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~ Abstract—mage sequence restoration has been steadily gaining pany (BBC; U.K)), Institut National de L'Audiovisuel (INA;
importance with the increasing prevalence of visual digital media. France), and Radio Televisdo Portuguesa (RTP; Portugal), find
Automated treatment of archived video material typically involves that archive material is in increasing demand. However, the ma-

dealing with replacement noise in the form of “blotches” that terial is tvpicallv d ded due to phvsical bl . ted
have varying intensity levels and “grain” noise. In the case of eralis typically degraded due to physical problems in repeate

replacement noise, the problem is essentially one of missingProjection or playback or simply the chemical decomposition
data that must be detected and then reconstructed based on of the original material. Typical problems with much of the

surrounding spatio—temporal information, whereas the additive archived film material have been increased level of noise, and
noise can be treated as a noise-reduction problem. It is typical to dirt and sparkle due to the deposition of dust or the abrasion of

treat these problems as separate issues; however, it is clear that the,[h terial. Of th bl ii
presence of noise has an effect on the ability to detect missing data'''¢ Materal. O course, there are many more problems Speciiic

and vice versa. This paper therefore introduces a fully Bayesian t0 the media, e.g., 2-in tape scratches affecting 2-in videotape
specification for the problem that allows an algorithm to be and vinegar syndrome, which is a Moire pattern affecting film
designed that acknowledges and exploits the influences from eachgnd the film scanning process.

of the subprocesses, causing the observed degradation. Markov In order to preserve and exploit this material, these defects

chain Monte Carlo (MCMC) methodology is applied to the joint . .
detection and removal of both replacement and additive noise must be removed so that the picture quality can be restored. Be-

components. It can be seen that many of the previous processescause of the large amount of data, manual retouching is imprac-
presented for noise reduction and missing data treatment are tical. Therefore, automated techniques have become important.

special cases of the framework presented here. Furthermore, it has been recognized that the reductioisg
Index Terms_Autoregressive mode|sy Bayesian ir]f(:,xren(;(:_\l in particular before MPEG Compression, a”OWS amore efﬁcient
composition sampling, factored sampling, Gibbs sampling, image usage of the available digital bandwidth [3].
processing, marginalization, Markov chain Monte Carlo, missing  Hence, the area of automated restoration of image sequences
data reqonstructlon, motion estimation, noise reductlon, video has moved from being principally a signal processing research
processing. . . I !
topic to one of more widespread significance. Projects such as
the automated restoration of original film and video archives
|. INTRODUCTION (AURORA) and broadcast restoration of archives by video anal-
ITHIN the last five years, there has been an explosion s (BRAVA), Wh'ch have been f_unded by the E“r"pe‘?‘” Union,
and recent companies that deal in automated restoration (DUST

the exploitation and availability of digital visual media. . L
Digital television has been widely available in Europe for th%\,vl\gﬁgleameaner, and MTI) are all examples of this increased

last two years, and Internet usage continues to grow as does hi rat ; iral i . ; ted

availability of MPEG(1,2,4), AVI audio/video clips through the h'IS papter c':')nc.en rates %ntwg (ient.ra |ssges n aul oma e”

increasing use of streaming media. Digital video/versatile di§iChive restoration. missing data detection and removal as we
noise reduction. It is typical to consider that the two prob-

(DVD) usage is growing faster than CD audio usage did wh d b dind dentlv. Thus. it i
it was first introduced. There is now growing interest in digitafems.are sepgrate and can be trea}te indepen ent y- 1hus, Itis
ossible to cite much work on noise reduction for image se-

cinema, implying that the whole chain from “film” shooting toP . : o o
distribution/projection will be digital. guences beginning with the early temporal recursive filtering of

With all these available digital video “channels,” itis amusin Ub%'sefl' [4] and conttllnwr_lt?] \;\r/]lthgvelljrlous olp:lmal schehmesf
to note that the main concern for broadcasters is the relative —[8] and, more recently, wi € 3-D wavelet approaches o

availability of content. Holders of large video, film, and pho- an Roosmaleret al. [9]. Work on missing data treatment for

tograph archives, for instance, the British Broadcasting Coffrage sequences is less common [1], [2], [101-[12].

Removal of both noise and missing data must rely on motion
information in order to be able to remove degradation with any
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Similarly, missing data has an effect on the noise reductiam the image sequence: replacement noise (or “blotches”) and
step since it reduces the temporal correlation of the framesrandom additive noise.
the image sequence. In a spatio—temporal scheme, this woul®Replacement noiseompletely obliterates the underlying
typically cause the noise reduction phase to ignore the tempdrahge pixels at certain pixel positions in the image sequence.
information and default to some kind of spatial noise reductiofhe replacement process typically occurs in contiguous patches
which will reduce the noise-reduction level. Of course, the relvithin a single video frame and will thus be referred to as the
ative importance of these effects depends on the size of the didatch” process (the top and middle rows of Fig. 7 show a good

corrupted by missing data and the level of noise. example of blotches in a video sequence). The Blotch process
at pixel locationz in a particular frame is fully specified by
A. Interactions Between the Stages random Variablesb(a':’) S {0, 1} and C(f) € R. The first of

gse p(2)] is a switching process that determines whether

L . th
Historically, various schemes have been developed thatcoQS lacement noise is presentiaseth(z) = 1] or absent [set
with the difficulties present with simultaneous estimation using(f) — 0]. The secondd()] gives the pixel intensity of the

a c'i:|V|d§e—zatnd—conquer approatlz(hh idered th Ireiplacement noise at
or Instance, previous work has considered the removal Olp,4om  additive noiseRandom  additive noiseu(),
Blotches as a two-stage process: First, detect the missing lo ich is modeled here as a Gaussian iid. process with
tions [1], and then, reconstruct the underlying image data [ ) ~ N(0, 02), is also present in a typical frame of video
7 H 1 .

using a spatiotemporal image sequence interpolation proce% he observed degraded pixel values may thus be modeled as
This latter process could be some form of optimal linear in-
terpolation [13] or a variant of a 3-D median filter [12], [14].

Because of the problems with Blotches and motion estimation
_rr_lentloned ear_ller, the recons?rucnon stage may b.e further Sp\(/av%_ereln(a‘:’) is the intensity of the uncorrupted image pixel at
ified as a motion reconstruction followed by an image recon-

struction stage [15]. This works well, provided that the deteg—OSItlom m_the framen. An Interesting point to note abOUt this
. Fepresentation of the degradation process isdtit exists as
tion step has been successful.

a “hidden” background process even at pixel locations where
L there is no replacement noise [i.6() = 0], and similarly,
B. Full Description and MCMC I,(%) exists as missing image data when replacement rigise

As far as missing data interpolation is concerned, it is pogresent [i.e.p(Z) = 1]. This feature is an integral part of the
sible to pose the motion reconstruction and image interpolatidfCMC sampling algorithms developed in the paper.
process as a joint problem [16], but this is an interim step towardTwo distinct (but interdependent) tasks can now be identified
a full specification of the problem under one framework. in the restoration problem. The missing data detection problem

The first steps toward the full specification were introduceig that of estimating(%) at each pixel site. The noise-reduc-
in [17]. A Bayesian framework was employed to present a joition problem is that of reducing(z) withoutaffecting image
detection and reconstruction methodology that linked the mdetails. The replacement model was employed within a non-
tion reconstruction as an integral part of the process of blotphobabilistic framework by Kokaramt al.in [14] for image se-
treatment. In [13], there is an exhaustive discussion of the joiences anunplicitly employed in a two-stage Bayesian frame-
detection/interpolation scheme for blotches. work for missing data detection and interpolation by Mogis

This paper unifies and extends these ideas by addressingahd18]-[20].
two issues of missing data and noise reduction in the most comThe replacement noise expression developed here in (1)
plete manner to date. The resulting system is certainly complégmains the most suitable form for the corruption caused
but the solution is made tractable by the use of Bayesian inféy missing data simply because the Blotch obliterates the
ence in combination with marginalization, composition (or faginderlying image data (see Fig. 7).
tored) sampling, and Gibbs sampling. By selecting carefully the
sequence of estimation of the variables and combining both sto- . | MAGE SEQUENCEMODEL
chastic and deterministic schemes, the paper discusses a co
putationally tractable scheme for implementation.

The following sections introduce the concepts, presenting t
various priors employed for the unknowns and Section VI-&’,
and then addresses the particular issue of stochastic solutioR
the system equations.

Gn(F) = (1 = (&) [n(Z) + b(D)e(F) + () (1)

rIFhe original, uncorrupted image sequence is assumed to be
Hgnerated from a causal spatio—temporal autoregressive (AR)
rocess [1], [21], [22]. The image sequence can thus be ex-
r&ssed as follows:

r)
L@ =3 adug (g:wr @+ i (g:f)) re@ (2
Il. QUANTIFYING THE PROBLEM k=1

—

Assume that a degraded video signal has been digitized awtaere the pixel intensity,,(Z) in framen is predicted by a
stored as a sequence of observed image intensifig®’), linear combination of” pixels within a spatio—temporal neigh-
wheren denotes a particular frame in the sequence, &ndborhood around,, (%), suitably compensated for motion of ob-
denotes a pixel location within that frame. As discussed aboyects between adjacent frames. The geometry of this neighbor-
our method explicitly models two common types of degradatidrood, or “support,” is defined b¥ offset vectorsy, = [7;7, 4.,
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Frame n_ fectly reasonable also to include terms from the current frame
] (i.e., havingg} = 0). The only constraint we impose for the
/// work presented here is that the suppodasisaj in other words,
[ all of the intensity values required to form the summation on
= the right-hand side of (2) are obtained from earlier frames or
|+ from the asymmetric half-plane abo¥éother causal structures
| are also permissible, such as the asymmetric half plane to the
| left/below/right of Z).
71>,=l0, o-1 Yri,0-y Tat10-1 IV. BAYESIAN FRAMEWORK

=0-1-1]  G=00,1-1) . .
From the degradation model of (1), it can be seen that the

principal unknown quantities in frame are 1,,(%), b(%),

and ¢(¥). The Bayesian approach presented here infers these

unknowns conditional on the corrupted data intensities from

the current and surrounding framés, (%), G,(Z), and

G41(Z). In addition, note that the motion informatiaf{z)

is also an unknown since it is unavailable directly from the

corrupted data. The remaining “hidden” unknowns are tli¢

AR model coefficientsa(%) = [a1(F), ax(Z), ... ax()]*, and

Frame n oZ(Z). Itis assumed that?, which is the additive noise vari-
ance, is a user-defined parameter owing to the highly subjective

Fig. 1-d Tlczgr Slpatiotem%c?ral )geQrE?W for S_imlzle three-dir?ensional (3-ature of the noise reduction problem. Now, denote the collec-
AR model (3-D linear predictor) with five taps in the previous frame. Bottom: : : - — —
Geometry for same model incorporating motion. The dark circle shows t jon of unknowns at plxefln framen aSH(a:) - [In(x)’ b(a:),

pixel to be predicted. o), cf(f), a(i), o2(D)]*.
Suppose that at any given time, three frames of observed data
are available@,,—, Gy, andG,,+1), whered,, denotes all of

VAV VAV AV

2L\ WOV V)
ALV VAN

ame n-1

whereg; is the spatial offset within a particular frame, agids

the t | offset in f The Hicient h the observed pixel values in frame
€ erlwpora 0 362"? rames. The linear coetlicien s areihe In the modified Gibbs sampling solution proposed later, it
ande(Z) ~ N(0, o2) isani.i.d. excitation or residual sequence,

Th i Hoet bet ‘ q b b is required to manipulate and draw samples from the posterior
'he motion ofiset between ramesandn + ¢, IS gVeN BY ¢4 jitional distribution fos, which is the collection of ab(z)

dy, n1; (¥). Subsequently, in the paper, spatial variation in they o5 for frames of the sequence. Assume for the moment that

AR model coefficients will be incorporated in order to account o uncorrupted image data from surrounding frafes and

L%reifﬁ’gte'igmﬁtsg%n;rgézf t(hg image data. In these cases, nil is directly available. We assume also that the maximum
Ll ).

. . . . . ) degree of temporal offset for the AR coefficients is one, i.e.,
Fig. 1 illustrates these ideas using a simple five-tap moqﬁ’r]ediction of a given pixel is in terms of image data that is at

(P = 5) with g as indicated by the arrows in the upper hal;nost one frame in the past.
of the figure. This upper image shows the situation in the CaseProceeding in a Bayesian fashion, the conditional may be

of no relative motion offset between frames. The dark pixel ifyiten in terms of a product of a likelihood and a prior as fol-
framen is being predicted by a linear combination of the five ..

sites in the previous frame at locatioris- ;.. The intensity of

this pixel is,(Z) in the model equation (2). The five supporty(@|1,,_1, Gy, Ly1)

pixels are labeled 1 through 5 to correspond with the relevant G101 I o1 I 3
offset vectoff;, ¢», etc. Each pixel in frame is predicted in the X (Gl Ints Lot PO n—ts Ints)- - (3)
same manner with this model framework. Of course, the modghis posterior may be expanded at the single pixel scale, ex-

coefficients will not remain the same over the whole image, apbiting conditional independence in the model, to yield
in practice, the model coefficients are allowed to vary spatially

between small sub-blocks of each image frame. p(0(Z)|Gn(Z), In—1, Int1, (=)
The lower image in Fig. 1 shows the situation when relative o p(G,, (2)|6(2), Li—1, Ins1)p(0(@)| Iner, Ini1, O(—7))
n

16
11, (2), (@), b(Z))

motion of objects between frames is incorporated. In this case, -
. X 2 = (G (%)
there is a displacement @f, ,,_; = [—1, —4]. Therefore, to ~ . g T
predict each pixel in frame using the same five-tap model x pUn(@)|L, a(@), 0c(2)", d(&), In-1, Int1)

as discussed above, each member of the five-tap support must x p(b(z |B)p(c(§;’)|C)p(cZZ§;’) D) p(a(@))p(o.(2)?) (4)
be offset by this motion vector. Hence, we have the térm

a0+ Jnm%i (Z) in the model expression, which specifies thevheref(—Z) denotes the collection éfvalues in frame: with
location of support pixels when motion is present between thér) omitted andB, C, D, andI denote local dependence

frames. -
Th del . b 2 i lid f hoi 1The subscripts have been dropped in the notation for the motion v&atpr
_e moae expressmn above (2) is valid for anY C oice %cr simplicity and to emphasize that the arguments apply to both backward and
spatiotemporal neighborhood vectgjs For example, it is per- forward motion information.
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neighborhoods around (in framen) for variablesh ¢, d, and
I,,, respectively. See the sections on prior distributions for
details of these neighborhoods.

In the above general expressioESa, ando. are explicitly
permitted to vary spatially within the frame. This is a desirable
feature in general image sequences since they will contain spa-
tial nonstationarity, if only because of the presence of different
objects in the scene. In practice, these quantities are expected to
be spatially quite smooth within regions corresponding to the
same object within an image frame. Hence, in the algorithm
implementation, these three parameters are constrained to be
piecewise constant within small sub-blocks that form a regular
grid over the image.

It is now necessary to assign precise functional forms to the
various terms in the prior and likelihood expressions.

A. Corruption Likelihood

. L . . . . Fig. 2. Three frames of motion-compensated data and their relationship to

The first distribution on the right-hand side of (4) is deriveghe data vectors required given the five-tap model discussed in Section IIl.
from the model for degradation stated in (1). We have, forTap: Locations of sites at which prediction equations are set up. These 12 sites
single pixel site correspond to the excitation vecter = [ey, ez, es, €4, €5, €g, ..., €12].
The sites are chosen so that the data required in support does not extend beyond
. . . . the bounds of the available frames. Bottom: The sequence for raster scanning
P Gr ()| T (Z), e(Z), b(Z)) pixels into the data vectdr
— —» —» -\ = 2
= N(Gn(F) — (1 = 0(@)Ln(Z) — D(E)c(F), 0,,). ()

1
. o ~ the prediction error at site 1 in the prediction error frames (which
Here, the notatiom;(-) is introduced to allow the reader to dis-s denotedt; in this case). Assume a five-tap 3DAR model as

tinguish the form of this particular function when it is used igjescribed previously. The bottom part of Fig. 2 labels sites in

the subsequent text. the image, and for this model, is the difference between the
o o intensity 1(27) and the sum of the pixel intensities at the sites
B. Original (Clean) Data Likelihood labeled 7, 2, 8, 12, 6, weighted by the 3DAR model weights

The second term on the right of (4) is the likelihood of the:, a2, a3, a4, as, respectively. Creating the vectoby raster
original, clean image data in framg given clean image data scanning all the data in the three frames into a single column
from current and surrounding frames. This may be derivatgctor allowse; to be written as
diregtly from the model statement of equ_ation (2). Since the e1 =[0, —a2, 0,0, 0, —as, —ar, —az, 0, 0, 0
spatio—temporal AR models are constrained to have causal
support both in space and time, the joint distribution of error —a4,0,...,0,1,0,0, .. ]
or residual terms:() can be constructed simply as a product x [I(1), I(2), I(3), I(4), I(5)
of univariate Gaussians. ..., 1(58), 1(59), 1(60)]” (7)

For any given pixel at sit&, the error term in (2) is a linear
function of the pixel intensity,, (Z) and those in its local causa
support regior{Inﬂz @+ +dn ntgt (Z),k=1,..., P}
We can write this as

|Where the single “1” occurs at position 27 in the first vector.
Hence, we get (6).
Now, in order to form the likelihood for frames andn +
1 conditional on frame: — 1, stack all the error terms(x)
e(f) = a(D)Ti (6) corresponding to pixels in framesandn + 1 into a single
column vectore and express the whole vector as
wherei is a column vector containing all the pixel intensities —Aj
from framesi—1,n, andn+1,i.e.,i = [vedl,_;)T, vedl,)?, =~
ved ,,+1)7]*. a(Z) is a highly sparse column vector containingvhere the row ofA corresponding te(7) is set equal te()* .
the elements o&(¥) arranged to satisfy the AR prediction error With reference to Fig. 2, the vecteris a vector of 12 predic-
equation, i.e., tion error elements with positions as shown in the top diagram.
Each row ofA then corresponds to one of the 12 prediction er-
T L o I o rors and is made up in accordance with the intensities required
a#)"1 = 1(&) - Z (T gy (x + G+ dn, i (x)) " from the lower partF())f the figure in order to form that partichIar
P=l prediction error equation.
To explain graphically, consider Fig. 2, and assume that anyThe joint distribution for these residuals in a block of si¥e
motion has already been compensated for, so that tdkms pixels is
are equal to zero. The figure labels sites in a prediction error se- ) T
guence (top) and in the image sequence (below) corresponding ple) = ——~ exp <_2> . (8)

tothree frames of 4 5 pixels. Suppose itis required to calculate B /2702 202

r
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Note that to generate residuals at each ofithsites in a block, Block Based Vector
image data outside that block both in space and time would gen-

erally be necessary to provide the required support pixels. In
Fig. 2, we have a “block” ofV = 12 pixels, formed as two g /? N
patches of 2< 3 pixels centered in the middle of thexd5 grid T
in both frames: andn + 1. , oo /é_o/
_ Note also that in implementation, the motion information ? Data block of N points
dn, n—1, dn, n+1 IS Used to shift the relevant image blocks prior o o
to sampling of other parameters (such as the AR coefficients). V' Vg N\
By precompensating for the motion in this way, no motion
parameter is explicitly required by the AR coefficient sampling
routines. Clique Interactions O\} I 0—o0
Now, if we denote the set of pixels values corresponding to
the sites used for the prediction errors (in the vee)asi. and Fig. 3. Neighborhood and cliques fps(d,,. ._1(7)]).

the remaining pixels in all three frames as., then the joint

conditional likelihood for these pixels is readily obtained as ) i ) .
wheres'is each motion vector in the neighborhood represented

1 iTATAI 9 by S,.(Z), and \(5) is the weight associated with each clique.
2702 r b <_ 202 ) ©) The situation is illustrated in Fig. 3. The same prior is used
¢ for dy, »+1(Z). The neighborhoods,, (%) is the eight nearest
wherea ando? denote the entire collection of AR coefficientsneighbor blocks, as shown in the figure.
and variances corresponding to the error teem3he condi-  The driving force behind the specification of this prior is to
tional distribution for any subset dfsayi,,, is then, by the con- penalize the creation of motion vector fields that have a high
ditional probability formula, proportional to this expression. Ifocal gradient. Thus, in Fig. 3, the vector most likely to be appro-
particular, the single-site conditional distribution required abowsiate is that which is aligned with the same directions as most
[see (D]p(L. (D)1, a(Z), 0e(2)?, dp n—1(Z), In—1, Iny1) is Ofthe other vectors. In the case shown in Fig. 3, that direction is
univariate Gaussian and directly proportionalpigi.|i ., a, totheleftand down. Since the actualimplementation of the final
o2, d(7)). algorithm uses a candidate selection step for motion vectors, the

In Fig. 2, for example, we could choose to sample the patéffect of this prior is similar to that of a vector median operation,
of image data at site§27, 28, 29, 32, 33, 34) in frame n, i.€., many ofthe vectors are caused to align in the same direction
in which case, simply seit, = [I(27), 1(28), I(29), I(32), and only large discontinuities are allowed. This behavior fol-
1(33), I1(34)]. ps(-) will be used later on to identify the lows that of typical observed motion fields since motion tends

pi(icfie,a,02,d(Z)) =

1 “en

particular probability function derived in this section. to be smooth (or the same) within a single object but then dras-
tically different between objects.
V. PRIORS In order to discourage “smoothness” over too large a range,

. o ) . \(5) is defined as\(3) = A/|X(3) — Z|, whereX(3) is the
The remaining distributions encode the prior belief about thg.tion of the block (in “block” units) providing the neighbor-

values of the various unknowns. For simplicity, a uniform priog,qq vectors, andZ is the central block locatiom = 2.0 in
is assigned ta. This removeg(a(z)) from (4). The variance hqo experiments presented later.

o2 is assigned a noninformative pripfo?) « 1/o2, following
[23]. The remaining priors are more involved and deserve s

k : " Priors for Corruption and Detection
arate discussion.

Since blotches tend to be “convex” clumps of degradation,
A. Motion Prior the prior forb(f) should encourage contigu_ous areab @f_l to
ice for thi lication. it | fici q hform. In practice, blotches tend to have fairly constant intensity
'F‘ practice for t IS app ication, it IS su icient to encode t_ ?see Fig. 7). If a texture exists, it is certainly smoother than that
notion of local motion smoothness in order to achieve Implicit, e original image. Thus, the prior fof) should encourage
motion interpolation. The prior adopted for motion smoothneg oothness of intensity, in much the same way that the prior for

is a Gibbs_ energy prio_r, for instance, as introduced by Konrg -) encourages smoothness in its binary configuration. There-
and Dubois [24] and Stiller [25]. To reduce the complexity of thf‘?)re, it is reasonable to place a similar energy prior on both the
final solution, the motion field is block based, with one mOtiork’Jinary fieldb(Z) and the blotch value field(z)

vector being employedﬁfor each specified block in the image. It is found that acknowledging discontinuities in these fields

Th? prlorjgrdm "*1(“7,)’ whichis the mgtlon Vector mapping o, 4s 1o much better behavior. That is to say that blotches are
the pixel at? in framen into framen — 1, is as follows: smooth onlywithin their boundaries but show a large contrast
> T S . with the background. Edges in thd€corruption) and (blotch)
bd (d””"—l (@)l n—1(=7), S"(x)) fields must correspond to edges in the image since the corrupted
. 5 areas are generally well delineated from their surrounding by a
X exp — Z A(3) [dnjn_l(f) - (5‘)} (10) marked grey-scale transition. Thus, a simple zero crossing edge
Fes., (@) detector employed on the degraded image will enable the rough
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configuration of an edge field that can be used subsequentlyctinditional pdfs of lower dimension. In this case, it is required

define the priors on the ands fields:? ultimately to draw samples for the entire image fidld and,
The priors are therefore defined as follows. therefore, all the associated variables for motion, etc. This draw
. can be decomposed into a series of draws from the conditional
pe(A)|C) distribution for each variable on a block basis, thus reducing the

. I, . L. dimensionality of the pdf to be manipulated.
X €xp <_ Z Aol = (@, 7 + 0)(e(F) — (T + ”k)2> Consider, therefore, that processing is performed on a block
=1 basis, and lei contain at least the pixels to be treated in a block
and their immediate AR support. The corrupted pixels (noisy
po(b(Z)|B) or missing) are denotei, (i.e., all the pixels to be treated in
)|> the current block ) and the remaining pixelsiasThe vectoi

x>

introduced previously, therefore, consists of data to be estimated
(or unknown dataj,,, and the remaining daia. In the example
(12) given in Fig. 2, the data to be estimated is the central block of 2

where the eight vectorg, define the eight connected neighbor 3 Pixels in framen, and all other data constitutés

hood ofZ, andC, B represent sets of these values from the re- 1€ Gibbs sampler then operates iteratively with replace-
spective fields (as previously)(#, &+ ) is set to 1 if there is MeNt, given some starting guess for the unknowns, by drawing

a significant zero crossing between the locatibin the image random samples from the conditional posterior distribution at
andz + 7, from which a neighborhood pixel is extracted. Thu£ach block for each unknown in turn

8
X exp <— Mol = ul(, & + ) |b(F) — b(T + T
k=1

the smoothness constraint[i.e., the pairwise interaction denoted a~p(ali, o2, b, d, c, g, Ui)
by (¢(Z) — (& + ©)) for instance] is turned off across signifi- b b 02 a d 2
cant edges in the image. Note that these priors are defined on the ~p(bli, 0c, a,d, ¢, g, 0},)
pixel resolution image grid, whereas the motion prior discussed c~p(cli, 02, a,d, b, g, 77)
previously is defined on blockgrid. In the results shown later o2 ~p(ofla, i, b, d, ¢, g, ai)
u(+), (the edge field) was configured using an edge detector em- d~p(dla i, b, 02, ¢, g, ai)

ploying difference of Gaussians (DOGSs) [26] with the gradient . . . )
threshold set at 5.0, the variance of the Gaussian filters was 1.0, lu ~p(iula, ik, oc, b, d, ¢, 8, 7,,)

1.6, and the filter window sizes were>99. wherec, b, etc., are vectors containing the relevant parameters,

Note that the Gaussian Markov random field (GMRF) priojng the location argumet has been dropped for simplicity.
used forc(-l is in fact aimostidentical to an autoregressiveThese conditionals can be derived by manipulation of the joint
model fore(%), except th_at it defines the conditional d'smb“t'orbosterior given in (4). This sampling procedure is repeated until
only. The use of this prior allows the samples &0 be gen- ¢onyergence is reached, according to some suitable criterion.
erated from the well-known Gaussian distribution and therefoige process allows for MMSE, maximuanposteriori(MAP)
results in a low computation step. or sampled estimates bby manipulation of the sampled values

For both these priors\;, A% are assigned values such thafollowing convergence.

X = A°/[Bi], Ay = A?/|%]. This makes the hyperparameter Gijven the “noninformative” [27] prior distributions fo,

weighting circularly symmetric. o2 introduced previously, the sampling operations#pr?, i,
involve simple random draws from well-known distributions.
VI. SOLVING FOR THE UNKNOWNS However, some practical considerations encourage an altered

The solution is generated by manipulating@|/, ,, Sampling strategy. In this strategy, the motion and image model
G, I,41). For instance, the MAP estimate is generated rla_bles are sampleql j_0|ntly on a block basls, and_the image
maximizing the distribution with respect to the unknownglata itself is sampled jointly with andb on a pixel basis.
Unfortunately, due to the nonlinear nature of the expression_a . .
closed-form solution to the optimization problem is not avaiIB' Adaptations to the Gibbs Sampler
able. Instead, the Gibbs sampler is used to generate randorhihe convergence of the Gibbs sampler is generally improved
samples from the required distribution. These random sampieseveral unknowns are sampled jointly [28]. This is possible
can be manipulated numerically to yield the required estimatésing the method of composition [16], [23], . A random draw
For instance, the average of the samples yields the minimfi@m p(a, o2, d|f_(a 4, ..)), for instance, is made possible by
mean-square error (MMSE) estimate. the decomposition

p(a, az’d|b’ c, i)

A. Gibbs Sampler
=p(ald, b, ¢, o7, i)p(o?[d, b, ¢, Dp(d|b, ¢, ). (13)

The Gibbs sampler is an MCMC technique that decomposes
the problem of generating a sample from a high-dimensioridbte thata, o2, d are conditionally independent qf, and
probability density function (pdf) into a series of draws fron_, 4, ) is a vector containing all the parametersliaxcept

) ) i ) ) i i for a, d, o.. The various composition terms can be derived by
2t is accepted that the incorporation of this type of information derived from

e . > )
the observed data affects the importance of the prior, but for all practical p§,l__1cc_ess_|velyntegrat|ng outa and theno; from the posterior
poses, the result is effective. distribution.
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1) Joint Estimates for Motion and AR Paramete®®andom  p(c(2)|b(Z), i,.(Z), .. .)

draws fromp(a, o2, d|b, ¢, i) can therefore be implemented o202

by drawing from p(d|b, c, i) followed by a draw from <E, - 62>, forb(z) =1

p(a?|d, b, c, i) using the value ofl drawn previously, and - Tut e (19)
then similarly forp(a|---), using the samples just generated pe(ce(Z)|C), forb(z) =0

5 A . LS
for o7 andd. In this manner, a joint draw fob, ¢, i is also whereB is the set of neighborhood of detection indicatiifg

achieved. surrounding the sampled locatiok,, g,, are the intensities of

The expressions required to perform these joint draws ¢ L N :
be derived [13], [16] by employing the vecteras previously B&els at location? in the clean and dirty image, respectively,
described, containing all the excitation terms from (2) within a
block of data and expressing it as= i, — Ia. Here,i. has the o2 —1 / <2 Z AC>
same meaning as beforkis created in a similar way to that - K
of A, which was created previously to result in the excitation

[S V]

T A s

vectore = Ai. 1= a“?klk
Thus,I is a matrix of pixels chosen from the frames such Ay Bu

that the product of each row dfand the coefficient vectos Z A (2 + )

results in each sample of the excitation veatathrough (2). PO

This product of the rows dfanda (or the rows ofA andi) is the Z ¢

convolution of the data with the linear prediction filter arising &

out of (2). Hence, this filter is defined by the coefficieatand o? =0?/(ala,

the chosen filter geometry indicated by the offset vecifrs

)
This expression then leads to the following distributions re- = A (L—ul@ T4 )

o 2 2
quired in the joint draw fromp(a, o2, d|i): - Put 9ne
O'/% + o2
p(ald, i, 07) =Np(&, o2(T'D™) _ gpo?—io?
p(a?]d, 1) =IG((N — P)(/27 E)(/é, i, d)/2) ‘= 0% + 07
, E(&, i, d)~(N-1)/2 .
p(dfi, D) o == ——#diD) - (14) F = [exp - <M)} pe(c =70)
2mo% 205
where a = (TT)~' 1%} . ( 02
and E(a, i, d) =e”e (15) O |:exp— <9"24;>} pili =1]). (20)
2mo% T

where N is the number of pixels in the image block, asd - o .
[which is shorthand fos,,(Z)] represents a neighborhood of Note that itis necessary to decompose the coefficient matrix
vectors surrounding the sampled location. The derivation #fintoamatrixA; anda column vectat, so that the prediction
these expressions can be found in [13]. error (e) at the pixel sites whose model support overlaps with
2) Joint Estimates fob, c, i: In practice, the draws for © May be expressed @s= Ayi + a,i(Z). Here,i() is the
b, ¢, i are performed jointly on a pixel by pixel basis, samplingnknown image data at sige i,. are the current sampled values
from the expression of the original image data that are located at sites in the region
of #, which includeZ in their model prediction support.
P (b(f), @), I,(D)|d, a, 02, B,C,i_y, g, ai) (16)
. _ _ VII. HYBRID OPTIONS FORMOTION
wherei_ denotes all clean image datatat sitex but required The conditional distribution for motion in (14) is very diffi-

for all prediction equations [see (2)] involving sife This joint It t e f directlv. It b ible t d
draw is unusual because of the switching process in the like 't to sampie from directly. 1t may be possible 1o produce a
aussian approximation to the distribution that is simpler to

hood, but sincé(-) is a binary field, a feasible sampling schem
results. The distributions required for the composition samplirzg
can be derived (see Appendix A) by integrating the posterior

yield

mple from by linearizing the function [23]. However, mo-
nis typically a spatially low-frequency signal (piecewise con-
stant), and therefore, it is almost certain that the correct motion
for a particular block exists elsewhere nearby. It is here, in par-

. Fipe(b=1|B), forb(Z) =1 ticular, that one can make use of motion vectors generated from
pO(@D)|B,...) = {]_— _ - 17 a prerun of a standard, deterministic motion-estimation process.
2pp(b=0|B), forb(Z) =0 : - . : .
Using these initial estimates, it then becomes possible
N(L o} ) for b(#) = 1 to draw samples from the numerically evaluated pdf for
“ala, )’ d ~ p(d|i, o2, a, b, c) in a local region around the cur-
pin (D) |B(L), .. .) = s 2 rent estimate. In essence, the actual procedure employed for
N <" ;j“gi 2) , forb(z)=0 sampling ford involves proposing eight candidate vectors
s from the neighborhood and an additional set of nine created

(18) by perturbing the current sampled vector at the sitedtly
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pixel. The motion sample is then drawn from this set by direct
numerical evaluation of the probability distribution, assuming
that the probability of all other samples is zero. This is an
application of theGriddy samplef29]. It is straightforward to
incorporate this step into a Metropolis—Hastings scheme for
rigorous sampling of the motion parameter.

Initial motion estimates can be taken from any number of
motion estimators currently available. The multiresolution gra-
dient-based technique discussed in [15] is employed here. This
mixture of deterministic and stochastic techniques is extremely
useful from both the computation and convergence property
points of view.

VIIl. JOMBANDI

This section presents a clear recipe for the overall procedure
by outlining the chronology of the iterations. The process will
be called the joint model-based noise reduction, detection, and
interpolation (JOMBANDI) algorithm.

There are two major parts to the algorithm: The first partis the
joint draw fora, d, o2, and the second is the draw for c, i,,.

The first joint draw is performed onlalockbasis since the mo-
tion and coefficient fields are expected to be generally smooth

functions. The second draw is performed on a pixel basis in 2)

order to more carefully delineate the missing regions.

Each draw is performed for all the variables across the whole
image before moving on to the draw for the next set of vari-
ables. It is also possible to make the draws in turn at each site
before moving onto the next, but sweeping through the image
in the fashion described here leads to a simpler implementation
particularly with respect to computing issues like memory ac-
cess, data caching, and pipelining. The description begins with
a listing of the overall sequence of activities. The joint draw for

a, d, o2 is identical to the pure blotch detection case, and ex- 3)

haustive discussion can be found in [13] and [17].

First of all, it must be noted that the problem is to find
1,10, I.(-), I.+1(-) given the observed, corrupted frames
Gn1(+), Gn(-), Gp41(+). Although it may be possible to
design a joint scheme for simultaneously restoring the frames,
itis convenient to employ a higher level invocation of the Gibbs
sampler so that each image can be treated in turn. Thus, the
iterations may proceed as follows:

IO(_’) ( (f)|Gnan—lan+lv n— 17 n+1)
(@) ~p(Lat1 (DG, Gumt, Gagr, Iy 1, 1)
1 (&) ~pLp-1(F )|Gnan717Gn+lv ns n+1)
(%) p(In(f”Gnan—lan-l-lv n—17 n+1)

2

where A, =1,,(Z) — I,

4)
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the standard techniques can be employed [13], the combi-
nation of a gradient-based motion estimator [15] for esti-
mating motion and the spike detection index with polarity
(SDIp} for detection is used here. The main point of this
step is actually to generate reasonable estimates of mo-
tion in the areas that do not contain missing data.

The SDIp initializes thé(x) field as follows:

1, if (JAy| > T)AND (|Ay| > T)
AND (sign(A ) ==sign(A))
0, otherwise

. (£+ Jn,n_l(f))

and A = I,(&) — Lnss (a?+ Jn,nﬂ(f)) .

The SDIp simply flags a pixel as corrupt whboththe
forward and backward motion compensated frame differ-
ences are higher than some threstiblfuser selected).
Since the samples for the unknowns are generated
using joint sampling strategies, it is found that using the
degraded data as the start image for bothdti®® and
I,(%) fields is adequate.
The image is divided into blocks and in each block one
sample each fod,, a1y dy n+1, @, 02 is drawn jointly,
in that order. All blocks are visited in a “checkerboard”
fashion (see Besag [30]). This requires that the block-mo-
tion neighborhood employed for the next block processed
must not overlap with the neighborhood of the current
processed block. Using the eight nearest-neighborhood
configuration presented above, the blocks are visited so
that the next site is always at least two blocks away in
one direction from the current site.
The image is now scannepixel by pixel, again in
a checkerboard fashion. At each site, a sample for
@), 1,(Z), b(Z) is drawn jointly. The samples are
drawn based on the values of model coefficients, vari-
ance, and motion that have been estimated in step 2) for
the block in which the current site lies. Some overlap
between the blocks would therefore lead to a more
smooth variation in the sampled model coefficients,
motion, etc. The importance of the size of this overlap is
not investigated here.
The last two steps are repeated until some conver-
gence criterion is satisfied or until enough samples of
(&), I,(Z) have been collected so that it is deemed
sufficient to determine some numerical estimate. Note
that these samples must be collected after the chain has
converged.

b(Z)

Each iteration represents a complete sweep over each frage.jgint Sampling fot(z), I.(Z), b(Z)

Note that for any finite frame window in time, the conditionals
employed in estimating the first and last frame are approxma}]
since the relevant temporal support is incomplete.

A. Process Overview

1) Thefirststep is to generatéizk startof estimates for the
sampler. This is achieved using a simple technique for de-

The joint sample for, I, b is achieved at eagpixel site by

e steps described as follows. Note that JOMBANDI requires
just three hyperparameterstt; A°, o—u—that are user defined.
They control the connectivity of the fieldg-) andc(-) and the
noise reduction level, respectively. High valuesAdsias JOM-
BANDI toward detection of flat regions only.

tection and interpolation of the missing data. Any one of 3related to early work by Storey [10].
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1) The first step is to draw a sample 7). This is done This estimate is the same @shereg,, = —:. Thus,i in JOM-
by evaluating (17) for both casdgz) = 0, 1. The BANDI is generalizing the idea proposed by Katsaged#ibal.
sample is then drawn numerically. Drawing the samplay allowing for an adaptive, nonstationary estimate for the un-
requires knowledge of the normalizing constafits Z, ~ derlying image data that depends on a weighted average of
for the distributionsp;(-), p.(-). Becausep;(-) is a local spatio—temporal pixel values. That weighted average in
univariate Gaussian distribution, determinationfis turn depends on local image details through the use of the 3-D
straightforward [see (18)]. Depending on the choice f&kR model.
p.(), evaluation ofZ.. can be difficult. Ifp.(-) is chosen  Furthermore, it is possible to separate the joint draws for the
to be a GMRF as in this case, it is a univariate Gaussiargriables in JOMBANDI and to employ a draw fbseparately
and the normalizing constant is simple to determine. from b, c. i can then be solved on a block basis in a separate

2) If b(Z) = 1, then a missing pixel has been detected, ar@ibbs sampling step. In that case, it can be shownit(samilar
¢(Z) is drawn from a Gaussian distribution whose meao i) is related to the spatio—temporal FIR Wiener solution for
is ¢ and variance as given in (19)%) has to be interpo- noise reduction presented by Kokaram [13], [31]. By assuming
lated, and a sample is drawn using (18) fo= 1. The a circularly symmetric correlation structure in each such block,
mechanics of drawing both samples are straightforwaraind using the whole block as support for the AR model, the FFT
In the case of, first generate the least squares estimat@n be used to solve foand, hence, a relationship with the 3-D
of the interpolant and add to this Gaussian white noisélR Wiener filter.
of variances?. This draw is the univariate equivalent of Purely temporally recursive or adaptive noise reduction sys-
the multivariate Gaussian draw used foin the separate tems like [4], frame averaging, and adaptive weighted averaging
joint draw fora, d, o2. (AWA; see [32]) can be seen as special cases of gstimate

3) If (&) = 0, then the pixel is uncorrupted (by Blotches)in JOMBANDI, when single tap, purely temporal AR models
and only noise reduction needs to be performed. Tlage used. In such a casesimply becomes a copy of the mo-
corrected intensity is therefore generated by adding ton-compensated pixel in the previous frame or an average of
the least squares estimat&Saussian noise of variancethe same pixels in the previous and next frames. Thés a

(07.07)/(c, 4+ o}). Because the pixel is uncorruptedveighted combination of those pixels and the observed image

B
by blotching, the value foe(Z) must be drawn from its data. This is identical to recursive noise reduction, provided the
prior. This draw is again from a univariate Gaussian astimated image in each frame of JOMBANDI is then immedi-

the prior forc is a GMRF. ately reused in processing the next frame.

IX. RELATIONSHIPS B. Relationships to Blotch Removers

It is difficult to compare this framework with previous sys- N the task of blotch removal, JOMBANDI can be related to

tems since this is the first that treats missing data and nof¥&Vious systems on two aspects: detection giveh(By and
jointly. However, it is educational to examine how systems thiterpolation given by.

—

treat the noise and missing data problems separately are in fad®S$SUmingb() and all other motion and model parameters

special cases dhe deterministic aspects JOMBANDI. are given, then all previous motion-compensated interpolation
schemes based on linear models are special cases of the interpo-
A. Relationships With Noise Reducers lation step in JOMBANDI [13]. This follows straightforwardly

Viewing JOMBANDI purely from a noise-reduction stangSince all linear predictive models can be expressed in the form

point, it can be seen that the temporal Wiener filter proposed %?edltl_n (ti) anqbi(z!-) IS mdepce“ndentfc:i, ct. The_reforefit\r:vnl t of
image sequences (see Katsagedibal.[6]) is a special case of resuitin the same form, regardiess ot the trappings ot the rest o

the estimate. This proposal estimates the intensity at a sinnge algorithm. Cut-and-paste operations (the simplest of inter-
pixel site, 7., as polators) can be derived by using a purely temporal AR model

) ) with one tap that is set te 1.

=20 Trig G V47, 1) There are, hpwever, more alte_rnatives for blodiEhe_ctiom

g Most of the available blotch detection processes are pixel based,
whereg,, is the mean of the observed (corrupted) image sbut all are based on temporal motion-compensated frame dif-
quence data in a local spatio—temporal region around the sitd@tences, e.g., spike detection index a (SDla), SDIp, and rank
be estimated, ang, is the observed (corrupted) pixel value aprder detector (ROD) [11], [13], [33]. The basic tenet is to flag
that site. Noise reduction is thus achieved through the weightégge motion-compensated frame differences when these occur
average between this mean and the observed ﬁ'@was em- in both the backward and forward frames. If ﬂﬂ(é’) field was

ployed as an estimate of the underlying true signall. split into two components [a field between frameandn — 1,
Noting thatag =07 +°'/3 from (1) (in the absence of missingt—1 with a similar field in the forward directiob, ; and a purely
data), the above can be re-expressed as temporal AR model were used having one coefficient-(1)],
) (gn — G.)0% + 7., (0% + 02) then these simple blotch detectors would be the same as the
Ty = " “least-squares” estimate féfz) used in JOMBANDI. These
o; +ou fields would denote discontinuities in time, and there would then
_ 9n0? + G op? 22) be afour-state variable at each site, i.e., 00, 01, 10, and 11. There

o? + o3 would be the need to introduce penalties in the priors for the
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Fig. 4. Performance of JOMBANDI and SDIp af. = 100: JOMBANDI Fig. 5. Noise-reduction _perft_)rmgnce fof = 100. JOMBA_NDI, temporal
with five-tap 3-D AR p—) with one-tap 3-D AR k- -), SDIp (*—); Wiener (x—), and recursive filtering{—). JOMBANDI settings are\* =
JOMBANDI with five-tap 3-D AR andv2 = 200 (0. . .). 0.15, A* = 1.0 (0--); A° = 0.15, A* = 4.0 (0—).

11 state. This latter framework is similar to that employed byance of the five-tap 3-D AR version of JOMBANDI is better
Morris [1], [20]. than the one-tap version. F@E = 100 (roughly 25 dB SNR), at

a correct detection rate of about 70% for instance, the five-tap
model gives a false alarm rate of about 0.1%, and the one-tap
model gives a rate of 1%, which is a factor-of—-10 difference.

To assess the performance of JOMBANDI, a 266256 1 hisillustrates the increased ability of the model with more sup-
subsection of the mobile and calendar sequence was corrug?@f to cope with noise. At this same detection rate, for this level
with blotches that follow the prior fag(#), and Gaussian noise f noise, the SDIp gives a false alarm rate of 3%, which is too
of 2 = 100, 200 was added in keeping with the degradatioRigh to be useful.

modue| discussed here. A number of experiments were perFlg 6 shows the result of JOMBANDI on three frames from

formed to evaluate the behavior as a blotch detector and a@corrupted sequence. The middle row shai{s) — G(7)) +

noise reducer. Motion behavior is examined together with rekdS and illustrates more clearly what has been removed from the
degradation. dirty image. The combined blotch rejection and noise reduction

features are clear. That the rotating ball is not damaged is also
important. In addition, note that the corruption level in the test

sequence is very high, and in fact, corruption at the same site in
Fig. 4 shows a receiver operating characteristic that compaggsisecutive frames does occur.

the performance of JOMBANDI with the SDIp with respect to
their blotch detection performance. To create the characteristi
the processes were run with a range of parameter settings. In
case of SDIpZ’ = 5:5:55(Matlab notation), and the perfor- Fig. 5 shows the decibel improvement in SNR after pro-
mance degrades as the threshold increases. The situation is messing with  JOMBANDI (five-tap 3-D AR model), the
complicated with JOMBANDI since there are two parameters temporal Wiener filter [6], and temporal recursive frame
be set. However, from top right to bottom left, the points on theveraging [4]. To separate out the noise reduction component
curves shown correspond to the following values(fdf, A%):  of JOMBANDI from the missing data treatment component,
(0.15, 1.0), (0.1, 1.0), (0.15, 4.0), (0.1, 4.0). the measurement of SNR was made only in those regions not

JOMBANDI was run with two model settings. The five-tapcorrupted by missing data. This does not, however, totally
3-D AR model had support defined lg = [00—1], [L0—1], separate the two components since blotches can have an effect
[01-1], [-10-1], [0, —1, —1], and the one-tap modg)l, = on processing for some distanoetsidetheir area.
[00—1]. In both cases, a block size of9 9 pixels was em-  The lowest curve shows the SNR of the degraded sequence
ployed with a two-pixel overlap between blocks. The SDIp dext about 22 dB, and the top curve shows that JOMBANDI at
tector (see [13] for details) was used to initialize ti€) field A° = 0.15, A = 4.0 performs best, doing 1 dB better than the
for JOMBANDI, using a threshold of ten grey levels. The outpuither processes. Changing to 1.0 makes JOMBANDI per-
images were created by averaging the last 25 samples frorfoan somewhere between the two temporal filters as far as noise
50-iteration run of the Gibbs sampler on each frame. reduction goes. This is sensible since a reductiaf’iimplies

The correct detection rate is measured as the fraction of pixtiat it is expected that blotches are less “convex,” which is not
(out of the total number of missing sites) correctly set to 1 ithe case. One feature, which is not shown by the curves, is that
b(Z). The false alarm rate is measured as the fraction of pixéle purely temporal filters are prone to the “dirty window” ef-
incorrectly flagged as missing out of all the possible uncofect, whereas JOMBANDI does not show this feature to a great
rupted sites. First of all, it is interesting to note that the perfoextent.

X. RESULTS

A. Blotch Detection Performance

%T:’éNoise Reduction Performance
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Fig. 6. Section of mobile and calendar sequence frames 6, 7, and 8. Top: Corrupted with blotehesamd0. Middle: JOMBANDI resultA© = 0.15, A® =
1.0. Bottom: Difference between top and middle frames offset by 128.

C. Real Example The top of Fig. 8 on the left shows the motion field used
kick start the JOMBANDI algorithm. One motion vector is

Fig. 7 shows three frames from a dirty sequence supplied e :
RTP, Lisbon. Dark blotches can easily be identified as corrupt8dOWn per block, as well as the motion field mapping frame 8
q 7, and the images have been brightened to improve contrast

data by a human observer. The images have been brighteHE

slightly to allow for better reproduction. There is visible graif©" the vector icons. The image on the left is the dirty original
noise on the images. The JOMBANDI algorithm was run for 562Me 8, and on the right, the restored image is shown. The kick
iterations on the central frame (frame 8, top right of Fig. 7) usin?art motion field is noticeably distorted in regions of missing
A° = 0.15, AP = 4.0, 52 = 60.0. The five-tap 3-D AR model ata, as expected and, in particular, appears to overestimate the

was used, and otherwise, the same parameter settings as fof}RHON in the upper part of the frame. After 50 iterations of
example in Fig. 6 were used. JOMBANDI, however, this problem is much diminished (which

The result of averaging the last 20 samples of the estimatsnoWn in right-hand image). The motion field appears to be

image are shown as the right-hand image of the second row™q"® locally consistent and, even though the macro-rotational

Fig. 7. All the blotch artifacts are removed successfully, and tf¢havior in the top left-hand portion of the frame is wrong, the

grain noise is substantially reduced, without excessive blurrirfif!d iS correct in the more highly textured areas where errors

The bottom two images on the left in that figure show the dete’ould cause more catastrophic effects in this case.

tion result using SDIp and on the right, which is the last sample The middle two images on the left in Fig. 7 show the 50th
of b(x) from JOMBANDI. The detection field has been configsample ofc(#). Recall that the kick start for this sample is the
ured successfully and has correctly rejected many of the falséginal image. This explains the structure in the sample. The
alarms of the deterministic process. convergence of the overall algorithm is illustrated in the bottom
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Fig. 7. Top row: Original frames 7 and 8 of degraded sequencex12828. Middle row: Original frame 9, restored frame 8 using JOMBANDI. Bottom row:
Detected blotches using SDIp (threshetdl0), JOMBANDI detection.

plot of number of pixels at which(#) = 1 in each iteration. By of the hat), implying that the noise reduction has not removed
the last ten iterations, there is no visible change in the imagemuch image detail. Furthermore, the noise structure at large step

The right-hand image on the middle row of Fig. 8 is extremelgdges is seen to be more correlated in a diregémallel to the
interesting. It showg(7(Z) — G(Z)) + 128 (magnified by 2.0 edge (see bottom of image). This is a useful perceptual quality,
for better viewing). The removal of the grain noise is now mori@ that damage caused by noise reduction is less visible at edges
clearly apparent as is the remarkable removal of one line artifasthen the noise reduction is tuned parallel to the edge direction.
The removal of the blotches stands out as bright areas. WhaTiss latter aspect of JOMBANDI is perhaps due to the ability of
very interesting is the structure of this difference image. Thetlige process to tune itself to image details by adapting the model
appears to be very little edge structure apparent (only at the tefficients &) separately in each block.
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Fig. 8. Top row: Motion fields at iteratios= 0 and 50 of JOMBANDI. Middle row: Estimated(%). Difference between restored and original dirty images.
Bottom row: Convergence of JOMBANDI.

Although the noise reduction here is effective, similar resultaut this is the only process that has been designed specifically to
can be obtained (as far as noise reduction performance is ctaat all problems at the same time within a model-based frame-
cerned) using alternative approaches, e.g., Wiener filters [8]ork.
[13] or temporally recursive filters [4]. It must be recognized
that the power of JOMBANDI lies in its ability to draw infor-
mation from all the different restoration and estimation process
at the same time. There may be schemes that perform as weRunning on a 400-MHz Pentium Ill and using a five-tap AR
on each artifact separately, if it existed exclusively in the imageodel as described above in the text, JOMBANDI takes about

XI. COMPUTATIONAL COMPLEXITY
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10 s per iteration (of both joint sampling steps) on a 25856 bution in each frame. This is very important for textural resyn-
frame. This is, of course, without optimizing the code. This inthesis, and it is well known that least-squares interpolants for
plies that one sweep of a full CCIR rec 601 video frame wouldhissing data tend to loodtull [13], [23], [34].

be on the order of 1 min per iteration. Approximately 90% of the

time is spent on the draw fga, o2, d). This is understandable XIl. FINAL COMMENTS

since this draw requires calculation and inversion ofcorrelation_l_h. h d h for the ioint “restoration”
matrices (ordetPN? operations, where the size of a block is IS paper has proposed a scneme for ine joint restoration

N x N pixels) and sampling for motion (ordér PN opera- of image sequences, as far as noise reduction and missing data
tionst) removal are concerned. Its ability to correct motion simultane-
The latter step is more computationally intensive. The Ioa?éj.sIy with reconstructing the underlying image is fundamental
could be reduced by periodically sampling for motion rathé? its robu_st behavpr. Itis acknowledged, however, .that the ab-
olute noise-reduction performance of the system is not vastly

than sampling at every iteration. In addition, deterministic mo- tf th . ducti h . ist
tion-estimation schemes are generally more robust to noise t ég)eren rom many other noise-reduction schemes in existence
ay, particularly the successful wavelet algorithms. This is

missing data; therefore, it is possible to restrict the motion dra%. . . .
to those sites with detectable missing data. principally because the pixel-wise update scheme would take

a large number of iterations to take advantage of the same kind
of information presented by explicit scale/frequency techniques.
As outlined in previous sections, it is possible to repose JOM-
The matter of convergence and stopping criterion is typicallJANDI to perform noise reduction over a large block of pixels.
problematic. In this case, because of the computational loadafthat case, elements of wavelet-based noise reduction can be
the algorithm, convergence as a stopping criterion takes sec@ndught into play. This is a matter for further work.
place to practical computing time for one frame. Running the |t is the way in which the Bayesian framework has allowed
algorithm for more than 50 iterations on an entire frame rapidijie coherent design of this joint process that is of interest here.
becomes totally impractical as the size of the frame increas#s. our knowledge, this is the only scheme that has quantita-
(See the previous discussion.) tively combined solutions to the noise reduction and missing
Convergence can either be assessed by observing the sasfa problems. Furthermore, the introduction of the joint sam-
ples from one of the variables or simply by looking at picturegling process using composition sampling is of pivotal impor-
In practice, pictures from a wider range of material (than showaince in this work both from the point of view of computational
in this paper) are acceptable after about 30 iterations. Of coursenplicity and increased convergence of the iterative scheme.
looking at pictures is not viable in a real system using batch preinally, the use ofcandidate selectioms part of the overall
cessing, and a workable alternative is to observe the numbenmEMC scheme (in the draw for motion) shows how good as-

pixels flagged as missing. When the mean of that number varisiscts from a deterministic scheme can be combined positively
slowly over the last ten iterations, the algorithm is stopped singgth MCMC.

this indicates that the fiel{ ¥) is not changing significantly. We
do not have the space here to examine convergence and stopping APPENDIX A

criteria in detail. . o COMPOSITION SAMPLING FOR b(E), (&), I.(F)
In all the examples shown, a fixed number of iterations were

employed, with a burn in of ten iterations. This allowed un- !N the adapted Gibbs sampler, it is required to drajsiat
complicated performance comparisons (in a reasonable caiRMPIe forb(Z), ¢(&), I, (&) from the conditional distribution
pute time) across the wide range of artifact levels that wel@ these variables, given the observed data and other param-
used. The real example employed the stopping criterion outlin§"S: €-9-¢; a, using composition sampling. In what follows,

A. Convergence

above. these other (given) parameters are denote( by
Using a pixel-wise draw allows the simplest implementation.
B. What Makes JOMBANDI Different? Dropping ther arguments (since all these variables are at coin-

. i i cident sites in the image) and usihg= 1,,(¥); g, = G.(Z),
Quite apart from its superior performance as a blotch detecife recipe for drawing a samplé®, €, °) is as follows:
in noisy conditions, JOMBANDI differs from all these other

proposals in that it allows the dynamic interaction between the Using p(b,, c|-) = pe(cli, b, - )pi(i]b, - )ps(b|-)
variables both in terms of their effect on the degradation and in b0~ py(B]-)

terms of spatial correlation. In all previous work in blotch treat- i e pi(i[0, )

ment in particular, decisions tend to be taken at sites without any 0
acknowledgment of the correlation between those sites inherent ¢’ ~pe(cfb”, a7, ).

in the degradation. Any spatial processing is typically done a§fiere gre other factorizations that could be used, but this one
post-process. In JOMBANDI, however, this spatial interactiogyq s straightforward analysis.

is explored during the iterative stages of the algorithm itself. 14 conditionals are derived by integrating efitst and then

Furthermore, through the Gibbs sampler, JOMBANDI genom the posterior distribution for all the three variables. What
eratessampledrom the underlying textural probability distri- complicates matters is thais a binary variable appearing as a

switchin the likelihood function, but this can be dealt with by
4Seventeen candidate motion vectors sampled per block. treating the two cases o6fas part of the integration process.
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Consider first the derivation of the condition&l:|b, -) Completing the square with respecttn the arguments of the
exponentials, thentegrandcan be expressed as

i bl plc, i, b)) de
pilp, ) = 2 / N SINN SICPTAN
[ptpbyar [ptopd . <L+ZA2> LG
¢ * 202 - ‘

. . . . o 1

The term in the denominator is the typical normalization term, 257 + Z Af

but this follows naturally once the integral in the numerator can T k

be performed. This is discussed next. xexp—K. (29)

A. Integrating Outc where K, represents all the terms not includingAfter some

. S simplification, the integral can be expressed as
At this point, it is useful to recall that P 9 P

ple, 4, b-) o< pilgnli, ¢, b, )pi(il-)pe(c|C)py(b|B)  (24) /(- ) de
whereB, C denote the set of values bf c at the eight nearest- * 020

. . . . 60-2 +g 0.2 2.2
neighbor sites of’. Note thatp; (¢|-) is always independent af o~ //\/ poIhe _HC ) exp(—K.)de (30)
andb. ¢ op+o; oj+o8

Considering the two cases bt= 0, 1, there are two numer-
ator integrals to be evaluated in (23). Fot 1, the integral is

whereN is the Normal distribution, and the various introduced
constants are as defined in (20).

/p(c,i, b|-) de Becausef, V(-)dc = 1, the result of the integration is there-
c fore oc exp — K., whereK, depends on\j,, 0., o7, ¢, etc.
- / pilanle,b =1, )pi(i)pe(c|O)pu(b = 1|B) de. (25)  Defining
c 2 2
Forb = 0, the integral is - Ot 9o 31)
o2 +o2
/ p(C, iv b|) de
e allows a much more easily evaluated form of the result [13],
_ /pz(gnli, b= 0, )p;(i]-)pe(c|C)ps(b = O|B) de.  (26) [23], [35] by.5|mply supsututmg this value (WhICh is the least
¢ squares estimate far given all the other variables) into (29)
In the second casé, = 0, the only function involvingz is  and, hence, (28), as follows fér= 1:
pe(c|0), and sincef, p.(c|C)de = 1, the integration is straight-
forward. / pulgale.b = 1. )il pe(elC)pu(b = 1|B) de
In the first case, the integration is more involved since there _ ) _
are two functions involving. Therefore = pi(gnlc =¢,b =1, )pi(i|-)p.(c = €[C)ps (b = 1|B). (32)
/pz(gn,IC, b= 1, )piCile,b = 1, Ype(clC)pu(b = 1| B) de Thus, we have, fob = 1, 0, respectively
‘ p(iv b|) =
O(/pz(gn|c,b: 1, )pe(c|C) de. (27) {pl(gn|c:ﬁ,b: 1, )pi(i]-)pe(c = €|C)py (b = 1| B) (33)
Continuing pi(gnli, b =0, )pi(i]-)py (b = 0| B).
/ pignle,b = 1, )pa(c|C) de x From this, expressiop(i|b, 3! follqws by substituti_on into (23).
e The actual forms fop(é|b) are derived by completing the square
—(gn — ¢)? . ) where necessary w.rit.to yield the e_xpressions shown in (18).
oxp | —5 5 )exp | - > Aj(e—c(k) || de Integrating out from the expressions above will now allow
¢ # k the derivation of(b|-).
(28)
whereA§ = X (1 — u(Z, Z + 7)) from (11). Rearranging the B. Integrating Out:
right-hand side yields In the case that = 1 [in (33)], it can be seen that there is just
02— 2eg + 2 one expression involving[p;(i|-)], and again, that integration
XPT T 52 is straightforward.
¢ # For the casé = 0, the situation is more involved. To proceed,
. . . it is necessary to writg;(i|-) using the pseudo-likelihood as
+2 Y AG -2 Aje(R)+ ) Ak(c(k))Q] de follows:

1 i(i]-) x exp — <
_ 2 § : c Di P
= /ceXp— C <E + - Ak) 203
The vectori, contains all the pixel sites that includé€at ) in

2 . . . o
—92¢ 9_"2 + ZAEC(/@ + 9712 + ZAE(C(/f))Q de.  their 3-D AR support. If these sites z.;lre_def|ned(a§), then
205 200 o a,, A, are arranged so théla, + Ayiz] is a column vector
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containing the residualg %, ) as well as the sitéz) at whichi
is to be estimated.

[4]

At this stage, it is useful to note that by completing the squares

w.r.t. ¢ on the right-hand side of (34), it follows that the condi-
tional expression is actually a Normal distribution as follows:

ala,
2
207

p;(@]-) x exp — (35)

wheres? = o2 /ala,, as in (20).

To proceed with integrating ouf the integral to be evaluated

is
/ @b = 0|B) di

= /pl(gn|i, b=0, )p:(é|)p(b=0|B)di. (36)

(6]

(71

(8]

[9]

[10]

[11]

[12]

Sincep;(-) is a Gaussian, the integration proceeds by substi-
tuting forp;(-) from either (35) or (34) and then completing the [13]

square w.r.ti. This is done in a similar manner to that shown

previously for manipulating the expression farAfter some
simplification, the following results:

— 0203
1 @

[14]

[15]

[16]

where the introduced constants have their values as shown in

(20).

Again, following the same ideas that led to the solution for
integrating out, the final result (foh = 0) is best expressed as

/ J(@)po(b = O|B) di

= pi(guli = )pi(i = 1| )ps(b = 0| B). (38)
Hence
p(bl) =
{pl(gn|c =¢b=1)p.(c=¢C)p(b=1|B), [b=1]
pi(gnli =4,0=0,)p;(i =] )pp(b=0|B),  [b=0]

as required, where again, variables are defined as in (20).

APPENDIX B
NOTE ON p.(c|C)

(17]

(18]

(19]

(20]

[21]

(22]
(23]
(24]

(25]

From the prior fore [see (11)], we can assemble the form for g

the probability distributiorp(c|é, b, -) (in the case tha = 0)

by completing the square in terms®iin the prior. This form is

given by (¢, @2), where the constants are defined in (20).
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