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Abstract- Parametric modeling strategies are explored in
conjunction with Linear Discriminant Analysis (LDA) to
facilitate an Electroencephalogram (EEG) based direct-brain
interface. A left/right self-paced typing exercise is analysed by
employing an AutoRegressive (AR) model for feature extraction
and an AutoRegressive with Exogenous input (ARX) model for
combined filtering and feature extraction. Modeling both the
signal and neise is found to be more effective than modeling the
noise alone with the former yielding 2 classification accuracy of
81.0% and the latter an accuracy of 57.4%.
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1. INTRODUCTION

For some people with very severe disabilities (e.g.
amyotrophic lateral sclerosis), a Brain Computer Interface
(BCI) may be the only feasible channel for communicating
with others and for environment control. Given specific
experimental protocols, it is possible to elicit meaningful
Event Related Potentials (ERP) [1] occurring within the
background EEG. A goal of BCI research is to detect these
small ERPs (of order 1pV) from the background EEG (10~
50uV) on a single-trial and classify them for subsequent use
as inputs for a computer interface. Several methods for
single~trial extraction exist e.g. {4], for a review see [2]. In
this paper, we attempt to classify left/right self-paced
voluntary finger movement frem single-trial EEG epochs by
applying AR and ARX models in conjunction with LDA.
This experiment paradigm produces an ERP known as the
Bereitschafispotential (BP) — a gradually rising negative
potential occurring about 1 second preceding the onset of
movement [1]. The occurrence of the BP is largely localised
around the sensorimotor area, being most prominent on the
contralateral side (electrodes C3 and C4).

1. METHODOLOGY
A. Feature Extraction

Case I: The EEG time series is fitted with an AR model.
This all-pole model lends itself well to producing the
dominant frequencies occurring in the EEG [3]. The AR
model can be intuitively rephrased in the frequency domain
as a white noise source driving a spectral shaping network
A7), :

Case 2: Going one step further, we can attempt te model
the ERP by using an ensemble-averaged template, filtered by
an AutoRegressive Moving Average filter. Using a common
denominator results in ARX model illustrated in Fig. 1.
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Fig. 1. ARX model structure '

For the full ARX model, in terms of the shift operator ¢, and
assuming a sampling interval of one time unit, we have

Al y(ry = Blg)s(r) + (1) H

The prediction is written as

Y= waly(t -1)=..- apa y(t—na)
+bls(r—k)+...+bnbs(r—k—nb+1) )

where na and nb are the model orders and & is the delay.

Defining & as the vector of parameters we can write the mean

square prediction error as
1 Ny

E@)=— %e°(1,0) 3
Nz

where N is and

the mumber of samples

e(t,8) = y(1}— 3{¢,8) . We choose & such that it minimizes
(3) resulting in a least squares problem. Note for the ARX
model, a single-trial ERP can be interpreted as s(?) filtered by
B(z)/A(z) [4]. Akaike’s Final Prediction Error (FPE) criterion
[5] is used as a guide for selecting model orders.

B. Classification

Linear discriminants were used for the classification
paradigm [6]. In response to a set of input features, the
output of the classifier is a set of numbers, representing the
probability estimate of each class (in our case a left or right
movement). This method partitions the feature space into the
different classes using a set of hyper-planes. Optimisation of
the model is achieved through direct calculation and is very
efficient thus lending itself well to real-time applications. In
applying the classifier, the available data was divided into
independent training and ftesting sets using »-fold cross
validation [6]. For an n-fold cross validation run, n classifiers
are trained with a different fold used each time as the testing-
set, while the other n-7 folds are used for the training data.

Coefficients of the AR and ARX models are used as
features in the classification. For the ARX case, we define
four template signals: an ensemble average of ERPs for a left
movement from C3 and from C4 and similarly for a right
movement. This generates four sets of ARX coefficients for
classification per trial.
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ITI. RESULTS

Dataset: EEG signals were recorded from one subject in
three separate sessions. The subject was sitting upright, with
fingers in the standard typing position at a Qwerty keyboard
The task was to press the left or right “home keys™ with the
corresponding fingers in a self-chosen order and timing,
EEG activity was recorded with Ag/AgCl electrodes
referenced to the nasion at a sampling rate of 1000 Hz
filtered from 0.05 to 200 Hz and down-sampled to 100Hz.
The data set consists of 413 single trial epochs of 1500 ms
length, ending 120 ms before the keystroke, thus avoiding
effects of EMG activity masquerading as control signals.
Fig. 2 illustrates the ensemble averages from C3 and C4 fora
right movement,
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Fig. 2. Ensemble averages for a right movement:
The BP is clearly seen in contralateral electrode C3

Table T illustrates the LDA accuracy results for different
AR model orders for case 1.

TABLET
LDA accuracy (%) vs. AR order {case 1)

3 4 5 [ 7 8

573 574 555 532 5335 541

Model order 4, yielding the highest accuracy LDA of 57.4%,
is in good agreement with Akaike’s FPE shown in Fig. 3.
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Fig. 3 Akaike's FPE for the AR model (averaged over each trial}

For case 2, the optimum accuracy of 81.0% is found for
model orders na=4 and nb=2 as iltustrated in Table II.

TABLE Il
LDA accuracy (%) vs. ARX order (casc 2)

nb\nl 3 4 5 6 7 8

1 80.5 807 794 TB7 765 754
2 80.2 810 792 775 769 750
3 805 806 789 717 766 47

1V. DISCUSSION

The approach of using an AR model for feature
extraction with the EEG is well known [3] with extensions to
this technique for non-stationary epochs (> 1 second) having
been successfully applied in BCI applications [7]. The ARX
model, by combining information about the underlying ERP
signal, performs better than the simple AR model. The
structure of the ARX model, implying that noise enters early
in the modeled process seems physiological reasonable as
neighboring neural populations produce the background
noise [1]. The LDA appears to vield higher accuracy for
slightly under-fitted models, suggesting that under-fitting
yields a more linearly separable problem.

V. CONCLUSION

A novel BCI methodology is applied incorporating an
ARX model in the feature extraction stage. Modeling both
the signal and noise is found to be more effective than
modeling the noise alone, which is an intuitively satisfying
result.
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