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ABSTRACT

Although optimality of sequential tests for the detection of
a change in the parameter of a model has been widely dis-
cussed, the test parameter tuning is still an issue. In this
communication, we propose a learning strategy to set the
threshold of the GLR CUSUM statistics to take a decision
with a desired false alarm probability. Only data before the
change point are required to perform the learning process.
Extensive simulations are performed to assess the validity
of the proposed method. The paper is concluded by open-
ing the path to a new approach to multi-modal feature based
event detection for video parsing.

1. INTRODUCTION

Change detection in the temporal evolution of a signal is of
key importance in a wide range of applications from system
failures control and diagnosis to event detection in video
streams. Event detection in video streams is important for
parsing the media to create keyframes, or edit points or sum-
maries [1]. The essential idea is that changes in the nature
of measured features reflect a change in the semantics of
the video event. For instance, in sports like snooker and
tennis, a change in geometry of the scene generally reflects
a change in camera view, which itself is an indicator for fur-
ther analysis [2].
Obviously, using both audio and video features, would yield
much better performance in video parsing and recently sev-
eral efforts have been made to exploit that power [3]. The
Hidden Markov Model has been the principal framework for
inference with temporally varying multimodal data thus far.
Mainly offline algorithms exploiting the HMM are consid-
ered for video parsing with mixed audio and visual features.
Gish [4] proposed a distance measure for speech detection
which can be linked to the offline approach described in [5]
of the CUSUM (for CUmulative SUM) algorithm. Here
again, Boreczky and Wilcox proposed to use this distance
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in a HMM framework for video parsing.
However, the HMM treats audio and visual features as com-
ponents of the state vector with no discrimination regarding
the nature of the data. In this paper, the parsing problem
is decomposed into two parts: i) citing that some event has
occurred by detecting a change in the statistical model of
the audio data and then ii) identifying that event by process-
ing of some relevant visual features. In so doing it is more
easy to attribute varying weights to the power of inference
for each feature. It transpires that for sport, quite often the
audio stream is more beneficially used in this manner than
as a component of an HMM state space. A good example is
tennis, in which the sound of a ball hitting the racket is an
essential feature of the game.

Sequential analysis provides a straightforward frame-
work for online event detection from audio signal in doc-
ument exploration. Sequential analysis was introduced by
Wald in the framework of statistical decision in the late 40’s
[6]. He proved that for a given power, the Average Sample
Number (ASN) required to perform a Sequential Probabil-
ity Ratio Test (SPRT) is smaller than the number of sam-
ple required to perform the corresponding fixed sample size
Likelihood Ratio Test (LRT). This appealing result opened
the path to research in the field of sequential detection. In
particular the problem of determining whether a change in a
model occurs can be formulated within Wald’s framework.
Page [7] introduced the CUSUM test as a solution to this
problem. An extensive study of the existing work in change
detection is provided in [5]. More recently, Nikiforov [8]
addressed the problem of change detection and isolation,
namely the problem of detecting and identifying a change
in a statistical model. This can be seen as the equivalent
of multiple hypothesis testing where the probability density
function (PDF) parameter under the alternative hypothesis
is likely to take one among several values. Note that isola-
tion [8] requires a set of known possible values of the pa-
rameter after change. If such knowledge is not available,
a composite hypothesis scheme is invoked. The parameter
after change is considered to belong to a domain of the pa-
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rameter space. Some reinforcement is then to be provided
to perform the isolation task.
Solutions to the simple and multiple hypothesis testing prob-
lems exist which are shown to be optimal with respect to
certain criterion [5, 9]. For the composite hypothesis test-
ing, a sequential optimal equivalent to the Generalized Like-
lihood Ratio test has not been found so far. However, some
algorithms are commonly accepted as almost optimal. One
can cite for example the Generalized Likelihood Ratio (GLR)
CUSUM test proposed by Lorden [10]. Another drawback
of the current state-of-the-art in change detection is the test
parameter tuning issue. A sequential learning scheme has
been proposed by Bershad and Sklansky where the thresh-
old was considered as solution of a diffusion equation con-
troled by positive and negative reinforcement [11]. Besides
the need for a training sample drawn from both hypotheses,
this approach provides analytic solutions in only few sim-
ple cases. Usually, thresholds are manually set, assuming a
priori knowledge on the analysed data [5].
In this communication we propose an approach to auto-
matically set the threshold to apply to the GLR CUSUM
statistics. Optimality criteria of sequential tests such as the
CUSUM test are defined as a lower bound on a detection
performance index for a given false alarm index. Thus, it is
possible to tune the threshold in order to perform a test with
upper-bounded false alarm by using a training sample only
drawn from the PDF under null hypothesis (i.e. PDF before
the change point). We make use of the formulation of the
CUSUM test as a set of parallel open-ended SPRT [10] to
perform a jackknife-like estimation of the threshold.

After reviewing necessary results on sequential analysis
in section 2, we propose three criteria for the tuning of the
threshold in section 3. In section 4 we perform Monte-Carlo
simulations for comparing and validating the efficiency of
the proposed criteria. We conclude in section 5 by propos-
ing a potential application of the presented results to event
detection in tennis broadcasting.

2. BACKGROUND ON SEQUENTIAL ANALYSIS

In this section, we recall the results of theory of change de-
tection that are used to derive the threshold criteria proposed
in this paper.

2.1. Sequential Probability Ratio Test

Suppose a set of independent and identically distributed ran-
dom variables x1, x2, ... are sequentially sampled from the
parent random variable X having PDF fθ(x) parameterized
by the scalar θ. the problem is to decide as soon as possible
between the two hypotheses:

{
H0 : xi ∼ fθ0(x), ∀i
H1 : xi ∼ fθ1(x), ∀i (1)

Let

Sn
1 (θ0, θ1) =

n∑

i=1

ln
{

fθ1(xi)
fθ0(xi)

}
, (2)

be the log-likelihood ratio of the n first sampled data. The
dependence of the test statistic on the parameters of the
problem θ0 and θ1 is omitted when no confusion is possi-
ble. Set two constants A and B and the sequence of instants
T1, T2, ... such that STk

1 ≥ A or STk
1 ≤ B. Then the stop-

ping time T of the SPRT is defined as T = mink{Tk}.
Hypothesis H0 is accepted if ST

1 ≤ B and hypothesis H1

is accepted if ST
1 ≥ A. Wald has shown that the false

alarm probability α and miss detection probability β and
the bound A and B satisfy the following inequalities [6]:





A ≤ ln
{

1−β
α

}
,

B ≥ ln
{

β
1−α

}
,

(3)

Under specific conditions widely accepted in practice, in-
equalities (3) can be replaced by approximations and are
called the Wald’s approximations. A special case of SPRT
is the open-ended test for which the test statistic presents
no lower bound B. In other words, the stopping time of an
open-ended test depends only on the upper threshold A of
the log likelihood ratio statistic.
The SPRT is said to be optimal in the sense that for given
error probabilities, it provides a minimum Average Sample
Number Eθ1{T}.

2.2. CUSUM test

Suppose now that we are to decide whether a change in the
distribution of the sampled data has occurred at instant t0.
The null and alternative hypotheses are now:





H0 : xi ∼ fθ0(x), ∀i
H1 : xi ∼ fθ0(x), i < t0,

xi ∼ fθ1(x), i ≥ t0,
(4)

The statistic Sn
c of the CUSUM test is built from the partial

log-likelihood ratio Sn
l = Sn

1 − Sl−1
1 of the first n data

sampled:
Sn

c = max
1≤l≤n

{Sn
l }. (5)

Given threshold A, the stopping time T is defined by T =
min{Tk, k = 1, 2...} where the Tk are such that STk

c ≥ A
[5].
Lorden has proved in [10] that for a given rate of false alarm,
the mean time delay for detection of the CUSUM test reaches
the minimum achievable by a sequential test. This states the
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optimality of the CUSUM test under a minimax type of cri-
terion.

Consider now that there is less a priori information on
θ1. More specifically, parameter θ after the change point is
only known to belong to a domain Θ1 such that θ0 /∈ Θ1.
The problem is to decide as fast as possible between the two
hypotheses:





H0 : xi ∼ fθ0(x), ∀i
H1 : xi ∼ fθ0(x), i < t0,

xi ∼ fθ1∈Θi
(x), i ≥ t0,

(6)

The GLR CUSUM test resolves this problem by applying a
threshold A to the test statistics

Sn
g = max

1≤l≤n
{max

θ∈Θ1
{Sn

l (θ, θ0)}}. (7)

The CUSUM test is a special case of the GLR CUSUM test
in the case where Θ1 reduces to the singleton {θ1}.

3. THRESHOLD LEARNING IN PRESENCE OF
SAMPLE DRAWN FROM THE NULL HYPOTHESIS

Suppose independent identically distributed random vari-
ables x1, x2, ... are sequentially sampled from a PDF fθ(x)
of the exponential family with varying but unknown θ. Sup-
pose also it is known that for the N first samples θ = θ0.
Some unknown changes in θ occur at unknown instants ti >
N , i = 0, 1, . . . The problem is to detect each change of pa-
rameter θ.
A CUSUM-like algorithm is obviously the best solution to
this problem since each decision has to be taken as soon as
possible, i.e. before a new change occurs. Moreover, the
parameter after the change point can take any value so we
have to apply a GLR CUSUM test where Θ1 ⊂ IR \ θ0.
Since no information is available concerning domain Θ1, it
is impossible to assess a threshold value A to the test which
will satisfy a desired mean time delay to take a decision for
a given rate of false alarm. We propose to use the N first
samples drawn from the known PDF fθ0(x) to set a thresh-
old that ensures at most a required false alarm probability.

3.1. Principle of the learning procedure

The Kulback-Leibler (KL) information I(θ0, θ1) shared by
two PDF’s fθ0(x) and fθ1(x) is defined by:

I(θ0, θ1) = E1

{
ln

{
fθ1(x)
fθ0(x)

}}
(8)

The KL information is the mean increment of the likelihood
ratio statistic under hypothesis for data drawn from fθ1(x).
It can be seen as a degree of detectability between hypothe-
ses H0 : θ = θ0 and H1 : θ = θ1 [5]. When θ0 = θ1,

the Kulback-Leibler information is null; performing a test
of detection is actually meaningless in such a case.
It is easy to see that up to instant N , the GLR CUSUM stop-
ping rule defined previously is equal to the extended stop-
ping time of N parallel open-ended SPRT triggered at in-
stants k = 1, 2, ...N [10]. When performing a GLR CUSUM
test as a set of parallel open-ended tests, N(N−1)/2 statis-
tics are computed. So, considering the GLR CUSUM test as
a set of open-ended tests allows straightforwardly to place
ourselves in a jackknife [12] approach: we consider that the
statistics and the maximum likelihood estimates of θ1 under
null hypothesis are samples of the corresponding random
variables. We propose to tune the GLR CUSUM parame-
ters by evaluating a minimum degree of detectability using
the jackknife approach.

3.2. Threshold selection criteria

Consider that the parameter after the change point is known
to belong to domain Θ1 and define:

θm = arg min
θ∈Θ1

{I(θ0, θ)}, (9)

i.e. the minimum measure of detectability of the change.
There exists the following relation between false alarm prob-
ability α of the open-ended SPRT and threshold A [5]:

A = ln




−3 ln{α}

[
1 + 1

I(θ0,θm)

]2

α





. (10)

However, as no information is available about the parameter
after the change point, θm is unknown in our problem. So,
during the learning session, we propose to look for θm such
that I(θ0, θm) is a measure of affordable detectability.

Denote θ̂n
l = arg maxθ∈Θ1{Sn

l (θ0, θ)}, the maximum
likelihood estimator of θ computed from samples between
instant l and n. We propose three criteria for evaluating θm:

• first criterion: mean parameter criterion.
Parameter θm in (9) is the mean of the N(N − 1)/2
estimates θ̂n

l required to compute the test statistics:

θ1
m =

2
N(N − 1)

∑

l,n

θ̂n
l . (11)

• second criterion: mean information criterion.
Parameter θm in (9) is the mean of the KL informa-
tion between fθ0(x) and fθ(x) for each θ = θ̂n

l :

I(θ0, θ
2
m) =

2
N(N − 1)

∑

l,n

I(θ0, θ̂
n
l ) (12)
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• third criterion: bound criterion.
For an open ended test with threshold A, and PDF
of the exponential family, it can be shown using the
Wald’s approximation that for N = A

I(θ0,θm) the false
alarm probability of an open ended test can be ap-
proximated by:

Pθ0(T ≤ N) ≈ N exp{−A}. (13)

So we choose the θm which minimizes the difference
between the left and right hand sides of approxima-
tion (13):

θ3
m = arg min

θ̂n
l

{N exp{−NI(θ0, θ̂
n
l )}

−card{Sn
g ≥ nI(θ0, θ̂

n)}
N

}, (14)

where θ̂n = 1
n

∑n
l=1 θ̂n

l . The choice of the second
term in the right-hand side of (14) to estimate the
probability of false alarm is motivated by considering
Sn

g as the test statistic of a reverse-time sequential test
performed up to time n.

4. EXPERIMENTAL VALIDATION

An experiment has been conducted to compare the learning
capability of the method when applied with the three pro-
posed criteria. We focussed on Gaussian data of constant
mean presenting a change in the variance. As discussed in
section 5, this model is relevant for event detection from the
audio recording of a video clip.

6000 trials with data sets consisting of 800 samples hav-
ing a Gaussian distribution with zero-mean have been per-
formed. For each trial, change in the variance σ2 of the dis-
tributions occurred at instant t0 = 301. Before the change
point σ2 = σ2

0 = 1. The 6000 values σ2
1 of the variance

after the change point were drawn from a uniform distribu-
tion U([1, 15]). During the experiment, a change was con-
sidered as not being detected if no decision was taken after
500 samples. So, the experiment is performed as a trun-
cated sequential test. It is most likely that both false alarm
probability and detection probability should be higher if the
stopping time could tend to infinity. However, in this case,
the false alarm probability would increase less than the de-
tection probability [13].

Fig. 1 shows the rate of false alarm computed from the
6000 GLR CUSUM tests performed versus the probability
of false alarm α of the open-ended tests. Three different
length N = 100, 200, 300 points of the learning set have
been tested. The three criteria presented in the previous
section are considered. The threshold A computed with the

mean parameter criteria offers the smaller rate of false alarm
while the threshold A bound criterion provides the higher
rate of false alarm.
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Fig. 1. False alarm probability of the GLR CUSUM test
with respect to the false alarm probability α of the corre-
sponding open-ended tests. The data set is of 800 samples.
The learning length is N = 100 samples (a), N = 200
samples (b) and N = 300 samples (c).
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However, for bound criterion and mean information crite-
rion the probability of false alarm is closed to α. For small
α the probability of false alarm get higher than α. We are
not able to provide a definite explanation for such a behav-
ior event though we suspect that the small number of trials
performed (6000) can be considered as partly responsible.

To apply the bound criterion or the mean information
criterion provides a probability of false alarm which is closed
to α. However, it seems that when the learning length N in-
creases, the difference between α and the actual probability
of false alarm increases too. The mean parameter criterion
provides a much smaller probability of false alarm. Further-
more, to apply the mean parameter ensures a loose upper
bound to the actual probability of false alarm. This is to
the expense of the probability of detection which in turn, is
smaller. Indeed, on Fig. 2 is presented the detection rate for
250 trials performed from Gaussian data with a parameter
after the change point σ2

1 = 1.5. The probability of detec-
tion of the GLR CUSUM performed using the mean param-
eter criterion is smaller than when applying any of the two
other criteria.
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Detection rate

α

bound criterion
mean parameter criterion
mean information criterion

Fig. 2. Detection rate of the GLR CUSUM test versus the
false alarm probability α of the corresponding open-ended
tests. 250 experiments have been run with σ2

0 = 1 and σ2
1 =

1.5.

On Fig. 3 is plotted the variance of threshold A com-
puted using the bound criterion and the mean information.
It appears that when applying the bound criterion, the vari-
ance of A is smaller than when applying the mean infor-
mation criterion. That makes the bound criterion a more
reliable criterion.

5. DISCUSSION ON APPLICATION TO VIDEO
PARSING

We have proposed a scheme for automatically tuning the
threshold of a GLR CUSUM test to meet a desired proba-
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Variance of threshold H
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Fig. 3. Variance of the thresholds evaluated using the bound
criterion and the mean information criterion. The learning
length is N = 200 samples.

bility of false alarm. It is only required that the learning set
is drawn from the distribution before change. Three criteria
have been proposed to evaluate the threshold, namely, the
bound criterion, the mean parameter criterion and the mean
information criterion. These criteria evaluate a minimum
degree of detectability of a change in the parameter of inter-
est from the learning set.
Experimental comparison of the three criteria has been con-
ducted on simulated data. It turns out that the mean param-
eter criterion provides a probability of false alarm which is
much smaller than the desired probability of false alarm.
Since this implies a lowest probability of detection, we con-
clude that this criterion is not relevant. The two other crite-
ria perform similarly in terms of probability of false alarm.
However the bound criterion provides a smaller variance of
the derived threshold than the mean information criterion.
That makes this criterion eligible as the standard criterion.

Racket hit detection in tennis broadcast. We present now
a methodology for video parsing which involves a sequen-
tial detection of event using the tuned GLR CUSUM. We
consider the problem of detecting racket hits in a tennis
rally from the sequential analysis of the audio recording.
A racket hit is characterized by a very impulsive waveform
with high energy. Thus we aim at detecting a change in the
variance of the data when a racket hit occurs.
Fig.4 presents a typical audio recording of a rally. Five
racket hits are to be detected. Moreover, one of the player
shouted before the third racket hit. Before processing, data
were subsampled so that independency could be assumed.
In order to take account of echoes due to the acoustical char-
acteristics of the tennis court, we assumed the duration t1 of
a racket hit was t1 = 450 ms. The GLR CUSUM test was
performed recursively as follows: denote Tk the instant of
the kth alarm. The kth point of change t

[k]
0 is estimated us-
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Fig. 4. Parsing of the audio recording of a tennis rally.

ing the maximum likelihood estimator:

t̂
[k]
0 = arg max

l
{STk

l }. (15)

A new test is performed from starting point tin = t̂
[k]
0 + t1.

Threshold H was tuned so that the probability of false alarm
α = 10−3 is met. The threshold was trained from the 200
first samples. This corresponds to a learning time of 453
ms.
The algorithm has detected 7 change points t̂

[k]
0 in the vari-

ance of the data. On Fig.4, the 7 segments [t̂[k]
0 , t̂

[k]
0 + t1] are

plotted in grey color. The five racket hits were successfully
detected. The shout was also detected as well as a small
variation in the variance of the noise, due to a variation in
the recording system tuning. The times of occurrence of the
first, second and fifth racket hits were accurately estimated.
The two errors are due to the detection of a slight variation
of the magnitude of the signal. The first error is due to the
detected shout around instant t = 4 seconds. The other er-
ror is due to an unidentified event happening at instant 5.5
ms.

In spite of the diversity in the magnitude of the wave-
form characterizing the detected events, the threshold was
correctly tuned for insuring a good rate of detection. How-
ever, additional information is required to isolate the differ-
ent events in the sense defined by Nikiforov [8]. For exam-
ple, specific to a tennis game, an a priori probability for a
shout to happen right before a racket hit can allow to dis-
criminate the voice shout happening at instant 4 ms and the
subsequent racket hit. In a multi-modal cooperation frame-
work [14], we are currently investigating reinforcement pro-
vided by visual features such as player or ball tracking or
motion field estimate to isolate the detected events.
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