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Abstract—Image sequence restoration has been steadily gaining
importance with the increasing prevalence of visual digital media.
Automated treatment of archived video material typically involves
dealing with replacement noise in the form of “blotches” that
have varying intensity levels and “grain” noise. In the case of
replacement noise, the problem is essentially one of missing
data that must be detected and then reconstructed based on
surrounding spatio–temporal information, whereas the additive
noise can be treated as a noise-reduction problem. It is typical to
treat these problems as separate issues; however, it is clear that the
presence of noise has an effect on the ability to detect missing data
and vice versa. This paper therefore introduces a fully Bayesian
specification for the problem that allows an algorithm to be
designed that acknowledges and exploits the influences from each
of the subprocesses, causing the observed degradation. Markov
chain Monte Carlo (MCMC) methodology is applied to the joint
detection and removal of both replacement and additive noise
components. It can be seen that many of the previous processes
presented for noise reduction and missing data treatment are
special cases of the framework presented here.

Index Terms—Autoregressive models, Bayesian inference,
composition sampling, factored sampling, Gibbs sampling, image
processing, marginalization, Markov chain Monte Carlo, missing
data reconstruction, motion estimation, noise reduction, video
processing.

I. INTRODUCTION

W ITHIN the last five years, there has been an explosion in
the exploitation and availability of digital visual media.

Digital television has been widely available in Europe for the
last two years, and Internet usage continues to grow as does the
availability of MPEG(1,2,4), AVI audio/video clips through the
increasing use of streaming media. Digital video/versatile disk
(DVD) usage is growing faster than CD audio usage did when
it was first introduced. There is now growing interest in digital
cinema, implying that the whole chain from “film” shooting to
distribution/projection will be digital.

With all these available digital video “channels,” it is amusing
to note that the main concern for broadcasters is the relative un-
availability of content. Holders of large video, film, and pho-
tograph archives, for instance, the British Broadcasting Com-
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pany (BBC; U.K.), Institut National de L’Audiovisuel (INA;
France), and Radio Televisão Portuguesa (RTP; Portugal), find
that archive material is in increasing demand. However, the ma-
terial is typically degraded due to physical problems in repeated
projection or playback or simply the chemical decomposition
of the original material. Typical problems with much of the
archived film material have been increased level of noise, and
dirt and sparkle due to the deposition of dust or the abrasion of
the material. Of course, there are many more problems specific
to the media, e.g., 2-in tape scratches affecting 2-in videotape
and vinegar syndrome, which is a Moire pattern affecting film
and the film scanning process.

In order to preserve and exploit this material, these defects
must be removed so that the picture quality can be restored. Be-
cause of the large amount of data, manual retouching is imprac-
tical. Therefore, automated techniques have become important.
Furthermore, it has been recognized that the reduction ofnoise,
in particular before MPEG compression, allows a more efficient
usage of the available digital bandwidth [3].

Hence, the area of automated restoration of image sequences
has moved from being principally a signal processing research
topic to one of more widespread significance. Projects such as
the automated restoration of original film and video archives
(AURORA) and broadcast restoration of archives by video anal-
ysis (BRAVA), which have been funded by the European Union,
and recent companies that deal in automated restoration (DUST
SA, MediaCleaner, and MTI) are all examples of this increased
relevance.

This paper concentrates on two central issues in automated
archive restoration: missing data detection and removal as well
as noise reduction. It is typical to consider that the two prob-
lems are separate and can be treated independently. Thus, it is
possible to cite much work on noise reduction for image se-
quences beginning with the early temporal recursive filtering of
Duboiset al. [4] and continuing with various optimal schemes
[5]–[8] and, more recently, with the 3-D wavelet approaches of
Van Roosmalenet al. [9]. Work on missing data treatment for
image sequences is less common [1], [2], [10]–[12].

Removal of both noise and missing data must rely on motion
information in order to be able to remove degradation with any
useful level of detail fidelity. However, it is clear that if data is
missing in the first instance, then “blind” motion estimation will
not be able to render the motion field of the underlying “true”
image sequence. This will, of course, have some effect on the
subsequent processing, most notably the inability to reconstruct
the image data in the missing region. Typically, this results in
the replacement of the missing area patch with another missing
area patch that is equally disturbing.
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Similarly, missing data has an effect on the noise reduction
step since it reduces the temporal correlation of the frames in
the image sequence. In a spatio–temporal scheme, this would
typically cause the noise reduction phase to ignore the temporal
information and default to some kind of spatial noise reduction,
which will reduce the noise-reduction level. Of course, the rel-
ative importance of these effects depends on the size of the area
corrupted by missing data and the level of noise.

A. Interactions Between the Stages

Historically, various schemes have been developed that coped
with the difficulties present with simultaneous estimation using
a divide-and-conquer approach.

For instance, previous work has considered the removal of
Blotches as a two-stage process: First, detect the missing loca-
tions [1], and then, reconstruct the underlying image data [2]
using a spatiotemporal image sequence interpolation process.
This latter process could be some form of optimal linear in-
terpolation [13] or a variant of a 3-D median filter [12], [14].
Because of the problems with Blotches and motion estimation
mentioned earlier, the reconstruction stage may be further spec-
ified as a motion reconstruction followed by an image recon-
struction stage [15]. This works well, provided that the detec-
tion step has been successful.

B. Full Description and MCMC

As far as missing data interpolation is concerned, it is pos-
sible to pose the motion reconstruction and image interpolation
process as a joint problem [16], but this is an interim step toward
a full specification of the problem under one framework.

The first steps toward the full specification were introduced
in [17]. A Bayesian framework was employed to present a joint
detection and reconstruction methodology that linked the mo-
tion reconstruction as an integral part of the process of blotch
treatment. In [13], there is an exhaustive discussion of the joint
detection/interpolation scheme for blotches.

This paper unifies and extends these ideas by addressing the
two issues of missing data and noise reduction in the most com-
plete manner to date. The resulting system is certainly complex,
but the solution is made tractable by the use of Bayesian infer-
ence in combination with marginalization, composition (or fac-
tored) sampling, and Gibbs sampling. By selecting carefully the
sequence of estimation of the variables and combining both sto-
chastic and deterministic schemes, the paper discusses a com-
putationally tractable scheme for implementation.

The following sections introduce the concepts, presenting the
various priors employed for the unknowns and Section VI-A,
and then addresses the particular issue of stochastic solution of
the system equations.

II. QUANTIFYING THE PROBLEM

Assume that a degraded video signal has been digitized and
stored as a sequence of observed image intensities ,
where denotes a particular frame in the sequence, and
denotes a pixel location within that frame. As discussed above,
our method explicitly models two common types of degradation

in the image sequence: replacement noise (or “blotches”) and
random additive noise.

Replacement noisecompletely obliterates the underlying
image pixels at certain pixel positions in the image sequence.
The replacement process typically occurs in contiguous patches
within a single video frame and will thus be referred to as the
“blotch” process (the top and middle rows of Fig. 7 show a good
example of blotches in a video sequence). The Blotch process
at pixel location in a particular frame is fully specified by
random variables and . The first of
these [ ] is a switching process that determines whether
replacement noise is present at[set ] or absent [set

]. The second [ ] gives the pixel intensity of the
replacement noise at.

Random additive noise: Random additive noise ,
which is modeled here as a Gaussian i.i.d. process with

, is also present in a typical frame of video.
The observed degraded pixel values may thus be modeled as

(1)

where is the intensity of the uncorrupted image pixel at
position in the frame . An interesting point to note about this
representation of the degradation process is that exists as
a “hidden” background process even at pixel locations where
there is no replacement noise [i.e., ], and similarly,

exists as missing image data when replacement noiseis
present [i.e., ]. This feature is an integral part of the
MCMC sampling algorithms developed in the paper.

Two distinct (but interdependent) tasks can now be identified
in the restoration problem. The missing data detection problem
is that of estimating at each pixel site. The noise-reduc-
tion problem is that of reducing without affecting image
details. The replacement model was employed within a non-
probabilistic framework by Kokaramet al. in [14] for image se-
quences andimplicitly employed in a two-stage Bayesian frame-
work for missing data detection and interpolation by Morriset
al. [18]–[20].

The replacement noise expression developed here in (1)
remains the most suitable form for the corruption caused
by missing data simply because the Blotch obliterates the
underlying image data (see Fig. 7).

III. I MAGE SEQUENCEMODEL

The original, uncorrupted image sequence is assumed to be
generated from a causal spatio–temporal autoregressive (AR)
process [1], [21], [22]. The image sequence can thus be ex-
pressed as follows:

(2)

where the pixel intensity in frame is predicted by a
linear combination of pixels within a spatio–temporal neigh-
borhood around , suitably compensated for motion of ob-
jects between adjacent frames. The geometry of this neighbor-
hood, or “support,” is defined by offset vectors ,
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Fig. 1. Top: Spatiotemporal geometry for simple three-dimensional (3-D)
AR model (3-D linear predictor) with five taps in the previous frame. Bottom:
Geometry for same model incorporating motion. The dark circle shows the
pixel to be predicted.

where is the spatial offset within a particular frame, andis
the temporal offset in frames. The linear coefficients are the,
and is an i.i.d. excitation or residual sequence.
The motion offset between framesand is given by

. Subsequently, in the paper, spatial variation in the
AR model coefficients will be incorporated in order to account
for spatial nonstationarity of the image data. In these cases, the
coefficients will be denoted .

Fig. 1 illustrates these ideas using a simple five-tap model
( ) with as indicated by the arrows in the upper half
of the figure. This upper image shows the situation in the case
of no relative motion offset between frames. The dark pixel in
frame is being predicted by a linear combination of the five
sites in the previous frame at locations . The intensity of
this pixel is in the model equation (2). The five support
pixels are labeled 1 through 5 to correspond with the relevant
offset vector , etc. Each pixel in frame is predicted in the
same manner with this model framework. Of course, the model
coefficients will not remain the same over the whole image, and
in practice, the model coefficients are allowed to vary spatially
between small sub-blocks of each image frame.

The lower image in Fig. 1 shows the situation when relative
motion of objects between frames is incorporated. In this case,
there is a displacement of . Therefore, to
predict each pixel in frame using the same five-tap model
as discussed above, each member of the five-tap support must
be offset by this motion vector. Hence, we have the term

in the model expression, which specifies the
location of support pixels when motion is present between the
frames.

The model expression above (2) is valid for any choice of
spatiotemporal neighborhood vectors. For example, it is per-

fectly reasonable also to include terms from the current frame
(i.e., having ). The only constraint we impose for the
work presented here is that the support iscausal; in other words,
all of the intensity values required to form the summation on
the right-hand side of (2) are obtained from earlier frames or
from the asymmetric half-plane above(other causal structures
are also permissible, such as the asymmetric half plane to the
left/below/right of ).

IV. BAYESIAN FRAMEWORK

From the degradation model of (1), it can be seen that the
principal unknown quantities in frame are , ,
and . The Bayesian approach presented here infers these
unknowns conditional on the corrupted data intensities from
the current and surrounding frames , , and

. In addition, note that the motion information
is also an unknown since it is unavailable directly from the
corrupted data.1 The remaining “hidden” unknowns are the
AR model coefficients , and

. It is assumed that , which is the additive noise vari-
ance, is a user-defined parameter owing to the highly subjective
nature of the noise reduction problem. Now, denote the collec-
tion of unknowns at pixel in frame as ,

, .
Suppose that at any given time, three frames of observed data

are available ( , , and ), where denotes all of
the observed pixel values in frame.

In the modified Gibbs sampling solution proposed later, it
is required to manipulate and draw samples from the posterior
conditional distribution for , which is the collection of all
values for frame of the sequence. Assume for the moment that
the uncorrupted image data from surrounding frames and

is directly available. We assume also that the maximum
degree of temporal offset for the AR coefficients is one, i.e.,
prediction of a given pixel is in terms of image data that is at
most one frame in the past.

Proceeding in a Bayesian fashion, the conditional may be
written in terms of a product of a likelihood and a prior as fol-
lows:

(3)

This posterior may be expanded at the single pixel scale, ex-
ploiting conditional independence in the model, to yield

(4)

where denotes the collection ofvalues in frame with
omitted and , , , and denote local dependence

1The subscripts have been dropped in the notation for the motion vector~d(~x)
for simplicity and to emphasize that the arguments apply to both backward and
forward motion information.
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neighborhoods around (in frame ) for variables , , and
, respectively. See the sections on prior distributions for

details of these neighborhoods.
In the above general expressions,, , and are explicitly

permitted to vary spatially within the frame. This is a desirable
feature in general image sequences since they will contain spa-
tial nonstationarity, if only because of the presence of different
objects in the scene. In practice, these quantities are expected to
be spatially quite smooth within regions corresponding to the
same object within an image frame. Hence, in the algorithm
implementation, these three parameters are constrained to be
piecewise constant within small sub-blocks that form a regular
grid over the image.

It is now necessary to assign precise functional forms to the
various terms in the prior and likelihood expressions.

A. Corruption Likelihood

The first distribution on the right-hand side of (4) is derived
from the model for degradation stated in (1). We have, for a
single pixel site

(5)

Here, the notation is introduced to allow the reader to dis-
tinguish the form of this particular function when it is used in
the subsequent text.

B. Original (Clean) Data Likelihood

The second term on the right of (4) is the likelihood of the
original, clean image data in frame, given clean image data
from current and surrounding frames. This may be derived
directly from the model statement of equation (2). Since the
spatio–temporal AR models are constrained to have causal
support both in space and time, the joint distribution of error
or residual terms can be constructed simply as a product
of univariate Gaussians.

For any given pixel at site, the error term in (2) is a linear
function of the pixel intensity and those in its local causal
support region ; .
We can write this as

(6)

where is a column vector containing all the pixel intensities
from frames , , and , i.e., vec , vec ,
vec . is a highly sparse column vector containing
the elements of arranged to satisfy the AR prediction error
equation, i.e.,

To explain graphically, consider Fig. 2, and assume that any
motion has already been compensated for, so that allterms
are equal to zero. The figure labels sites in a prediction error se-
quence (top) and in the image sequence (below) corresponding
to three frames of 4 5 pixels. Suppose it is required to calculate

Fig. 2. Three frames of motion-compensated data and their relationship to
the data vectors required given the five-tap model discussed in Section III.
Top: Locations of sites at which prediction equations are set up. These 12 sites
correspond to the excitation vectore = [e ; e ; e , e ; e ; e ; . . . ; e ].
The sites are chosen so that the data required in support does not extend beyond
the bounds of the available frames. Bottom: The sequence for raster scanning
pixels into the data vectori.

the prediction error at site 1 in the prediction error frames (which
is denoted in this case). Assume a five-tap 3DAR model as
described previously. The bottom part of Fig. 2 labels sites in
the image, and for this model, is the difference between the
intensity and the sum of the pixel intensities at the sites
labeled 7, 2, 8, 12, 6, weighted by the 3DAR model weights

, respectively. Creating the vectorby raster
scanning all the data in the three frames into a single column
vector allows to be written as

(7)

where the single “1” occurs at position 27 in the first vector.
Hence, we get (6).

Now, in order to form the likelihood for frames and
conditional on frame , stack all the error terms

corresponding to pixels in frames and into a single
column vector and express the whole vector as

where the row of corresponding to is set equal to .
With reference to Fig. 2, the vectoris a vector of 12 predic-

tion error elements with positions as shown in the top diagram.
Each row of then corresponds to one of the 12 prediction er-
rors and is made up in accordance with the intensities required
from the lower part of the figure in order to form that particular
prediction error equation.

The joint distribution for these residuals in a block of size
pixels is

(8)
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Note that to generate residuals at each of thesites in a block,
image data outside that block both in space and time would gen-
erally be necessary to provide the required support pixels. In
Fig. 2, we have a “block” of pixels, formed as two
patches of 2 3 pixels centered in the middle of the 45 grid
in both frames and .

Note also that in implementation, the motion information
is used to shift the relevant image blocks prior

to sampling of other parameters (such as the AR coefficients).
By precompensating for the motion in this way, no motion
parameter is explicitly required by the AR coefficient sampling
routines.

Now, if we denote the set of pixels values corresponding to
the sites used for the prediction errors (in the vector) as and
the remaining pixels in all three frames as , then the joint
conditional likelihood for these pixels is readily obtained as

(9)

where and denote the entire collection of AR coefficients
and variances corresponding to the error terms. The condi-
tional distribution for any subset of, say , is then, by the con-
ditional probability formula, proportional to this expression. In
particular, the single-site conditional distribution required above
[see (4)] , , is
univariate Gaussian and directly proportional to ,

.
In Fig. 2, for example, we could choose to sample the patch

of image data at sites , in frame ,
in which case, simply set

. will be used later on to identify the
particular probability function derived in this section.

V. PRIORS

The remaining distributions encode the prior belief about the
values of the various unknowns. For simplicity, a uniform prior
is assigned to . This removes from (4). The variance

is assigned a noninformative prior , following
[23]. The remaining priors are more involved and deserve sep-
arate discussion.

A. Motion Prior

In practice for this application, it is sufficient to encode the
notion of local motion smoothness in order to achieve implicit
motion interpolation. The prior adopted for motion smoothness
is a Gibbs energy prior, for instance, as introduced by Konrad
and Dubois [24] and Stiller [25]. To reduce the complexity of the
final solution, the motion field is block based, with one motion
vector being employed for each specified block in the image.

The prior for , which is the motion vector mapping
the pixel at in frame into frame , is as follows:

(10)

Fig. 3. Neighborhood and cliques forp (~d (~x)j�).

where is each motion vector in the neighborhood represented
by , and is the weight associated with each clique.
The situation is illustrated in Fig. 3. The same prior is used
for . The neighborhood is the eight nearest
neighbor blocks, as shown in the figure.

The driving force behind the specification of this prior is to
penalize the creation of motion vector fields that have a high
local gradient. Thus, in Fig. 3, the vector most likely to be appro-
priate is that which is aligned with the same directions as most
of the other vectors. In the case shown in Fig. 3, that direction is
to the left and down. Since the actual implementation of the final
algorithm uses a candidate selection step for motion vectors, the
effect of this prior is similar to that of a vector median operation,
i.e., many of the vectors are caused to align in the same direction
and only large discontinuities are allowed. This behavior fol-
lows that of typical observed motion fields since motion tends
to be smooth (or the same) within a single object but then dras-
tically different between objects.

In order to discourage “smoothness” over too large a range,
is defined as , where is the

location of the block (in “block” units) providing the neighbor-
hood vector , and is the central block location. in
the experiments presented later.

B. Priors for Corruption and Detection

Since blotches tend to be “convex” clumps of degradation,
the prior for should encourage contiguous areas of to
form. In practice, blotches tend to have fairly constant intensity
(see Fig. 7). If a texture exists, it is certainly smoother than that
in the original image. Thus, the prior for should encourage
smoothness of intensity, in much the same way that the prior for

encourages smoothness in its binary configuration. There-
fore, it is reasonable to place a similar energy prior on both the
binary field and the blotch value field .

It is found that acknowledging discontinuities in these fields
leads to much better behavior. That is to say that blotches are
smooth onlywithin their boundaries but show a large contrast
with the background. Edges in the(corruption) and (blotch)
fields must correspond to edges in the image since the corrupted
areas are generally well delineated from their surrounding by a
marked grey-scale transition. Thus, a simple zero crossing edge
detector employed on the degraded image will enable the rough
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configuration of an edge field that can be used subsequently to
define the priors on the and fields.2

The priors are therefore defined as follows.

(11)

(12)

where the eight vectors define the eight connected neighbor-
hood of , and represent sets of these values from the re-
spective fields (as previously). is set to 1 if there is
a significant zero crossing between the locationin the image
and from which a neighborhood pixel is extracted. Thus,
the smoothness constraint [i.e., the pairwise interaction denoted
by ( ) for instance] is turned off across signifi-
cant edges in the image. Note that these priors are defined on the
pixel resolution image grid, whereas the motion prior discussed
previously is defined on ablockgrid. In the results shown later

, (the edge field) was configured using an edge detector em-
ploying difference of Gaussians (DOGs) [26] with the gradient
threshold set at 5.0, the variance of the Gaussian filters was 1.0,
1.6, and the filter window sizes were 99.

Note that the Gaussian Markov random field (GMRF) prior
used for is in fact almost identical to an autoregressive
model for , except that it defines the conditional distribution
only. The use of this prior allows the samples forto be gen-
erated from the well-known Gaussian distribution and therefore
results in a low computation step.

For both these priors, are assigned values such that
, . This makes the hyperparameter

weighting circularly symmetric.

VI. SOLVING FOR THE UNKNOWNS

The solution is generated by manipulating
. For instance, the MAP estimate is generated by

maximizing the distribution with respect to the unknowns.
Unfortunately, due to the nonlinear nature of the expression, a
closed-form solution to the optimization problem is not avail-
able. Instead, the Gibbs sampler is used to generate random
samples from the required distribution. These random samples
can be manipulated numerically to yield the required estimate.
For instance, the average of the samples yields the minimum
mean-square error (MMSE) estimate.

A. Gibbs Sampler

The Gibbs sampler is an MCMC technique that decomposes
the problem of generating a sample from a high-dimensional
probability density function (pdf) into a series of draws from

2It is accepted that the incorporation of this type of information derived from
the observed data affects the importance of the prior, but for all practical pur-
poses, the result is effective.

conditional pdfs of lower dimension. In this case, it is required
ultimately to draw samples for the entire image fieldand,
therefore, all the associated variables for motion, etc. This draw
can be decomposed into a series of draws from the conditional
distribution for each variable on a block basis, thus reducing the
dimensionality of the pdf to be manipulated.

Consider, therefore, that processing is performed on a block
basis, and let contain at least the pixels to be treated in a block
and their immediate AR support. The corrupted pixels (noisy
or missing) are denoted (i.e., all the pixels to be treated in
the current block ) and the remaining pixels as. The vector
introduced previously, therefore, consists of data to be estimated
(or unknown data) , and the remaining data. In the example
given in Fig. 2, the data to be estimated is the central block of 2

3 pixels in frame , and all other data constitutes.
The Gibbs sampler then operates iteratively with replace-

ment, given some starting guess for the unknowns, by drawing
random samples from the conditional posterior distribution at
each block for each unknown in turn

where , etc., are vectors containing the relevant parameters,
and the location argument has been dropped for simplicity.
These conditionals can be derived by manipulation of the joint
posterior given in (4). This sampling procedure is repeated until
convergence is reached, according to some suitable criterion.
The process allows for MMSE, maximuma posteriori(MAP),
or sampled estimates ofby manipulation of the sampled values
following convergence.

Given the “noninformative” [27] prior distributions for,
introduced previously, the sampling operations for

involve simple random draws from well-known distributions.
However, some practical considerations encourage an altered
sampling strategy. In this strategy, the motion and image model
variables are sampled jointly on a block basis, and the image
data itself is sampled jointly with and on a pixel basis.

B. Adaptations to the Gibbs Sampler

The convergence of the Gibbs sampler is generally improved
if several unknowns are sampled jointly [28]. This is possible
using the method of composition [16], [23], . A random draw
from , for instance, is made possible by
the decomposition

(13)

Note that are conditionally independent of, and
is a vector containing all the parameters inexcept

for . The various composition terms can be derived by
successivelyintegrating out and then from the posterior
distribution.
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1) Joint Estimates for Motion and AR Parameters:Random
draws from can therefore be implemented
by drawing from followed by a draw from

using the value of drawn previously, and
then similarly for , using the samples just generated
for and . In this manner, a joint draw for is also
achieved.

The expressions required to perform these joint draws can
be derived [13], [16] by employing the vectoras previously
described, containing all the excitation terms from (2) within a
block of data and expressing it as . Here, has the
same meaning as before.is created in a similar way to that
of , which was created previously to result in the excitation
vector .

Thus, is a matrix of pixels chosen from the frames such
that the product of each row ofand the coefficient vector
results in each sample of the excitation vectorthrough (2).
This product of the rows ofand (or the rows of and ) is the
convolution of the data with the linear prediction filter arising
out of (2). Hence, this filter is defined by the coefficientsand
the chosen filter geometry indicated by the offset vectors.

This expression then leads to the following distributions re-
quired in the joint draw from :

IG

(14)

where

and (15)

where is the number of pixels in the image block, and
[which is shorthand for ] represents a neighborhood of
vectors surrounding the sampled location. The derivation of
these expressions can be found in [13].

2) Joint Estimates for : In practice, the draws for
are performed jointly on a pixel by pixel basis, sampling

from the expression

(16)

where denotes all clean image datanotat site but required
for all prediction equations [see (2)] involving site. This joint
draw is unusual because of the switching process in the likeli-
hood, but since is a binary field, a feasible sampling scheme
results. The distributions required for the composition sampling
can be derived (see Appendix A) by integrating the posterior to
yield

for

for
(17)

for

for

(18)

for

for

(19)

where is the set of neighborhood of detection indicators
surrounding the sampled location, are the intensities of
pixels at location in the clean and dirty image, respectively,
and

(20)

Note that it is necessary to decompose the coefficient matrix
into a matrix and a column vector so that the prediction

error at the pixel sites whose model support overlaps with
may be expressed as . Here, is the

unknown image data at site. are the current sampled values
of the original image data that are located at sites in the region
of , which include in their model prediction support.

VII. H YBRID OPTIONS FORMOTION

The conditional distribution for motion in (14) is very diffi-
cult to sample from directly. It may be possible to produce a
Gaussian approximation to the distribution that is simpler to
sample from by linearizing the function [23]. However, mo-
tion is typically a spatially low-frequency signal (piecewise con-
stant), and therefore, it is almost certain that the correct motion
for a particular block exists elsewhere nearby. It is here, in par-
ticular, that one can make use of motion vectors generated from
a prerun of a standard, deterministic motion-estimation process.

Using these initial estimates, it then becomes possible
to draw samples from the numerically evaluated pdf for

in a local region around the cur-
rent estimate. In essence, the actual procedure employed for
sampling for involves proposing eight candidate vectors
from the neighborhood and an additional set of nine created
by perturbing the current sampled vector at the site by1
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pixel. The motion sample is then drawn from this set by direct
numerical evaluation of the probability distribution, assuming
that the probability of all other samples is zero. This is an
application of theGriddy sampler[29]. It is straightforward to
incorporate this step into a Metropolis–Hastings scheme for
rigorous sampling of the motion parameter.

Initial motion estimates can be taken from any number of
motion estimators currently available. The multiresolution gra-
dient-based technique discussed in [15] is employed here. This
mixture of deterministic and stochastic techniques is extremely
useful from both the computation and convergence property
points of view.

VIII. JOMBANDI

This section presents a clear recipe for the overall procedure
by outlining the chronology of the iterations. The process will
be called the joint model-based noise reduction, detection, and
interpolation (JOMBANDI) algorithm.

There are two major parts to the algorithm: The first part is the
joint draw for , and the second is the draw for .
The first joint draw is performed on ablockbasis since the mo-
tion and coefficient fields are expected to be generally smooth
functions. The second draw is performed on a pixel basis in
order to more carefully delineate the missing regions.

Each draw is performed for all the variables across the whole
image before moving on to the draw for the next set of vari-
ables. It is also possible to make the draws in turn at each site
before moving onto the next, but sweeping through the image
in the fashion described here leads to a simpler implementation
particularly with respect to computing issues like memory ac-
cess, data caching, and pipelining. The description begins with
a listing of the overall sequence of activities. The joint draw for

is identical to the pure blotch detection case, and ex-
haustive discussion can be found in [13] and [17].

First of all, it must be noted that the problem is to find
given the observed, corrupted frames

. Although it may be possible to
design a joint scheme for simultaneously restoring the frames,
it is convenient to employ a higher level invocation of the Gibbs
sampler so that each image can be treated in turn. Thus, the
iterations may proceed as follows:

...
...

Each iteration represents a complete sweep over each frame.
Note that for any finite frame window in time, the conditionals
employed in estimating the first and last frame are approximate
since the relevant temporal support is incomplete.

A. Process Overview

1) The first step is to generate akick startof estimates for the
sampler. This is achieved using a simple technique for de-
tection and interpolation of the missing data. Any one of

the standard techniques can be employed [13], the combi-
nation of a gradient-based motion estimator [15] for esti-
mating motion and the spike detection index with polarity
(SDIp)3 for detection is used here. The main point of this
step is actually to generate reasonable estimates of mo-
tion in the areas that do not contain missing data.

The SDIp initializes the field as follows:

if AND

AND (sign sign )

otherwise

where

and

The SDIp simply flags a pixel as corrupt whenboth the
forward and backward motion compensated frame differ-
ences are higher than some threshold(user selected).

Since the samples for the unknowns are generated
using joint sampling strategies, it is found that using the
degraded data as the start image for both the and

fields is adequate.
2) The image is divided into blocks and in each block one

sample each for , , , is drawn jointly,
in that order. All blocks are visited in a “checkerboard”
fashion (see Besag [30]). This requires that the block-mo-
tion neighborhood employed for the next block processed
must not overlap with the neighborhood of the current
processed block. Using the eight nearest-neighborhood
configuration presented above, the blocks are visited so
that the next site is always at least two blocks away in
one direction from the current site.

3) The image is now scannedpixel by pixel, again in
a checkerboard fashion. At each site, a sample for

is drawn jointly. The samples are
drawn based on the values of model coefficients, vari-
ance, and motion that have been estimated in step 2) for
the block in which the current site lies. Some overlap
between the blocks would therefore lead to a more
smooth variation in the sampled model coefficients,
motion, etc. The importance of the size of this overlap is
not investigated here.

4) The last two steps are repeated until some conver-
gence criterion is satisfied or until enough samples of

have been collected so that it is deemed
sufficient to determine some numerical estimate. Note
that these samples must be collected after the chain has
converged.

B. Joint Sampling for

The joint sample for is achieved at eachpixel site by
the steps described as follows. Note that JOMBANDI requires
just three hyperparameters— —that are user defined.
They control the connectivity of the fields and and the
noise reduction level, respectively. High values forbias JOM-
BANDI toward detection of flat regions only.

3related to early work by Storey [10].
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1) The first step is to draw a sample for . This is done
by evaluating (17) for both cases . The
sample is then drawn numerically. Drawing the sample
requires knowledge of the normalizing constants
for the distributions . Because is a
univariate Gaussian distribution, determination ofis
straightforward [see (18)]. Depending on the choice for

, evaluation of can be difficult. If is chosen
to be a GMRF as in this case, it is a univariate Gaussian,
and the normalizing constant is simple to determine.

2) If , then a missing pixel has been detected, and
is drawn from a Gaussian distribution whose mean

is and variance as given in (19). has to be interpo-
lated, and a sample is drawn using (18) for . The
mechanics of drawing both samples are straightforward.
In the case of , first generate the least squares estimate
of the interpolant and add to this Gaussian white noise
of variance . This draw is the univariate equivalent of
the multivariate Gaussian draw used forin the separate
joint draw for .

3) If , then the pixel is uncorrupted (by Blotches),
and only noise reduction needs to be performed. The
corrected intensity is therefore generated by adding to
the least squares estimateGaussian noise of variance

. Because the pixel is uncorrupted
by blotching, the value for must be drawn from its
prior. This draw is again from a univariate Gaussian as
the prior for is a GMRF.

IX. RELATIONSHIPS

It is difficult to compare this framework with previous sys-
tems since this is the first that treats missing data and noise
jointly. However, it is educational to examine how systems that
treat the noise and missing data problems separately are in fact
special cases ofthe deterministic aspectsof JOMBANDI.

A. Relationships With Noise Reducers

Viewing JOMBANDI purely from a noise-reduction stand-
point, it can be seen that the temporal Wiener filter proposed for
image sequences (see Katsagelloset al. [6]) is a special case of
the estimate. This proposal estimates the intensity at a single
pixel site , as

(21)

where is the mean of the observed (corrupted) image se-
quence data in a local spatio–temporal region around the site to
be estimated, and is the observed (corrupted) pixel value at
that site. Noise reduction is thus achieved through the weighted
average between this mean and the observed data.was em-
ployed as an estimate of the underlying true signal.

Noting that from (1) (in the absence of missing
data), the above can be re-expressed as

(22)

This estimate is the same as, where . Thus, in JOM-
BANDI is generalizing the idea proposed by Katsagelloset al.
by allowing for an adaptive, nonstationary estimate for the un-
derlying image data that depends on a weighted average of
local spatio–temporal pixel values. That weighted average in
turn depends on local image details through the use of the 3-D
AR model.

Furthermore, it is possible to separate the joint draws for the
variables in JOMBANDI and to employ a draw forseparately
from . can then be solved on a block basis in a separate
Gibbs sampling step. In that case, it can be shown that(similar
to ) is related to the spatio–temporal FIR Wiener solution for
noise reduction presented by Kokaram [13], [31]. By assuming
a circularly symmetric correlation structure in each such block,
and using the whole block as support for the AR model, the FFT
can be used to solve forand, hence, a relationship with the 3-D
IIR Wiener filter.

Purely temporally recursive or adaptive noise reduction sys-
tems like [4], frame averaging, and adaptive weighted averaging
(AWA; see [32]) can be seen as special cases of theestimate
in JOMBANDI, when single tap, purely temporal AR models
are used. In such a case,simply becomes a copy of the mo-
tion-compensated pixel in the previous frame or an average of
the same pixels in the previous and next frames. Then,is a
weighted combination of those pixels and the observed image
data. This is identical to recursive noise reduction, provided the
estimated image in each frame of JOMBANDI is then immedi-
ately reused in processing the next frame.

B. Relationships to Blotch Removers

In the task of blotch removal, JOMBANDI can be related to
previous systems on two aspects: detection given by and
interpolation given by.

Assuming and all other motion and model parameters
are given, then all previous motion-compensated interpolation
schemes based on linear models are special cases of the interpo-
lation step in JOMBANDI [13]. This follows straightforwardly
since all linear predictive models can be expressed in the form
used in (2), and is independent of . Therefore, will
result in the same form, regardless of the trappings of the rest of
the algorithm. Cut-and-paste operations (the simplest of inter-
polators) can be derived by using a purely temporal AR model
with one tap that is set to 1.

There are, however, more alternatives for blotchdetection.
Most of the available blotch detection processes are pixel based,
but all are based on temporal motion-compensated frame dif-
ferences, e.g., spike detection index a (SDIa), SDIp, and rank
order detector (ROD) [11], [13], [33]. The basic tenet is to flag
large motion-compensated frame differences when these occur
in both the backward and forward frames. If the field was
split into two components [a field between framesand ,

with a similar field in the forward direction and a purely
temporal AR model were used having one coefficient ( )],
then these simple blotch detectors would be the same as the
“least-squares” estimate for used in JOMBANDI. These
fields would denote discontinuities in time, and there would then
be a four-state variable at each site, i.e., 00, 01, 10, and 11. There
would be the need to introduce penalties in the priors for the
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Fig. 4. Performance of JOMBANDI and SDIp at� = 100: JOMBANDI
with five-tap 3-D AR (�—) with one-tap 3-D AR (�- -), SDIp (*—);
JOMBANDI with five-tap 3-D AR and� = 200 (� . . .).

11 state. This latter framework is similar to that employed by
Morris [1], [20].

X. RESULTS

To assess the performance of JOMBANDI, a 256256
subsection of the mobile and calendar sequence was corrupted
with blotches that follow the prior for , and Gaussian noise
of was added in keeping with the degradation
model discussed here. A number of experiments were per-
formed to evaluate the behavior as a blotch detector and as a
noise reducer. Motion behavior is examined together with real
degradation.

A. Blotch Detection Performance

Fig. 4 shows a receiver operating characteristic that compares
the performance of JOMBANDI with the SDIp with respect to
their blotch detection performance. To create the characteristics,
the processes were run with a range of parameter settings. In the
case of SDIp, 5 : 5 : 55(Matlab notation), and the perfor-
mance degrades as the threshold increases. The situation is more
complicated with JOMBANDI since there are two parameters to
be set. However, from top right to bottom left, the points on the
curves shown correspond to the following values for :
(0.15, 1.0), (0.1, 1.0), (0.15, 4.0), (0.1, 4.0).

JOMBANDI was run with two model settings. The five-tap
3-D AR model had support defined by ,

, , and the one-tap model
. In both cases, a block size of 9 9 pixels was em-

ployed with a two-pixel overlap between blocks. The SDIp de-
tector (see [13] for details) was used to initialize the field
for JOMBANDI, using a threshold of ten grey levels. The output
images were created by averaging the last 25 samples from a
50-iteration run of the Gibbs sampler on each frame.

The correct detection rate is measured as the fraction of pixels
(out of the total number of missing sites) correctly set to 1 in

. The false alarm rate is measured as the fraction of pixels
incorrectly flagged as missing out of all the possible uncor-
rupted sites. First of all, it is interesting to note that the perfor-

Fig. 5. Noise-reduction performance for� = 100. JOMBANDI, temporal
Wiener (�—), and recursive filtering (+—). JOMBANDI settings are� =

0:15; � = 1:0 (�- -); � = 0:15; � = 4:0 (�—).

mance of the five-tap 3-D AR version of JOMBANDI is better
than the one-tap version. For (roughly 25 dB SNR), at
a correct detection rate of about 70% for instance, the five-tap
model gives a false alarm rate of about 0.1%, and the one-tap
model gives a rate of 1%, which is a factor-of–10 difference.
This illustrates the increased ability of the model with more sup-
port to cope with noise. At this same detection rate, for this level
of noise, the SDIp gives a false alarm rate of 3%, which is too
high to be useful.

Fig. 6 shows the result of JOMBANDI on three frames from
the corrupted sequence. The middle row shows

and illustrates more clearly what has been removed from the
dirty image. The combined blotch rejection and noise reduction
features are clear. That the rotating ball is not damaged is also
important. In addition, note that the corruption level in the test
sequence is very high, and in fact, corruption at the same site in
consecutive frames does occur.

B. Noise Reduction Performance

Fig. 5 shows the decibel improvement in SNR after pro-
cessing with JOMBANDI (five-tap 3-D AR model), the
temporal Wiener filter [6], and temporal recursive frame
averaging [4]. To separate out the noise reduction component
of JOMBANDI from the missing data treatment component,
the measurement of SNR was made only in those regions not
corrupted by missing data. This does not, however, totally
separate the two components since blotches can have an effect
on processing for some distanceoutsidetheir area.

The lowest curve shows the SNR of the degraded sequence
at about 22 dB, and the top curve shows that JOMBANDI at

performs best, doing 1 dB better than the
other processes. Changing to 1.0 makes JOMBANDI per-
form somewhere between the two temporal filters as far as noise
reduction goes. This is sensible since a reduction inimplies
that it is expected that blotches are less “convex,” which is not
the case. One feature, which is not shown by the curves, is that
the purely temporal filters are prone to the “dirty window” ef-
fect, whereas JOMBANDI does not show this feature to a great
extent.
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Fig. 6. Section of mobile and calendar sequence frames 6, 7, and 8. Top: Corrupted with blotches and� = 100. Middle: JOMBANDI result� = 0:15; � =

1:0. Bottom: Difference between top and middle frames offset by 128.

C. Real Example

Fig. 7 shows three frames from a dirty sequence supplied by
RTP, Lisbon. Dark blotches can easily be identified as corrupted
data by a human observer. The images have been brightened
slightly to allow for better reproduction. There is visible grain
noise on the images. The JOMBANDI algorithm was run for 50
iterations on the central frame (frame 8, top right of Fig. 7) using

, . The five-tap 3-D AR model
was used, and otherwise, the same parameter settings as for the
example in Fig. 6 were used.

The result of averaging the last 20 samples of the estimated
image are shown as the right-hand image of the second row in
Fig. 7. All the blotch artifacts are removed successfully, and the
grain noise is substantially reduced, without excessive blurring.
The bottom two images on the left in that figure show the detec-
tion result using SDIp and on the right, which is the last sample
of from JOMBANDI. The detection field has been config-
ured successfully and has correctly rejected many of the false
alarms of the deterministic process.

The top of Fig. 8 on the left shows the motion field used
to kick start the JOMBANDI algorithm. One motion vector is
shown per block, as well as the motion field mapping frame 8
into 7, and the images have been brightened to improve contrast
for the vector icons. The image on the left is the dirty original
frame 8, and on the right, the restored image is shown. The kick
start motion field is noticeably distorted in regions of missing
data, as expected and, in particular, appears to overestimate the
motion in the upper part of the frame. After 50 iterations of
JOMBANDI, however, this problem is much diminished (which
is shown in right-hand image). The motion field appears to be
more locally consistent and, even though the macro-rotational
behavior in the top left-hand portion of the frame is wrong, the
field is correct in the more highly textured areas where errors
would cause more catastrophic effects in this case.

The middle two images on the left in Fig. 7 show the 50th
sample of . Recall that the kick start for this sample is the
original image. This explains the structure in the sample. The
convergence of the overall algorithm is illustrated in the bottom
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Fig. 7. Top row: Original frames 7 and 8 of degraded sequence 128� 128. Middle row: Original frame 9, restored frame 8 using JOMBANDI. Bottom row:
Detected blotches using SDIp (threshold= 10), JOMBANDI detection.

plot of number of pixels at which in each iteration. By
the last ten iterations, there is no visible change in the image.

The right-hand image on the middle row of Fig. 8 is extremely
interesting. It shows (magnified by 2.0
for better viewing). The removal of the grain noise is now more
clearly apparent as is the remarkable removal of one line artifact.
The removal of the blotches stands out as bright areas. What is
very interesting is the structure of this difference image. There
appears to be very little edge structure apparent (only at the top

of the hat), implying that the noise reduction has not removed
much image detail. Furthermore, the noise structure at large step
edges is seen to be more correlated in a directionparallel to the
edge (see bottom of image). This is a useful perceptual quality,
in that damage caused by noise reduction is less visible at edges
when the noise reduction is tuned parallel to the edge direction.
This latter aspect of JOMBANDI is perhaps due to the ability of
the process to tune itself to image details by adapting the model
coefficients ( ) separately in each block.
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Fig. 8. Top row: Motion fields at iteration= 0 and 50 of JOMBANDI. Middle row: Estimatedc(~x). Difference between restored and original dirty images.
Bottom row: Convergence of JOMBANDI.

Although the noise reduction here is effective, similar results
can be obtained (as far as noise reduction performance is con-
cerned) using alternative approaches, e.g., Wiener filters [5],
[13] or temporally recursive filters [4]. It must be recognized
that the power of JOMBANDI lies in its ability to draw infor-
mation from all the different restoration and estimation process
at the same time. There may be schemes that perform as well
on each artifact separately, if it existed exclusively in the image,

but this is the only process that has been designed specifically to
treat all problems at the same time within a model-based frame-
work.

XI. COMPUTATIONAL COMPLEXITY

Running on a 400-MHz Pentium III and using a five-tap AR
model as described above in the text, JOMBANDI takes about
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10 s per iteration (of both joint sampling steps) on a 256256
frame. This is, of course, without optimizing the code. This im-
plies that one sweep of a full CCIR rec 601 video frame would
be on the order of 1 min per iteration. Approximately 90% of the
time is spent on the draw for . This is understandable
since this draw requires calculation and inversion of correlation
matrices (order operations, where the size of a block is

pixels) and sampling for motion (order opera-
tions4 ).

The latter step is more computationally intensive. The load
could be reduced by periodically sampling for motion rather
than sampling at every iteration. In addition, deterministic mo-
tion-estimation schemes are generally more robust to noise than
missing data; therefore, it is possible to restrict the motion draw
to those sites with detectable missing data.

A. Convergence

The matter of convergence and stopping criterion is typically
problematic. In this case, because of the computational load of
the algorithm, convergence as a stopping criterion takes second
place to practical computing time for one frame. Running the
algorithm for more than 50 iterations on an entire frame rapidly
becomes totally impractical as the size of the frame increases.
(See the previous discussion.)

Convergence can either be assessed by observing the sam-
ples from one of the variables or simply by looking at pictures.
In practice, pictures from a wider range of material (than shown
in this paper) are acceptable after about 30 iterations. Of course,
looking at pictures is not viable in a real system using batch pro-
cessing, and a workable alternative is to observe the number of
pixels flagged as missing. When the mean of that number varies
slowly over the last ten iterations, the algorithm is stopped since
this indicates that the field is not changing significantly. We
do not have the space here to examine convergence and stopping
criteria in detail.

In all the examples shown, a fixed number of iterations were
employed, with a burn in of ten iterations. This allowed un-
complicated performance comparisons (in a reasonable com-
pute time) across the wide range of artifact levels that were
used. The real example employed the stopping criterion outlined
above.

B. What Makes JOMBANDI Different?

Quite apart from its superior performance as a blotch detector
in noisy conditions, JOMBANDI differs from all these other
proposals in that it allows the dynamic interaction between the
variables both in terms of their effect on the degradation and in
terms of spatial correlation. In all previous work in blotch treat-
ment in particular, decisions tend to be taken at sites without any
acknowledgment of the correlation between those sites inherent
in the degradation. Any spatial processing is typically done as a
post-process. In JOMBANDI, however, this spatial interaction
is explored during the iterative stages of the algorithm itself.

Furthermore, through the Gibbs sampler, JOMBANDI gen-
eratessamplesfrom the underlying textural probability distri-

4Seventeen candidate motion vectors sampled per block.

bution in each frame. This is very important for textural resyn-
thesis, and it is well known that least-squares interpolants for
missing data tend to lookdull [13], [23], [34].

XII. FINAL COMMENTS

This paper has proposed a scheme for the joint “restoration”
of image sequences, as far as noise reduction and missing data
removal are concerned. Its ability to correct motion simultane-
ously with reconstructing the underlying image is fundamental
to its robust behavior. It is acknowledged, however, that the ab-
solute noise-reduction performance of the system is not vastly
different from many other noise-reduction schemes in existence
today, particularly the successful wavelet algorithms. This is
principally because the pixel-wise update scheme would take
a large number of iterations to take advantage of the same kind
of information presented by explicit scale/frequency techniques.
As outlined in previous sections, it is possible to repose JOM-
BANDI to perform noise reduction over a large block of pixels.
In that case, elements of wavelet-based noise reduction can be
brought into play. This is a matter for further work.

It is the way in which the Bayesian framework has allowed
the coherent design of this joint process that is of interest here.
To our knowledge, this is the only scheme that has quantita-
tively combined solutions to the noise reduction and missing
data problems. Furthermore, the introduction of the joint sam-
pling process using composition sampling is of pivotal impor-
tance in this work both from the point of view of computational
simplicity and increased convergence of the iterative scheme.
Finally, the use ofcandidate selectionas part of the overall
MCMC scheme (in the draw for motion) shows how good as-
pects from a deterministic scheme can be combined positively
with MCMC.

APPENDIX A
COMPOSITIONSAMPLING FOR

In the adapted Gibbs sampler, it is required to draw ajoint
sample for from the conditional distribution
for these variables, given the observed data and other param-
eters, e.g., , using composition sampling. In what follows,
these other (given) parameters are denoted by.

Using a pixel-wise draw allows the simplest implementation.
Dropping the arguments (since all these variables are at coin-
cident sites in the image) and using ; ,
the recipe for drawing a sample is as follows:

Using

There are other factorizations that could be used, but this one
allows straightforward analysis.

The conditionals are derived by integrating outfirst and then
from the posterior distribution for all the three variables. What

complicates matters is thatis a binary variable appearing as a
switch in the likelihood function, but this can be dealt with by
treating the two cases ofas part of the integration process.
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Consider first the derivation of the conditional

(23)

The term in the denominator is the typical normalization term,
but this follows naturally once the integral in the numerator can
be performed. This is discussed next.

A. Integrating Out

At this point, it is useful to recall that

(24)

where denote the set of values of at the eight nearest-
neighbor sites of . Note that is always independent of
and .

Considering the two cases of , there are two numer-
ator integrals to be evaluated in (23). For , the integral is

(25)

For , the integral is

(26)

In the second case, , the only function involving is
, and since , the integration is straight-

forward.
In the first case, the integration is more involved since there

are two functions involving. Therefore

(27)

Continuing

(28)

where from (11). Rearranging the
right-hand side yields

Completing the square with respect toin the arguments of the
exponentials, theintegrandcan be expressed as

(29)

where represents all the terms not including. After some
simplification, the integral can be expressed as

(30)

where is the Normal distribution, and the various introduced
constants are as defined in (20).

Because , the result of the integration is there-
fore , where depends on , etc.

Defining

(31)

allows a much more easily evaluated form of the result [13],
[23], [35] by simply substituting this value (which is the least
squares estimate for given all the other variables) into (29)
and, hence, (28), as follows for :

(32)

Thus, we have, for , respectively

(33)

From this, expression follows by substitution into (23).
The actual forms for are derived by completing the square
where necessary w.r.t., to yield the expressions shown in (18).

Integrating out from the expressions above will now allow
the derivation of .

B. Integrating Out

In the case that [in (33)], it can be seen that there is just
one expression involving[ ], and again, that integration
is straightforward.

For the case , the situation is more involved. To proceed,
it is necessary to write using the pseudo-likelihood as
follows:

(34)

The vector contains all the pixel sites that include(at ) in
their 3-D AR support. If these sites are defined as , then

are arranged so that is a column vector
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containing the residuals as well as the site at which
is to be estimated.

At this stage, it is useful to note that by completing the square
w.r.t. on the right-hand side of (34), it follows that the condi-
tional expression is actually a Normal distribution as follows:

(35)

where , as in (20).
To proceed with integrating out, the integral to be evaluated

is

(36)

Since is a Gaussian, the integration proceeds by substi-
tuting for from either (35) or (34) and then completing the
square w.r.t. . This is done in a similar manner to that shown
previously for manipulating the expression for. After some
simplification, the following results:

(37)

where the introduced constants have their values as shown in
(20).

Again, following the same ideas that led to the solution for
integrating out , the final result (for ) is best expressed as

(38)

Hence

as required, where again, variables are defined as in (20).

APPENDIX B
NOTE ON

From the prior for [see (11)], we can assemble the form for
the probability distribution (in the case that )
by completing the square in terms ofin the prior. This form is
given by , where the constants are defined in (20).

REFERENCES

[1] A. Kokaram, R. Morris, W. Fitzgerald, and P. Rayner, “Detection of
missing data in image sequences,”IEEE Trans. Image Processing, vol.
4, pp. 1496–1508, Nov. 1995.

[2] , “Interpolation of missing data in image sequences,”IEEE Trans.
Image Processing, vol. 4, pp. 1509–1519, Nov. 1995.

[3] P. V. M. Roosmalen, A. Kokaram, and J. Biemond, “Noise reduction of
image sequences as preprocessing for mpeg2 encoding,” inProc. Eur.
Conf. Signal Process., vol. 4, Sept. 1998, pp. 2253–2256.

[4] E. Dubois and S. Sabri, “Noise reduction in image sequences using
motion compensated temporal filtering,”IEEE Trans. Commun., vol.
COMM-32, pp. 826–831, July 1984.

[5] A. Erdem, M. Sezan, and M. Özkan, “Motion-compensated multiframe
Wiener restoration of blurred and noisy image sequences,” inProc. IEEE
ICASSP, vol. 3, Mar. 1992, pp. 293–296.

[6] A. Katsagellos, J. Driessen, S. Efstratiadis, and R. Lagendijk,
“Spatio–temporal motion compensated noise filtering of image se-
quences,”Proc. SPIE VCIP, pp. 61–70, 1989.

[7] M. Özkan, A. Erdem, M. Sezan, and A. Tekalp, “Efficient multiframe
Wiener restoration of blurred and noisy image sequences,”IEEE Trans.
Image Processing, vol. 1, pp. 453–476, Oct. 1992.

[8] R. Kleihorst, G. de Haan, R. Lagendijk, and J. Biemond, “Motion
compensated noise filtering of image sequences,” inSignal Processing
VI. New York: Elsevier, 1992, pp. 1385–1388.

[9] P. V. M. Roosmalen, R. L. Lagendijk, and J. Biemond, “Noise reduction
for image sequences using an oriented pyramid thresholding technique,”
in Proc. IEEE Int. Conf. Image Process., vol. 1, Sept. 1996, pp. 275–378.

[10] R. Storey, “Electronic detection and concealment of film dirt,”SMPTE
J., pp. 642–647, June 1985.

[11] M. J. Nadenau and S. K. Mitra, “Blotch and scratch detection in image
sequences based on rank ordered differences,” inProc. 5th Int. Workshop
Time-Varying Image Process. Moving Object Recognit., Sept. 1996.

[12] G. R. Arce, “Multistage order statistic filters for image sequence pro-
cessing,”IEEE Trans. Signal Processing, vol. 39, pp. 1146–1161, May
1991.

[13] A. C. Kokaram,Motion Picture Restoration: Digital Algorithms for Ar-
tifact Suppression in Degraded Motion Picture Film and Video. New
York: Springer Verlag, 1998.

[14] A. Kokaram and P. Rayner, “A system for the removal of impulsive
noise in image sequences,”SPIE Visual Communications and Image
Processing, pp. 322–331, Nov. 1992.

[15] A. Kokaram and S. Godsill, “A system for reconstruction of missing
data in image sequences using sampled 3D AR models and MRF motion
priors,” in Proc. Eur. Conf. Comput. Vision, Apr. 1996, pp. 613–624.

[16] S. Godsill and A. Kokaram, “Joint interpolation, motion and param-
eter estimation for degraded image sequences with missing data,”Signal
Process. VIII, vol. I, pp. 1–4, Sept. 1996.

[17] A. Kokaram and S. Godsill, “Joint detection, interpolation, motion and
parameter estimation for image sequences with missing data,” inProc.
IEEE Int. Conf. Image Process., Oct. 1997, pp. 191–194.

[18] R. D. Morris and W. J. Fitzgerald, “Detection and correction of speckle
degradation in image sequences using a 3D markov random field,” in
Proc. Int. Conf. Image Process.: Theory Appl., June 1993.

[19] , “Stochastic and deterministic methods in motion picture restora-
tion,” in Proc. Int. Workshop Image Process., June 1994.

[20] , “Replacement noise in image sequences, detection and interpo-
lation by motion field segmentation,” inProc. IEEE Int. Conf. Acoust.,
Signal Processing (ICASSP), 1994.

[21] P. Strobach, “Quadtree-structured linear prediction models for image se-
quence processing,”IEEE Trans. Pattern Anal. Machine Intell., vol. 11,
pp. 742–747, July 1989.

[22] S. Efstratiadis and A. Katsagellos, “A model based, pel-recursive motion
estimation algorithm,” inProc. IEEE ICASSP, 1990, pp. 1973–1976.

[23] J. J. O. Ruanaidh and W. J. Fitzgerald,Numerical Bayesian Methods
Applied to Signal Processing. New York: Springer-Verlag, 1996.

[24] J. Konrad and E. Dubois, “Bayesian estimation of motion vector fields,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 14, Sept. 1992.

[25] C. Stiller, “Motion-estimation for coding of moving video at 8kbit/sec
with Gibbs modeled vectorfield smoothing,”SPIE VCIP, vol. 1360, pp.
468–476, 1990.

[26] D. Marr, Vision. San Francisco, CA: W. H. Freeman, 1982.
[27] G. E. P. Box and G. C. Tiao,Bayesian Inference in Statistical Anal-

ysis. Reading, MA: Addison-Wesley, 1973.
[28] J. Liu, W. H. Wong, and A. Kong, “Covariance structure of the Gibbs

sampler with applications to the comparison of estimators and augmen-
tation schemes,”Biometrika, vol. 81, pp. 27–40, 1994.

[29] M. A. Tanner,Tools for Statistical Inference. New York: Springer-
Verlag, 1996.

[30] J. Besag, “On the statistical analysis of dirty pictures,”J. R. Stat. Soc. B,
vol. 48, pp. 259–302, 1986.

[31] A. Kokaram, “3D Wiener filtering for noise suppression in motion pic-
ture sequences using overlapped processing,”Signal Process. V, Theo-
ries Appl., pp. 1780–1783, Sept. 1994.

[32] M. Özkan, M. Sezan, and A. Tekalp, “Motion-adaptive weighted av-
eraging for temporal filtering of noisy image sequences,”SPIE Image
Process. Algorithms Techn. III, pp. 201–212, Feb. 1992.



KOKARAM AND GODSILL: MCMC FOR JOINT NOISE REDUCTION AND MISSING DATA TREATMENT 205

[33] E. Abreu, M. Lightstone, S. K. Mitra, and K. Arakawa, “A new efficient
approach for the removal of impulsive noise from highly corrupted im-
ages,”IEEE Image Processing, vol. 6, pp. 1012–1025, June 1996.

[34] A. Kokaram, “Detection and removal of line scratches in degraded mo-
tion picture sequences,”Signal Process. VIII, vol. I, pp. 5–8, Sept. 1996.

[35] D. MacKay, “Bayesian methods for adaptive models,” Ph.D. disserta-
tion, Calif. Inst. Technol., Pasadena, 1992.

Anil C. Kokaram (M’92) was born in Trinidad. He received the B.S. degree
electrical and information sciences from the University of Cambridge, Cam-
bridge, U.K., in 1989. He then joined the Signal Processing Group, Cambridge
University Engineering Department, and in 1993, he received the Ph.D. degree
in engineering for his thesis entitled “Motion picture restoration.”

He was then a Research Associate with that group, and later on, he was ap-
pointed to a Fellowship of Churchill College, Cambridge. During 1993 to 1998,
he worked on the EU project “Automated restoration of original film and video
archives” (AURORA). In 1998, he was appointed to a Lectureship in the Elec-
tronic and Electrical Engineering Department, Trinity College, Dublin, Ireland.
He was recently awarded a Fellowship from that institution. His research in-
terests lie principally in the area of image and video processing including mo-
tion estimation, texture synthesis, and video and film restoration/post-produc-
tion in particular. His fundamental research areas include Bayesian methods in
signal processing and fast (practical) algorithms for MCMC methodology used
for video material. He has recently diversified into such application areas as
multimedia over wireless and multimedia information retrieval. He is coordi-
nator of the EU project “Models for unified multimedia information retrieval”
(www.moumir.org). He has published over 40 papers in refereed journals and
conference proceedings, including the bookMotion Picture Restoration(New
York: Springer Verlag, 1998).

Simon J. Godsill(M’95) received the B.S. degree in
electrical and information sciences in 1988 and the
Ph.D. degree in engineering for a thesis entitled “Dig-
ital audio restoration” in 1994 from the University of
Cambridge, Cambridge, U.K.

He led the technical development team at the
newly formed CEDAR Audio Ltd., researching
digital signal processing algorithms for enhancement
of degraded sound recordings. He is currently a
director of CEDAR. In 1996, he was appointed as a
University Lecturer in Information Engineering and

Fellow of Corpus Christi College and, in 2001, to a Readership in statistical
signal processing. Research specialties include Bayesian statistical methods in
signal processing, Bayesian computational techniques (in particular, Markov
chain methods and particle filters), audio and music signal analysis, image
processing, and signal processing for nonlinear/non-Gaussian environments.
He has published over 50 papers in refereed journals, conference proceedings,
and books, including a research text, co-authored with P. Rayner, entitled
Digital Audio Restoration: A Statistical Model-Based Approach(New York:
Springer).


