
Abstract-Parieto-occipital alpha band (8-14Hz) EEG activity 
was examined during a spatial attention-based brain computer 
interface paradigm for its potential use as a feature for 
left/right spatial attention classification.  In this paradigm 64-
channel EEG data were recorded from subjects who covertly 
attended to a sequence of letters superimposed on a flicker 
stimulus in one visual field while ignoring a similar stimulus in 
the opposite visual field.  Increases in alpha band activity were 
observed over parieto-occipital cortex contralateral to the 
location of the ignored stimulus, consistent with previous 
reports, and the subsequent use of alpha band power over 
bilateral parieto-occipital sites as a feature yielded an average 
classification accuracy of 73% across 10 subjects, with highest 
87%.  The highest achievable bit rate from these data is 7.5 
bits/minute. 
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I.  INTRODUCTION 
 
Brain Computer Interface (BCI) technology may offer the 
only feasible option for communication and environmental 
control for some individuals with very severe disabilities 
(e.g. amyotrophic lateral sclerosis or brainstem stroke) [1].  
Existing BCI designs based on the electroencephalogram 
(EEG) rely on a variety of different EEG signal features.  
While some utilize exogenous event-related or evoked 
responses such as P300 potentials [2], motor-related 
potentials [3] and Visual Evoked Potentials (VEPs) [4,5] 
which are for the most part involuntary, other BCIs involve 
learned self-regulation of key cortical activity for production 
of responses on cue, for example slow cortical potentials [6] 
and oscillatory activity [7,8].  The former design, being 
reliant on natural involuntary responses, has the advantage of 
requiring no training, whereas the latter design normally 
demonstrates effectiveness only after periods of biofeedback 
training, wherein the subject learns to regulate the relevant 
activity in a controlled way.  Current BCIs employing 
oscillatory activity normally utilize changes in ongoing EEG 
within certain frequency bands over certain areas of cortex, 
for example mu rhythms (8-12Hz) and beta rhythms (18-
26Hz) over sensorimotor cortex [7,8].  These changes occur 
in response to higher cognitive operations – in the examples 
of the Wadsworth and Graz BCIs [7,8] subjects employ 
motor imagery (imagination of movements or relaxation of 
parts of the body), and the changes in sensorimotor rhythms 
which occur as a result are harnessed to provide control.  

Another example of top-down modulation of oscillatory 
activity is the reactivity of alpha band (8-14Hz) activity to 
attention [9,10].  In particular, alpha has been reported to 
index sensory gating during a biased attentional state 

[11,12].  In [12], alpha band activity was examined during 
the cue-stimulus interval of a visual spatial cueing paradigm 
involving bilateral stimuli.  Focal increases of alpha band 
activity were seen over occipital cortex contralateral to the 
direction of the to-be-ignored stimulus, reflecting 
anticipatory biasing of visual spatial attention. 
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Visual selective attention pertains to the brain’s ability to 
identify and focus on certain components of visual input to 
be processed preferentially at a given time.  In particular, 
spatial selective attention refers to the mechanism by which 
locations in visual space are selected for enhanced 
processing [13].  This can be carried out independent of gaze 
direction, i.e. components in peripheral vision may be 
selected for processing just as those in foveal vision.  The 
term covert attention is used to describe attentional selection 
of regions of visual space outside the central foveal region. 
 An interesting question arising from the abovementioned 
results of recent neuroscience research [11,12] is whether 
modulations in alpha band power affected by shifts in covert 
attention, can be harnessed in real-time and used as the 
control mechanism for a BCI. 

 In this paper the authors present results of experiments in 
which subjects deployed spatial attention on cue to one of 
two bilateral locations in order to count target presentations 
at that location.  Simple alpha power features extracted from 
bilateral parieto-occipital scalp sites are used to determine 
whether the observed separability in alpha oscillations can be 
harnessed for control, without the subject having had 
previous training. 
 
II.  METHODOLOGY 
 
A.  Subjects 

 
 Ten subjects aged between 22 and 30 participated in the 
study.  All had normal or corrected-to-normal vision. 
 
B.  Experimental set-up 

 
 Subjects were seated 60cm from a CRT monitor on 
which was displayed two white rectangular stimuli situated 
bilateral to a central fixation cross on a black background, as 
shown in Figure 1.  As the paradigm employed in this study 
was designed originally to elicit steady-state evoked 
potentials (SSVEPs) the left rectangle was flickered at 14Hz 
and the right rectangle was flickered at 17Hz. 
 More importantly for this study, however, the task of 
target detection was also employed, as a means of examining 
the static allocation of visual spatial attention.  In the center  



 
 
Fig. 1. Stimulus display. 
 
of each of the white rectangles, letters from “A” through “H” 
were presented in a random pattern, replicating the visual 
spatial attention paradigm employed in [14].  Embedded in 
the sequence of letters was the target letter “X”, occurring 
with equal probability (~0.11).  Subjects were instructed to 
keep count of target presentations during each trial and 
report this number on completion of the trial.  This provides 
a behavioral measure of spatial attention performance in 
terms of error rates and ensured that spatial attention 
mechanisms are engaged in the correct way.  The letter in 
each rectangle was changed after 3 flicker cycles of the 
white rectangle on which it was superimposed.  The letter in 
each rectangle subtended a visual angle of 1° both vertically 
and horizontally.  The rectangles were situated 2.9° bilateral 
to the central fixation cross (cross to medial edge), centered 
on the horizontal meridian, and subtended a visual angle of 
4.2° both vertically and horizontally. 
 Continuous EEG signals were recorded from 64 electrode 
positions referenced to location AFz, filtered over the range 
0 – 134 Hz and digitized at a rate of 512Hz using the 
BioSemi Active Two system.  In addition horizontal 
electrooculographic (EOG) data were recorded using two 
electrodes placed at the outer canthi of the eyes. 
 
C.  Procedure 

 
 Each subject underwent a total of five sessions, each 
lasting under 5 minutes.  Each trial started with a red 
warning stimulus lasting 0.5s, followed by a cue stimulus 
consisting of a white fixation cross of the same size with an 
arrow on the left or right arm, lasting 0.5s.  Depending on the 
direction of the arrow, the subject was instructed to covertly 
attend to the left or right rectangle while strictly maintaining 
fixation on the central fixation cross for 8s.  Following the 
attend period a green fixation cross was presented for 5s, 
signifying a rest period.  Each session consisted of 20 trials, 
with an equal number cued left as cued right, in random 
order. 
 
 
 

D.  Feature Extraction 
 
 From each 8s attend period three 3.52s segments were 
extracted using rectangular windows starting at 0, 2 and 4 
seconds, each of which counted as a single case for training 
and classification.  For each segment the Fast-Fourier 
Transform (FFT) was calculated at 2 pairs of electrode 
locations, PO7 and O1 over the left hemisphere and PO8 and 
O2 over the right hemisphere.  The 3.52s segment duration 
was chosen so that it contained an integral number of cycles 
of the 14Hz stimulus, thus confining the SSVEP power to a 
single frequency bin.  The mean power over the alpha range 
(8-14Hz) was then calculated at each electrode location.  
This calculation was carried out by averaging over the 
corresponding frequency bins, up to but not including that 
containing the SSVEP peak.  Alpha power for each 
hemisphere was determined by averaging over the 
corresponding pairs of electrodes. 

 The following two-dimensional and one-dimensional 
features were then extracted for each case: 

 
( ))(),()(2 nXnXndF RL

αα= , (1) 
 











=

)(
)(log)(1

nX
nXndF

R

L

α

α ,  (2) 

 
where X L

α (n) is the alpha band power over the left 
hemisphere for case n.  
 While the 1-dimensional feature should capture the 
expected lateralized behavior, the 2-dimensional feature was 
also employed to investigate whether taking a ratio caused a 
loss of information. 
 
E.  Classification 
 
 Linear discriminants were used as the classifier model for 
this study, providing a parametric approximation to Bayes’ 
rule [15].  Optimization of the linear discriminant model is 
achieved through direct calculation and is very efficient thus 
lending itself well to real-time applications. 
 Performance of the LDA classifier was assessed using 
10-fold cross validation [15].  This scheme randomly divides 
the available data into 10 approximately equal sized, 
mutually exclusive "folds".  For a 10-fold cross validation 
run, 10 classifiers are trained with a different fold used each 
time as the testing-set, while the other 9 folds are used for 
the training data.  Cross validation estimates are generally 
pessimistically biased, as training is performed using a sub-
sample of the available data. 
 
F.  Information Transfer Rate 
 

 One objective measure of BCI performance is the bit rate, 
as defined in [16]. For a trial with N possible symbols in 
which each symbol is equally probable, the probability (P) 



 

that the symbol will be selected is the same for each symbol, 
and each error has the same probability, then the bit rate can 
be calculated as follows:  

 

( )
1

1log1loglogsymbol / Bits 222 −
−

⋅−+⋅+=
N

PPPPN   (3) 

 
minute / symbolssymbol / BitsRateBit ∗=                   (4) 

 
 In the assessment of information transfer in this study we 
take each 3.52s segment as a separate case.  We define P as 
the classification accuracy achieved and the number of 
symbols sent per minute is set at, 60 / 3.52 = 17. 
 
III. RESULTS 
 
 Table I shows the classification accuracies achieved by 
all ten subjects over five sessions for both the 2-dimensional 
and 1-dimensional feature, as well as average performance 
across subjects for both features.  Subjects are listed in order 
of performance, with highest accuracy first.  Subjects 1 
through 4 achieved accuracies in excess of 80% while only 
subjects 7 through 10 failed to achieve above 70% for either 
feature.  For all subjects the 1-dimensional feature gives a 
performance that is at least comparable to the 2-dimensional 
feature. 
 Average information transfer rates were calculated for all 
subjects across all sessions using (3) and (4).  Subjects 1-4 
obtained bit rates in excess of 6 bits/min for at least one 
feature with subject 1 obtaining a bit rate of 7.5 bits/min 
using the 1-dimensional feature. 
 To test the relationship between classification accuracy 
and behavioral performance on the task, the correlation 
between the accuracies using the 1-dimensional feature listed 
in Table I and the number of errors in counting during the 
experiments was calculated.  No correlation (r=–0.1, p=0.73) 
was found. 
 Based on the recorded EOG, prior to classification, any 
segments during which there was eye movement exceeding 
1° visual angle were rejected. This resulted in a mean 
rejection rate of 7% (range 7-67). 
 
TABLE I 
CLASSIFICATION ACCURACIES FOR ALL SUBJECTS OVER 5 SESSIONS. 

Subject F1d F2d 
1 86.9% 85.7% 
2 83.8% 83.7% 
3 83.7% 82.7% 
4 82.6% 85.5% 
5 76.1% 74.1% 
6 71.7% 72.9% 
7 67.3% 66.0% 
8 69.6% 59.3% 
9 61.5% 59.6% 
10 55.7% 58.5% 

Average 73.9% 72.8% 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Frequency spectra for attend-left (L) and attend-right (R) trials for 
subject 1 at electrode locations PO3 and PO4. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3 topographic maps of alpha band power for attend-left (L) and attend-
right (R) trials grand averaged across all 10 subjects. 
  

Fig. 2 shows attentionally modulated frequency spectra at 
channels PO7 and PO8 for subject 1.  Fig. 3 shows grand 
average topographic maps of alpha power from which 
contralateral inhibitory alpha increases can be seen. 
 
IV. DISCUSSION 
 

The results of this study show that, by tracking bilateral 
parieto-occipital alpha modulations, binary decision-making 
using covert attention to visual stimuli is possible.  Fig. 2 
illustrates the increase in alpha band power over the 
hemisphere contralateral to the ignored stimulus, for subject 
1.  The 14 and 17Hz SSVEP peaks can be seen in this figure, 
however due to the narrow bandwidth of these peaks it is 
clear that they did not influence the value of the alpha band 
power feature. 

As can be seen from Table I not all subjects achieved 
accuracies that would be deemed acceptable for use in a BCI. 
Although the behavioral measure of attention did not 
correlate with the accuracies obtained using the alpha band 
power it is worth noting that subjects 8-10 each performed 
below average behaviorally. While this alone does not 
explain why these subjects performed poorly, it was also 
found that these subjects had either a minimal amount of 
alpha activity or very narrow band alpha activity. 
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 While the peak bit-rate of 7.5 bits/min is encouraging it is 
not as high as for other current independent BCI designs [1]. 
It is worth noting that the bit rate defined in equations (3) 
and (4) is designed to encourage accuracy over speed, 
therefore by improving accuracy by using intervals longer 
than the ~3.5s segments used in this study, higher bit rates 
could be achieved. Alternatively, the amount of time given to 
a subject to make a binary decision could be extended by 
generating a cumulative running sum of the 1-dimensional 
feature obtained from each segment within each trial. 
 Scalp locations from which alpha band power was 
measured was fixed across subjects in this study, determined 
from inspection of the grand average alpha topographies in 
Fig. 3. Thus these results are conservative, and it is probable 
that with selection of subject-specific electrode location, 
accuracies would be further increased. Also, future research 
will determine whether SSVEP modulations as observed in 
[14] can be combined with alpha band power to provide 
improved performance. 

 The novelty of this design lies in the fact that it utilizes 
oscillatory activity in a way similar to previous BCI studies 
[7,8], but subjects are able to perform well without training. 
Although this study utilizes spatial attention mechanisms that 
are naturally developed in every day situations, it is possible 
that training within the specific framework of this BCI 
paradigm using real-time feedback would serve to 
significantly improve accuracies over time. 
 
V. CONCLUSION 
 

Alpha band modulations affected by visual spatial 
attention can be employed successfully for control in a Brain 
Computer Interface. This provides a novel independent BCI 
design which relies in no way on the normal output pathways 
of peripheral muscles and nerves, and thus may have 
considerable impact on alternative communication and 
control technology for the disabled. 
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