the testing and training 
audio conditions. HMM training and testing was canied out 
using the HTK toolkit, version 3.1 [23]. 

4 Visual Identification 
Visual speech feature analysis has also received much 
attention recently [15], [18]. Transform based features were 
used to represent the visual information based on the 
Discrete Cosine Transform (DCT), which was employed 
because of its high energy compaction [17]. The visual 
mouth features were extracted from the mouth region of 
interested (ROI), which consists of a 49x49 colour pixel 
block; see Fig. 1. The position of the mouth ROI was 
determined by manually labelliig the left and right labial 
corners and taking the centre point. Frames were manually 
labelled for every IOth frame only; the ROI positions for the 
other frames were interpolated. The ROI blocks were 
converted to gray scale values. The gray scale ROI was 
then histogram equalized and the mean pixel value was 
subtracted. This image pre-processing was carried out to 
account for varying illumination conditions across sessions. 
Carrying out both histogram equalization and mean 
subtraction on the images was found to improve the 
performance of the visual system. The DCT was applied the 
gray scale pixel blocks. Considering that most of the 
information of an image is contained in the lower spatial 
frequencies [17], the first 15 DCT coefficients were used, 
taken in a zigzag pattern to form the visual frame 
observation feature vector. 

For our study, in order to account for practical video 
conditions, the video fiame images were compressed using 
P E G  compression [Zl]. In our experiments, ten values of 
JPEG quality factor (QF) were examined, 
QF E {50,25,l8,14,10,8,6,4,3,2),where a QF of 100 
represents the original uncompressed image. The 
compression was carried out using Matlab, version 6.5 [13], 
and applied to each individual video frame image. The 
mouth ROI was then extracted from the compressed 
images. The mouth ROI was then extracted from the 
compressed images. The manually labelled mouth 
coordinates were employed, so that any drop in visual 
performance would be due to mismatched testing 
conditions rather than to poorer mouth tracking. The 
variation of the mouth ROI with respect to JPEG QF is 
shown in Fig. 1. The JPEG blocking artifacts are evident at 
the lower QF levels. 
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The visual sentences were modeled using the same HMM 
methodology as described for the audio sentences. The 
number of states employed was adjusted to achieve the best 
visual accuracy. In all cases the visual speaker HMMs were 
trained on the “clean“ visual images and tested on the 
degraded visual images. This provides for a mismatch 
between the testing and training visual conditions. 

Fig. 1: Ten levels of JPEG compression and ROI images. 

5 Audio-visual Fusion 
The fusion of classifiers is a mature research topic, which 
predates work on audio-visual speech fusion [14]. The main 
difference between audio-visual speech fusion and general 
classifier fusion is the similarity of the audio and visual 
modalities. For example, in this paper, both modalities are 
modelled using a similar HMM methodology. This enables 
fusion to he carried out at not only the classification level 
but at preclassification levels also, which results in a large 
variety of possible fusion approaches. The two audio-visual 
fusion approaches most commonly investigated are feature 
fusion (early integration) and score fusion (late integration). 
Feature fusion, while being very simple to implement via 
feature vector concatenation of the two modalities, has 
several disadvantages. The audio-visual feature vector has a 
larger dimension, and due to the “curse of dimensionality”, 
this results in making the training of parametric models, 
such as HMMs, less practical because the models will he 
under trained unless a large amount of training data is 
available, which is rarely the case for audio-visual speaker 
modelling. In addition to this, feature fusion does not take 
the reliability of either modality into account; if one 
modality is of a very poor reliability, the combined audio- 
visual feature vector will be compromised and catastrophic 
fusion may occur; where the combined audio-visual 
accuracy is poorer than either of the single modalities; this 

has been demonstrated in [ I l l .  This issue is especially 
important for the visual modality where a tracking failure 
can occur. Another issue with feature fusion is that the 
kame rates of the audio and visual features are usually very 
different. Audio features are usually extracted at a fkme 
rate in the region of IOOHz, whereas visual features are 
limited to a kame rate equal to the video capturing speed, 
which is usually in the region of 2WOHz (or frames per 
second). Hence, for feature fusion, the visual features need 
to be up-sampled (usually via interpolation) in order to 
synchronise the two feature frame rates. 

Score fusion consists of using the audio and visual classifier 
outputs to provide an audio-visual classification. The 
benefit of this method is that the audio and visual classifier 
outputs can be weighted in such a way that takes the 
reliability of both modalities into account. Most automatic 
audio-visual fusion techniques only use an audio reliability 
measure [12] and the visual signal is assumed to be of a 
constant quality. Moreover, it is assumed that the visual 
modality is equally distinguishable for all speakers, i.e. it 
only performs poorly if there is a train\test mismatch. In a 
practical scenario, neither of these assumptions is correct. 
For any given modality a particular speaker may not be 
very distinguishable. If the reliability parameter is 
determined before separate modality classification takes 
place, e.g. by measuring the audio noise levels or the mouth 
tracking integrity, then, for a given speaker, an 
indistinguishable modality could not receive a lower 
weighting. Taking these points into account, it is better to 
calculate a reliability measure based on the classifier score 
distribution, as this can quantify both the train\test 
mismatch and the ability to distinguish a speaker for a given 
speaker utterance. For these reasons, the fusion method 
employed here uses a reliability measure based on the 
classifier output score distribution and takes the reliability 
of both modalities into account. 

The log-likelihood scores of the two modalities are 
normalized and integrated on a per Utterance basis. No prior 
statistics of the log-likelihood score distributions are 
employed. The scores were normalization by scaling the top 
M scores into the range [O,lJ.  Using a low value of M 
reduces the potential of audio-visual fusion, with the limit 
of M=l amounting to fusion by method of voting [14]. 
Fusion by voting is usually only carried out when many 
classifiers are used; the chosen class is the class that 
received the highest rank by the most classifiers. Hence no 
reliability information is considered. In the case of a high 
value of M, the worst scores (outliers) can unfairly skew the 
distribution of the normalized scores. Tests showed that the 
system performance degraded for M<50 and M I O O .  A 
value for M o f  75 was chosen. Since the top Mnormalized 
scores are not log-likelihoods; instead of using the log- 
likelihood ll(OjSJ, we use the likelihood l((3lSJ. 
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For a given test utterance observation 0, the audio and 
visual observation sequences are denoted with Or and OF 
respectively. The combined likelihood that 0 was produced 
by the i" speaker S;, is: 

/AO,O, 13,) = ax./A(041s3 )+a,.l,(o, Is3), (1) 

of audio-visual training data available, just three speaker 1 % ~  sessions, it was decided to use a non-leamed approach to 8 ,  

where a, denotes the weight of the audio likelihood and av 
denotes the weight of the visual likelihood such that: 

a, +a, = 1 anda,,a, E [OJ]. (2) 

Various reliability estimates have been used in the 
literature. Some examples include score dispersion [12], 
score entropy [12], score variance [22], cross classifier 
coherence coefficient [7] and the difference, 5, of the top 
two best scores [2]. (is calculated as 

{,=I,(O, lS,,-L,(% ISB), mc @,VI, (3) 

where S, and S, are the speakers achieving the hest and 
second hest scores respectively, and m denotes the 
modality. The difference of the top two best scores was 
employed for this study because, even though it is 
computational inexpensive, it performed well across all 
levels of audio and visual degradation. A high value of ( 
indicates a confident score whereas a low value indicates a 
score of poor confidence since the separation of the highest 
speaker to the others is low. 

' i  , 
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Fig. 2: Example of how the audio-visual reliability estimate 
varies with respect to a". 

6 Results and Discussion 
6.1 Audio Results 

The numher of audio HMM states that maximised the audio 
identification score was found to be eleven (two mixes per 
state). Fig. 3 shows how the audio performance with respect 
to the audio degradation. A maximum accuracy of 97.6% 
was achieved at 48dB. At 21dB the accuracy dropped to 
37%. Further lowering of the SNR resulted in a random 
choice accuracy at -3dB, i.e. an accuracy of 0.398% or 
l O O x ( l / Z S l ) .  The audio experiments performed very well 
under near "clean" testing conditions, however the accuracy 
roll off with respect to SNR is very high. 

- -I/ 

A mapping between the reliability estimate and ark+ is 
required. A sigmoidal mapping [IO], can be used, hut the 

?On _---- 
00 

choosing the aAlav values where at is varied from 0 to 1 in 
steps of 0.05 for a particular utterance. For each at value, 
the audio and visual scores are combined using (2). The top 
M audio-visual scores are then normalized, as above, and 
the audio-visual reliability estimate, (,", is calculated and 
maximized to give 

= aEa$~){t""l%l> (4) 

where a,,, is the selected visual weighting that maximizes 
(AV. Fig. 2 shows a sweep of at from 0 to 1 in steps of 0.05 
for a particular utterance. The audio-visual reliability 
estimate reaches a maximum at an avvalue of 0.45. 
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increasing number of states. The fact that the visual features 
performed best with just one state indicates that HMMs 
may be not required to model visual speech when using 
static features, rather, a simpler Gaussian mixture model 
(GMM) approach [20] would be sufficient. 

,/------ [:I/ , , , , , , , ;I 
50 

0 I I o I s m 2 2 1 Y ) I * B Y )  
JPEQ Ovsllty F m r  

Fig. 4: Visual performance versus number of HMM states 
(top) and effects of P E G  compression (bottom). 

The tests on the degraded visual data were carried using 
one HMM state. Fig. 4 shows how the visual features 
perform with respect to R E G  degradation. The visual 
features show a high level of robustness, with an accuracy 
of 48% at a QF of 2. This level of robustness conforms with 
the high level of speech recognition robustness to P E G  
compression reported in [18]. In [3] face identification was 
carried out across five levels of P E G  compression. Again, 
a high level of robustness was reported, with no significant 
drop in performance, except for the lowest P E G  quality 

level. It should be noted for the experiments described in 
this paper, that if the mouth ROI was automatically 
segmented, rather than manually labelled, poorer robustness 
to visual degradations should be expected. 

6.3 Audio-visual Results 

The results for the automatic fusion method described 
above are shown in Fig. 5 and Table 1. It is apparent that 
the automatic fusion accuracies are higher than either of the 
audio and visual modalities, at all levels of degradation. For 
example, the accuracies at the most severe levels of audio 
and visual modality train\test mismatch are 37% and 48% 
respectively, whereas the automatic fusion of the at these 
levels achieved an accuracy of 70%. 

Audb Level [SNRI Vi~ual Level [JPEG] 

Fig. 5 :  Speaker identification accuracies for audio, visual 
and automatic audio-visual fusion. 

Table 1: Automatic audio-visual fusion accuracies (“A) for ten levels of audio (a) and visual (QF) degradation 

7 Conclusions 
The XM2VTS database was recorded under extremely well 
controlled visual conditions; it does not represent practical 
real world scenarios. This is highlighted by the 
exceptionally high visual speaker identification accuracies 
achieved in this study, the best accuracy been 86%. The 
new BANCA database [ I ]  is a large audio-visual database 
consisting of 208 subjects, that is recorded under 
controlled, degraded and adverse scenarios, which will 

provide data of a more practical nature for the testing of 
audio-visual fusion methodologies. Experimental results 
have being presented for audio-visual fusion with 
application to speaker identification. Ten levels of train\test 
mismatch of not only the audio modality but also the visual 
modality have been examined. The audio-visual fusion 
methodology uses reliability estimates of both the audio and 
visual modalities. Additional audio-visual training data is 
not required to tune the fusion process. 
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The results are encouraging with the audio-visual 
accuracies exceeding both the audio and visual accuracies 
at all levels of audio and visual degradation, and some 
cases comparable to the accuracies achieved by the 
empirical fusion method. The fusion method is 
computationally inexpensive. The audio-visual system 
described has applications in practical scenarios, such as 
human computer interfaces and can also be extended to 
biometrical systems for robust person verification. Due to 
the audio-visual method employed, the audio articulation is 
being accounted for hy the visual modality. For example, 
any outliers in the audio modality are compensated for, by 
the visual modality. A maximum visual identification 
accuracy of 86% was achieved. This result is comparable to 
the performance of systems using the entire face region, 
(93% facial identification reported in [lo] on the same 
database) and suggests the hypothesis that the system 
described would be tolerant to varying facial expression, 
since only the information around the speaker's lips is 
employed. Ongoing work includes the recording of video 
data under controlled and degraded scenarios, which will 
supplement the data used in this study. 
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