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puts of each module in a special way to cause the output of the total 
algorithm to  be in proper order 111, 191. This results in the fx t e s t  
algorithm, but the program must be written for a specific length. 
A fourth method is similar, but achieves the unscrambling by prop- 
erly choosing the mulitplier constants in the modules [ I O ] .  A pro- 
gram based on this method could transform many different lengths 
by using a stored table of appropriate multipliers. The fifth method 
uses a separate indexing method for the input and output of each 
module [ I ] ,  [ I l l .  This results in a slightly slower program than 
methods three or four, but it is compact and can transform all 
lengths possible from the combination of modules. 

ALGORITHMS FOR N = 2”‘ 
A Cooley-Tukey radix-2 FFT that is calculated in place pro- 

duces the output in bit-reversed order. The unscrambler usually 
uses a bit-reverse counter [ I ] .  1121 or nested loops 131. A particu- 
larly efficient form has been programmed by Morris [131. A fast 
unscrambler has been developed by Evans [ 14). but it requires a 
precalculated “seed” table. 

The normal in-place Cooley-Tukey FFT does not allow the un- 
scrambling to be done in the modules (butterflies) as is possible 
with the PFA.  That is an intrinsic property of the type of index 
map used and the fact that the module lengths are not relatively 
prime. It is possible to design an in-place, in-order radix-2 FFT if 
the butterflies are calculated two at a time and a special indexing 
used. This is described in [15], [I61 and a structure is shown in 

The important observation contained in this correspondence is 
that a radix-4 or any radix-2”’ FFT can be modified so the output 
is in bit-reversed order. If a normal radix-4 FFT with the output of 
each butterfly in normal order is used, the output occurs in base-4 
reversed order, and similarly for radix-8 and others. However, if 
for the radix-4 FFT, the short length-4 butterflies are modified to 
have their outputs in bit-reversed order, the output of the total ra- 
dix-4 FFT will be in bit-reversed order, not base-4 reversed order. 
Likewise, if the output of the length-8 butterflies in a radix-8 FFT 
are placed in bit-reversed order, the output of the total radix-8 FFT 
will be in bit-reversed order. This allows converting the output or- 
der of any radix-2“ FFT to bit-reversed order so that a single bit- 
reversed counter can be used as an unscrambler. 

The structure of the signal flow graph for an FFT with radix-4, 
8, 16, . . . , 2”’ which is modified for bit-reverse ordered output or 
for the form of split-radix FFT given in 161 is identical to that for 
a radix-2 FFT.  The only difference in these algorithms is the num- 
ber and location of the twiddle factors which, of course, change 
the structure of the program and the speed of execution. The effects 
of moving the twiddle factors are analyzed in [ 171 and [ 181. 

CONCLUSIONS 
We have shown that there are several methods that implement 

or eliminate the unscrambling process for the PFA,  but they each 
require some compromise. The fastest and simplest method re- 
quires that the program be written for a specific length. 

For a Cooley-Tukey FFT with a radix which is a power of two. 
it was shown that a simple modification of the butterflies gives the 
output in bit-reversed order as a radix-2 does. This can be applied 
not only to radix-4, radix-8, etc. ,  FFT’s, but to programs that mix 
radix-4 or radix-8 stages to achieve high efficiency with radix-2 
stages to allow all power-of-two lengths. The output of the split- 
radix FFT is also allowed to be in simple bit-reversed order. It 
should be important in allowing a single special-purpose hardware 
bit-reversed counter to unscramble the more efficient radix-4, ra- 
dix-8. and mixed radix FFT’s.  
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A Note on the Convergence Analysis of LMS 
Adaptive Filters with Gaussian Data 

J .  B. FOLEY A K D  F. M. BOLAND 

Abstrucf-Necessary and sufficient conditions fur the convergence of 
LMS adaptive filters with Gaussian data have been established by 
Horowitz and Senne [3], with the recent support of Feuer and Wein- 
stein [4]. A feature of both of these studies is the necessity to investigate 
hounds on the roots of rather unwieldy characteristic equations. This 
note shows how such an investigation can be avoided through the use 
of a theorem of Gantmacher [SI. In formally applying this theorem, 
similar results to those of the above studies are obtained in a precise 
and straightforward manner. 
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I. INTRODUCTION 

The need to study the stability of LMS adaptive filters through 
analyzing the convergence properties of a second-moment param- 
eter, such as the mean-square error (MSE), has long been recog- 
nized [ 1 1 ,  [2]. However, oversimplification in expanding fourth- 
moment data statistics has meant that these contributions contain 
rather imprecise expressions for bounds on the maximum step size 
of the LMS algorithm and the residual excess MSE. The analysis 
of Horowitz and Senne [3] corrected this imprecision by making 
the assumption that the reference data have a Gaussian distribution, 
and then employing the well-known Gaussian fourth-moment ex- 
pansion. The use of this assumption can be justified on the grounds 
that in many practical applications, particularly those pertaining to 
acoustic noise cancellation where the interfering noise may in ef- 
fect result from a number of weakly correlated point sources, the 
reference noise statistics will indeed approximate to the Gaussian. 

The basic methodology of Horowitz and Senne was to set up a 
time recursion for the diagonal elements of the weight-error co- 
variance matrix. Cross coupling between this set of equations and 
an expression for the excess MSE was removed algebraically in the 
complex frequency domain. A stability criterion was established 
from the requirement that the roots of the characteristic equation 
must not lie outside the unit circle. Given the rather unwieldy na- 
ture of the characteristic equation in question, the application of 
this requirement was somewhat involved. 

The results of Horowitz and Senne were subsequently confirmed 
by Feuer and Weinstein [4] who worked entirely with a vector for- 
mulation of the recursion for the diagonal elements of the weight- 
error covariance matrix. In seeking a stability bound, they sought 
to establish conditions which would ensure that the eigenvalues of 
the matrix in the vector recursion would be less than unity in mag- 
nitude. Again, given the complex nature of the appropriate char- 
acteristic polynomial, there ensued some necessary support discus- 
sion pertaining to the location of the roots of the polynomial. 

The purpose of the present note is to show how the Horowitz- 
Senne result can be established with clarity and straightforward 
precision by reference to a theorem of Gantmacher whose definitive 
work [5] is frequently used by and quoted in the literature of signal 
processing engineers. The formal proof of the theorem is omitted 
here, but is definitively set out in the quoted reference. Our general 
formulation and approach to the problem are similar to those of 
Feuer and Weinstein. 

11. PROBLEM FORMULATION 

The basic problem under consideration is that of an adaptive 
noise canceller driven by the LMS algorithm of Widrow [6].  From 
the perspective of convergence studies, the LMS algorithm can be 
expressed most conveniently as follows (see [3] for a complete 
derivation): 

U ( j  + 1 )  = [ I  - 2PZ(j)  zm'] U ( j )  + 2W(j)*  Z ( j )  (1) 

where 

U (  j ) is the weight-error vector at time j in the rotated space 
defined by the eigenvectors of the reference noise au- 
tocorrelation matrix, 

Z( j ) 
e (  j )*  

I is the identity matrix, 
p is a positive constant known as the step size. 

It may be noted that the reference noise autocorrelation matrix 

is the reference noise data vector in the rotated space, 
is the optimal error output, i .e. ,  the error output when 

U ( j )  = 0, 

in rotated space is the diagonal matrix 

where the A ' s  are the eigenvalues of the original noise correlation 
matrix. Since this latter matrix is positive definite, 

A, > o  i =  l ; . .  , N .  (3) 
Of principal concern is the asymptotic boundedness of the MSE: 

t ( J )  = E[e(j )2]  

= .$* + .$,(j) (4) 
where .$* is the optimal MSE, and the excess MSE is given by 

L ( j )  = E [ W ) * A U ( j ) ]  ( 5 )  

= t r { ~ ~ [ u ( j )  ~ ( j ) ' ] }  (6) 

~ ( j )  = E [ U ( j )  ~ j ) ' ]  (7 )  

with tr { . } denoting the trace of the matrix. 

of the diagonal elements of the weight error covariance matrix 
Equation (6) shows that the excess MSE is a linear combination 

and, consequently, many convergence studies are focused on the 
asymptotic properties of these elements. 

Making the usual assumptions of independent data vectors and 
of a zero-mean Gaussian noise distribution, Horowitz and Senne 
employed ( 1 )  to derive the following recursion for the diagonal 
elements of K :  

N 

k , , ( j  + 1) = [ 1  - 4PX, + 8P2Xf1k,,( j)  + 4 P 2 h t P Z l  A p k p p ( j )  

s ( j ) *  = [ k l l ( j )  . . . k , , ( j ) ~  

+ 4p2t*A, i = 1, . . . , N .  ( 8 )  

(9) 

(10) 

(11) 

(12) 

Now, let 

and 

The system of equations described by (8) can be expressed in vec- 
tor f m n  

where 

Clearly, the stability of the weight-error covariance matrix (and, 
in turn, the excess MSE) is governed by the requirement that the 
eigenvalues of the A matrix should be less than unity in magnitude. 

111. STABILITY 
Rather than attempt to directly determine the eigenvalues of A 

(as Feuer and Weinstein [4]), we refer to an appropriate theorem 
of Gantmacher [5, p. 881 on nonnegative matrices, i .e. ,  matrices 
all of whose elements are greater than or  equal to zero. 

Theorem: A necessary and sufficient condition that the real 
number p be greater than the dominant eigenvalue of the non- 
negative matrix A is that all the leading principal minors of the 
characteristic matrix 

be positive, that is, 

LT = [ A l  . . . A,]. 

S ( j  + 1) = A S ( j )  + 4p2<*L 

A = I - 4pA + 8h2A2 + 4p2LLT. 

A, = p l  - A 

P - a, ,  > 0 

P - all -a12 

-a21 P - a22 
det 1 



This theorem is an amalgamation of an earlier theorem and a num- 
ber of subsequent remarks and lemmas, all of which are rigour- 
ously proved. It is remarkable in that it provides conditions both 
necessary and sufficient to bound the dominant eigenvalue. 

An off-diagonal term of matrix A as defined by (12) 

is greater than zero from ( 3 ) ,  while a diagonal term can be written 

a,, = ( 1  - 2pXJ + 8 p 2 h f  (15 )  

which is also greater than zero. Thus, A is a nonnegative matrix. 
Since the existence of a dominant real eigenvalue is guaranteed by 
the Perron-Frobenius theorem [5], the conditions for applying the 
theorem quoted above are fulfilled. 

To ensure the stability of (1 I ) ,  we consider the characteristic 
matrix 

As will become apparent in the sequel, the most critical of the lead- 
ing principal minors is that of dimension N .  Denoting by D the 
diagonal matrix 

= 4pA - 8p2A2 (17)  

we are concerned with the principal minor 

AN = det [D - 4p2LL7]. (18)  

With det [LL’] = 0 eliminating many cross terms, we find on ex- 
pansion 

. . .  

= det D - 4 p 2  det D [ L 7 D - I L ] .  (20) 

Making use of (17), we obtain 
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The LMS algorithm requires a positive step size p ,  while (3) en- 
sures the positivity of A,. Hence, to ensure the positivity of A,v, 
we require 

which are the same conditions as those of [3] and [4]. 
It is clear that a similar procedure will yield 

N -  I 

A N - I  > o iff c -.EL- < 1. ( 2 3 )  
, = I  1 - 2 p h ,  

As a consequence of (22a), condition (22b) is more stringent than 
condition (23). Hence, (2221) and (22b) constitute the necessary and 
sufficient conditions for the convergence of the LMS algorithm. 

IV. CONCLUSION 
A clear-cut algebraic analysis of LMS-driven adaptive filters with 

Gaussian input data has been presented. From a similar starting 

point to that of [3] and [4]-a time recursion for the diagonal ele- 
ments of the weight-error covariance matrix-necessary and su t f -  
cient conditions for the convergence of the excess MSE have been 
derived making use of a formal theorem of Gantmacher [SI.  The 
results obtained are the same as those of the above studies. 
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Comments on “Subband Coding of Images” 

C. SANTHOSH KUMAR 

In the above,’  (2) for decimation by 2 X 2 

assumes sample period after decimation ( i . e . .  T’ = 2T where T’ 
and T are the new and old sample periods, respectively) because 
wI and w2 are also divided by two [ l ,  eq. (4)].  In (2),  i t  appears 
that the new spectrum contains the old spectrum (before decima- 
tion) and the old spectrum shifted by ( 7 r / 2 )  rad along the U, axis, 
o2 axis, and both U ,  and o2 axes. This is not true for decimation 
by 2 x 2 ;  rather it contains the old spectrum and the old spectrum 
shifted by T rad (27r/M where M is the decimation factor) [ I ] .  We 
feel that (2) has to be rewritten as 

Using this new equation together with 

then only we obtain (3) of the above,’  which, however, is correct. 
Thus, the analysis following (3) remains valid. 
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