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Abstract 

This paper describes the parallel implementation of a transport network model.  A ‘Single-

Program, Multiple Data’ (SPMD) paradigm is employed using a simple data decomposition 

approach where each processor runs the same program but acts on a different subset of the 

data.  The objective is to reduce the execution time of the model.  The computationally 

intensive part of the model is within the assignment and simulation section and therefore this 

section is parallelised and executed using 1, 2, 4, 8 and 16 processors.  The convergence, 

accuracy and performance of the parallel model are then assessed and compared to the linear 

implementation.  The results indicate a performance increase of over 8 for the parallelised 

module and a speed-up of 5 for the total model when the model is run using 16 processors.  

The efficiency, average parallelism and efficiency-execution time profile are also discussed.  In 

the context of time savings with 16 processors compared with 1, the time saving on the IBM 

SP2 are of the order of 80%, and, compared to a linear implementation on a dual processor 

Intel machine are of the order of 86%. 
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1. Introduction 

Van Vliet [72] found that the set of shortest paths between different zones in a transportation 

network, commonly referred to as 'building trees' can be a time-consuming problem on a 

computer, particularly for large networks.  The majority of tree building algorithms in general 

use in transport modelling are of a label-correcting nature, e.g., Moore’s algorithm [53], though 

one label-setting algorithm is quite prominent also, that due to Dijkstra. [22].  The main 

advantage of Dijkstra over Moore is that provided there are no negative links, it is a once-

through method, i.e., building the tree from the source each node and therefore each link is 

only visited once [72].  With Moore, a shorter path may be discovered at a later stage than 

when a node is introduced.  This means re-examination of links is necessary.  A third algorithm 

used for this type of modelling but not as common as the other two is called the D'Esopo 

algorithm [62].  Its advantage is that it corrects errors as soon as they are detected without 

allowing them to progress further.  Van Vliet [72] found that D'Esopo was the fastest of the 

three on all but two of the nine networks he tested and the relative efficiency is sensitive to 

network size and in the case of Dijkstra, link length.  D'Esopo can reduce central processing 

unit (CPU) times by more than 50% relative to standard algorithms in use [72].  The D'Esopo 

algorithm is used by the SATURN model, one of the most commonly used transportation 

network models in the UK and Europe.  See Section 2.1 for a more detailed review of shortest 

path algorithms. 
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The objective of this research is to assess the SATURN model [74], as applied to the Dublin 

Transportation Network Model [23], with a view to finding the areas within the model that take 

up the most CPU time, and to reprogram these areas to run in parallel so that higher levels of 

efficiency can be generated.  Reprogramming the most time consuming or computationally 

intensive areas of the model in parallel should allow for a more efficient use of computer time 

over a variety of network configurations and sizes and in doing so result in improved efficiency 

in examining the Dublin Transportation Network Model.  The overall objectives are: 

• To evaluate efficiency when more than one processor is used; and, 

• To demonstrate that the modified model converges and produces results comparable to the 

original. 

A detailed review of background material is described in the next section of the paper, with 

particular reference to the initial analysis of the sequential SATURN model, the 

computationally intensive area of the assignment, shortest path algorithms, and, programming 

the assignment and shortest path algorithms in parallel.  Section 3 describes the approach and 

strategy of reprogramming the sequential SATURN program in parallel followed by the results 

of this research.  The paper ends with conclusions and recommendations for further research. 

 

2. Background 

SATURN requires a trip matrix, Tij, as input and this specifies the number of trips from zone 

‘i’ to ‘j’.  It also requires a transportation network that specifies the physical structure of the 

road network – demand and supply.  Both the matrix and the network are used as inputs to the 

route choice model, which allocates trips to routes through the network.  This results in total 

flow along links in the network and they may be summed to give the corresponding network 

costs. 
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It was found by Greenwood and Taylor [33] that for the CONTRAM, CONtinuous Traffic 

Assignment Model, model [47, 48, 67] most of the computationally intensive areas, the areas 

where the Central Processing Unit (CPU) spends most of its time, are within the assignment 

area.  CONTRAM is a dynamic traffic assignment model, which models time-variable 

demands, routes and network variables [68], that was developed by the UK Transport Research 

Laboratory. 

 

As a starting point for the assessment of SATURN it was initially assumed that because of the 

similarities in the areas of computational intensity between the CONTRAM and SATURN 

models, i.e., the assignment and shortest paths, similar results would be obtained for the 

assessment of CPU time spent within the assignment area as compared to the entire model.  

Indeed this proved to be the case, see Section 2.1, which led to a study of the existing 

sequential algorithms and an analysis of the data flow within SATURN, see Section 2.2 and 

2.3 below. 

 

2.1 Analysis of subroutines within the SATURN model 

The computationally intensive part of the SATURN model is the SATALL program.  SATALL 

deals with loading the traffic onto the transportation network.  SATALL is made up of an 

assignment and a simulation.  The assignment section assigns traffic on the basis of the delays 

given by the simulation.  The simulation section models in detail the passage of traffic through 

the network and the resulting delays.  The program SATALL loops between the assignment 

and simulation until equilibrium is reached.  The SATALL program was profiled using a piece 

of software called ‘Gprof”, with the optimiser switched on, run on the UNIX operating system 
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to show on what and for how long the CPU spends its time.  These results can be seen in Table 

1. 

 

Table 1 gives a detailed profile of the four most time consuming routines, categorised by the 

percentage of CPU time used while running the computationally intensive SATALL program, 

when applied to a sample problem supplied by the Dublin Transportation Office (DTO).  The 

first column, ‘% Time’, gives the percentage of CPU time that each routine uses while 

SATALL runs through a given problem.  The next column gives the cumulative time used up 

by successive routines as the model iterates for each of the four routines shown.  Column three 

gives the time that each routine uses itself, as opposed to the additional time spent in routines 

that are called from that routine.  The column, ‘self calls’, gives the number of times that each 

routine is called from another routine while the next two give the milliseconds used within 

each routine per call and the total milliseconds used per call, including the time spent in 

subroutines that are called from the main routines. 

 

% TIME CUMUL. 
(SECS) 

SELF 
(SECS) 

SELF 
NO. CALLS 

MS/CALL TOTAL 
MS/CALL

Subroutine in S Brief description 

80.8 887 887 83711 11 11 .desopo_cb Shortest Path Alg. 

4.9 941 54 194 277 4897 .loadit_plus Assign trips to paths

1.9 962 21 NG NG NG .__mcount Count 

1.9 982 20 1726 12 12 .desopo_cb_2 S. P. Alg. 

 

Table 1: Profile of CPU related figures and number counts for routines within the 

SATALL program 

What the table shows is that the routine used to solve the shortest path problem, desopo_cb, 

has over 80% of the overall CPU running time for SATALL.  As well as this, the routine that 

calls the shortest path routine, “loadit_plus”, (used to load, or assign, the trips onto these 
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shortest paths) uses 5% of the total CPU time.  This only leaves approximately 12% of the 

overall running time for all of the other routines that make up the program SATALL.  The 

details for these routines are not shown in Table 1, as there are too many of them to list.  Since 

both the “desopo_cb” and the “loadit_plus” routines are both part of the assignment, and 

because these routines give the assignment over 85% of the overall CPU running time for 

SATALL, it was decided that the assignment should be targeted for further research. 

 

2.2 Shortest Path Algorithms 

The method for building a minimum path tree, or shortest path tree, may be described simply 

using the following general notation: 

• The length of a link between two nodes, A and B, in the network is LA,B; 

• The length of the chosen path is the sum of the link lengths in the path; 

• The minimum distance from the origin, O, to the node A is LA; and, 

• The back-node of A is BA and the link (BA, A) is a part of the shortest path. 

Set-up: 

• Set all LA = ∞, LO = 0 and all BA equal to some default value; 

• Set up a loose-end table T to contain nodes, Ti, already reached by the algorithm but 

not fully analysed as back-nodes for further nodes. Entries into this table represent the 

outer ends of the tree as branches grow to connect all of the nodes together; and, 

• All entries are set to zero, Ti = 0. 

Method: 

Starting with the origin, ‘O’, equal to the ‘current node’, A; 

(1) Look at each link (A, B) from the ‘current node’, A, in turn and if LA + L(A,B) < LB then 

set LB = LA + L(A,B), set BB = A, and add B to the loose-end table, T, provided that B is 

not a centroid if routing through centroids is prohibited; 
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(2) Remove A from T and if the table is empty, stop.  Otherwise continue to step (3); and, 

(3) Select another node from the table and return to step (1) with it as the ‘current node’ A. 

Once this process has come to an end then LA contains the set of minimum lengths, measured 

using costs, distances or by other means, from the origin, O, to each node or centroid, A.  The 

back-node, BA, then contains all of the data necessary to retrace all of the shortest paths. 

 

A number of classical algorithms exist which solve the shortest paths problem within the field 

of transportation.  These include the Bellman-Ford-Moore algorithm [5, 26, 53], algorithms 

due to Moore [53], Dijkstra [22], Pallottino [58] and the D’Esopo-Pape algorithm, as described 

and tested by Pape [61] while being credited to D’Esopo by Pollock et al. [62].  A number of 

reviews exist on shortest path algorithms in general, for example see, amongst others, Deo and 

Pang [19], Gallo and Pallottino [28], Bertsekas [7], Ahuja et al. [2] and Cherkassky et al. [16], 

and within transportation models see, Van Vliet [73] and Gallo and Pallottino [29].  It is 

recognised that these algorithms have all developed using different strategies for selecting 

labelled nodes to be scanned in order to solve the single-source shortest paths problem on 

transportation networks and other sparse networks [43, 31, 28, 32]. 

 

Labelling algorithms consist of iteratively updating node labels, where the label represents the 

shortest path, as described in the algorithm given above, be that distance or a different measure 

of cost, at the end of the algorithm.  The simplest method of keeping the set of nodes eligible 

for scanning is to use a list.  A queue is a list where additions to the queue are allowed only at 

the end of the queue and deletions only at the top [52].  During each iteration of the algorithm a 

node is removed from the list and its adjacent nodes’ labels are updated.  The method of 

removal of these nodes determines whether the algorithm is label-setting or label-correcting. 
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The basic label-setting algorithm is due to Dijkstra [22].  In label-setting algorithms the node 

with the smallest distance label is removed from the list during each iteration.  If the costs of 

travelling from node ‘i’ to node ‘j’ are non-negative then the removed node will never enter the 

list again.  Label-correcting algorithms, on the other hand, do not necessarily remove the node 

whose label is the minimum.  Hence, a node that has been removed may re-enter the list at a 

later time.  Label-correcting algorithms have been shown to have better experimental 

performance than label-setting algorithms for sparse networks [43, 42, 28, 33, 61]. 

 

To examine the performance difference between label-correcting and label-setting two of the 

main algorithms in the field of transportation for solving the shortest path problem, those due 

to Moore and Dijkstra, are compared.  The main difference between these algorithms lies in the 

procedure for selecting a labelled node from the loose-end table.  Moore’s algorithm is a label-

correcting algorithm, and Dijkstra’s algorithm is a label setting algorithm.  Moore selects the 

top entry on the loose-end table, which is the oldest entry in the table.  On the other hand, 

Dijkstra selects the node that is nearest to the origin, which requires additional computation but 

it does ensure that each node is examined only once.  It is well known, according to Ortuzar 

and Willumsen [56], that Dijkstra’s algorithm is superior to Moore’s, especially for large 

networks, although it is more difficult to program.  However, the D’Esopo extension to 

Moore’s algorithm has been found by Van Vliet [72, 73] to be both more efficient and faster 

over a range of sparse transportation network sizes and configurations. 

 

Three of the more appropriate algorithms for calculating shortest paths in transportation 

networks are those due to Moore, D’Esopo and Dijkstra [73].  Their relative efficiencies are 

shown to depend on certain characteristics of the network [73].  The D’Esopo algorithm, as 

described and tested by Pape [61], was identified as performing very well for large as well as 
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small networks by Van Vliet [73].  The D’Esopo algorithm is an extension to Moore’s 

algorithm in that it uses a two-ended lose-end table, also known as a deque list (double-ended 

queue) for which additions and deletions are possible at either end, so that a node is entered at 

one of the ends depending on its status.  In this way any node that has already been examined 

but comes up again as the algorithm progresses is immediately examined again because it will 

have been stored at the top of the loose-end table; see Van Vliet [72] and Pape [61] for more 

detail. 

 

As shown by Van Vliet [72], the D’Esopo algorithm can reduce CPU times by up to 50 % 

when compared to Moore’s algorithm.  Furthermore, from a similar study made by Van Vliet 

[73] of these algorithms, over a wide range of network sizes and configurations, the D’Esopo 

modification to Moore’s algorithm gives minimum CPU times when compared with those 

times obtained from the best implementations of Dijkstra’s algorithm, which used a box-sort in 

1977. 

 

In other work Zhan et al. [79] makes reference to Cherkassky et al.’s [16] work on Dijkstra’s 

algorithm as a starting point but they use real road networks as opposed to randomly generated 

networks.  It is concluded that the best algorithmic implementations for solving the single-

source ‘one-to-all’ shortest path problem are those due to Pape [61] and Pallottino [58].  

However, the algorithm attributed to Pape [61] by Zhan et al. [79] is described by Pape [61] as 

the D’Esopo variation to Moore’s algorithm.  A number of different variations of Dijkstra’s 

algorithm are also recommended for different network sizes and configurations; however it 

appears that no one implementation of Dijkstra’s algorithm performs well across both large and 

small networks. 

 



 11

It is concluded that when dealing with the shortest path problem in the SATURN model this 

research will concentrate on the parallelisation of the D’Esopo algorithm for the following 

reasons: 

(1) In the case of transportation models, networks generally have nonnegative arc costs and 

structured sparse graphs.  Therefore, the current deque shortest path algorithm, i.e., the 

D’Esopo algorithm, seems to be the best choice of algorithm for transportation 

applications, excluding specific circumstances where specialised algorithms need to be 

used [29, 59]. 

(2) The robustness of the D’Esopo algorithm relates to it being able to solve the shortest 

paths problem for different network sizes and configurations more efficiently than both 

Moore, which is only faster for very small networks (less than 75 nodes) and Dijkstra 

(box-sort), which is only faster for large networks with short nonnegative link lengths 

[73]. 

 

2.3 Parallel programming in traffic assignment and shortest path theory 

2.3.1 Assignment 

Greenwood and Taylor [33] found that parallelisation of the dynamic CONTRAM traffic 

assignment model offers substantially increased performance to model larger transportation 

networks and to model a larger range of transport scenarios.  It was also found that most 

benefit came from assigning vehicles to their routes in parallel because it involves physically 

independent or simultaneous processes.  Significant changes to the methodology of the model 

were required to ensure convergence and computational efficiency though the essential 

characteristics of the CONTRAM model remained the same [33].  The parallel approach used 

was a “farmer/worker” paradigm, otherwise known as the master/slave paradigm where each 

slave processor is assigned a subtask while one processor, the master processor, is completely 



 12

dedicated to the co-ordination of the activities of the slave processors and to their 

communication requirements.  An approach by Hislop et al. [40], where the network is 

dissected into zones and traffic is assigned to the zones in parallel, was discarded because of 

the difficulties with assigning ‘packets’ to cross-boundary routes.  It was decided that a simpler 

data decomposition strategy to assign all ‘packets’ in parallel was more appropriate.  This 

resulted in a speed-up of nine times using 16 T805 Transputers for a network of 1001 links. 

 

Chabini et al. [14] looked at parallel and distributed computation of shortest routes and 

network equilibrium models.  They present parallel computing implementations of the linear 

approximation method for solving the fixed demand network equilibrium problem.  Chabini et 

al. [14] also contains parallel computing implementations of a shortest paths algorithm due to 

Dijkstra [22].  The linear approximation method used to solve the fixed demand network 

equilibrium problem by Chabini et al. [14], is an adaptation of the Frank-Wolfe algorithm [27, 

4].  In the sequential implementation of this algorithm a variant of Dijkstra’s [22] algorithm is 

used to calculate shortest routes for all origin-destination pairs.  The methodology used to 

parallelise Dijkstra’s algorithm by Chabini et al. [14] is also a master-slave decomposition 

model. 

 

The PVM environment [30, 66], which is predominantly used for message passing between 

processors on distributed memory systems and usually for networks of workstations, is used to 

manage inter-processor communication and the parallel process synchronisation.  PVM is also 

used for portability as it supports low-level networks of heterogeneous workstations when 

implementing parallel process based algorithms.  Chabini et al.’s [14] results indicated that 

parallel computing offers significant advantages for the parallel computation of shortest paths 
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and for solving the fixed demand network equilibrium problem on the computing platforms 

and environments that were available at the time. 

 

Nagel and Rickert [54] make use of the master-slave approach using decomposition for a 

parallel implementation of the TRANSIMS micro-simulation.  Reference is also made to 

Chabini [13] where domain decomposition is used to partition the network graph into domains 

of approximately the same size for a discrete dynamic shortest path problem. 

 

Hislop et al. [40] describe two approaches to parallelising traffic assignment, one based on 

‘central control’ and the other on ‘distributed control’.  The ‘central control’, or data 

decomposition, approach is the same as the master-slave paradigm described above.  The 

Transport Parallel Computing Centre at University College London has implemented this on a 

36 * T800 transputer array.  A relatively good performance was obtained for the size of 

network used [40].  Three proposed methods are given for the distributed approach.  The first 

is a NEMIS-like system where a processor is responsible for each node, which is not very 

economical.  The second is a regional distribution where processors control different regions of 

the network.  Each processor maintains link costs and flows for its region and a less detailed 

copy of link costs for the rest of the network.  Each vehicle would have to be ‘moved’ as far as 

it could go within a discrete time interval instead of being assigned to its entire route per 

assignment iteration.  The third method is the same as the second accept that instead of a 

processor having a less detailed copy of the network outside of its region, a distributed 

minimum cost tree-building algorithm would operate.  Problems with these methods are 

associated with large communication overheads incurred while transferring network 

information between processors. 
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2.3.2 Single-source one-to-all shortest path parallel algorithms 

The majority of work that has taken place has focused on developing and comparing different 

parallel implementations for sequential label-setting and label-correcting algorithms [43].  A 

number of parallel algorithms have been proposed for various sequential shortest path 

algorithms such as those documented by Tseng et al. [71], Paige and Kruskal [57] and Chandy 

and Misra [15] on machine independent algorithms and those by Habbal et al. [38] and Dey 

and Srimani [21] on machine specific algorithms.  The most investigated area being the all–

pairs problem, see Habbal et al. [38], Paige and Kruskal [57], Chandy and Misra [15] and Deo 

et al. [20].  Several attempts have been made to parallelise the single source shortest path 

problem but with relatively little success [69, 9, 57, 20], however, certain adaptations of 

Moore’s algorithm seem promising according to Deo et al. [20]. 

 

By 1991, parallel algorithms for finding the shortest paths within the field of transportation 

were based on Dijkstra, Moore and D’Esopo, and, Dynamic Programming [40].  Bitz and Kung 

[12] distributed Dynamic Programming on an iWarp systolic array but found that the method 

did not perform well on large networks.  Mateti and Deo [49] give examples of distributing 

Dijkstra’s and Moore’s algorithms on a shared memory MIMD machine and on a specialised 

vector addition and comparison supercomputer. 

 

Habbal et al. [38] present an algorithm for a distributed network achieving speedup but 

acknowledging that the performance is dependent on the decomposition of the network.  Paige 

and Kruskal [57] present synchronous parallel versions of Dijkstra’s and Ford’s algorithms but 

without any actual implementation or results.  Traff [69] has compared two asynchronous 

distributed label-setting algorithms based on Dijkstra’s algorithm and found that both 

algorithms initially performed poorly but, when compared to Paige and Kruskal’s [57] 
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synchronous implementation with measures included to reduce the communication costs, 

performed well.  Experimental studies of distributed label-setting algorithms, such as those by 

Traff [69] and Adamson and Tick [1], use a partition of the network among processors so that 

each processor has its own sub-network on which to work.  It was observed that label-setting 

algorithms have little parallelism [43].  Crauser et al. [17] also describe a theoretical approach 

to parallelising Dijkstra’s algorithm by dividing the algorithm into a number of phases to be 

executed in parallel, a method of process decomposition.  The implementation shows good 

theoretical behaviour and further research is recommended.  Bertsekas and Tsitsiklis [10] have 

surveyed both synchronous and asynchronous iterative algorithms with mixed convergence 

results.  Traff [69] also found that for distributed memory systems achieving speedup for 

Moore’s algorithm is ‘apparently’ easier than for Dijkstra’s. 

 

Two data parallel implementations of Floyd’s algorithm are discussed by Narayanan [55] 

where the algorithms are compared to each other but there is no measure of the speedup of 

either implementation relative to a sequential algorithm.  Polymenakos and Bertsekas [63] have 

used an auction algorithm developed by Bertsekas [6], and, Bertsekas and Castanon [8].  The 

auction algorithm is itself slower than standard sequential single source shortest path 

algorithms but is reported to be suited to parallelisation and yields speedup results that are 

comparable to those of Traff [69] for a shared memory machine.  Other reports have reported 

on experimental results for ‘simulated’ shared memory computers; see Adamson and Tick [1] 

and Bertsekas et al. [11] as examples, while there appear to be few reports for the more 

realistic distributed systems; see for example Papaefthymiou and Rodrique [60].  Bertsekas et 

al. [11] compares several label-correcting algorithms while Papaefthymiou and Rodrique [60] 

implement parallel versions of the label-correcting Bellman-Ford-Moore algorithm and 
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compare it to a sequential implementation of the Bellman-Ford-Moore algorithm developed by 

Cherkassky et al. [16]. 

 

Ziliaskopoulos et al. [84] introduces parallel designs for the dynamic time-dependent least time 

path algorithms using shared memory and message passing approaches.  The parallel 

algorithms are based on sequential dynamic algorithms introduced by Ziliaskopoulos and 

Mahmassani [83, 81] using discrete time steps and the theory of Bellman’s principle of 

optimality.  However, no testing was carried out on large networks.  This research is continued 

through Ziliaskopoulos and Kotzinos [80] who propose and execute a massively parallel design 

for the time-dependent least time path algorithm, which is also based on sequential work by 

Ziliaskopoulos and Mahmassani [83, 81], on a PVM system.  While speedup improves with the 

number of time intervals it is also acknowledged that further research into efficiency, over 

actual and random networks, is necessary. 

 

A number of papers have been published by Hribar et al. [43, 44, 42] looking at performance 

aspects of parallel shortest path algorithms and dynamic implementation within the 

transportation field.  Hribar et al. [43] explore various network decompositions to develop 

shortest path algorithms and the choice of shortest path algorithm to solve route choice on 

congested networks but the results are found not to be superior to a simpler decomposition by 

origin [25].  Hribar et al. [44] examines termination detection implementation, the third aspect 

of what they have determined to be the parallel implementation issues of applying simple 

labelling algorithms to distributed memory machines to solve transportation problems.  

However, Hribar et al. [43] focuses on “why algorithms perform the way they do” as opposed 

to the performance associated objectives here.  A distributed network approach, where the 

network is partitioned into ‘n’ sub-networks for ‘n’ processors, is used for solving the shortest 
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path problem using labelling algorithms on distributed memory machines.  This takes 

advantage of the aggregate memory of the distributed system and parallelism can exceed the 

number of sources.  However, there are high communication overheads associated with 

communicating node labels, and for termination detection [43]. 

 

Another approach is to use network replication [45] where the entire network is assigned to 

each processor and each processor solves the shortest path problem for a subset of sources 

(origins).  There is no inter-processor communication required for this solution.  However, a 

global communication is required to update the replicated network across the processors.  The 

disadvantages are that the parallelism is limited to the number of sources and that the 

communication overhead increases as the number of processors increase.  Hribar et al.’s [43] 

approach uses the Single Program, Multiple Data (SPMD) model, where each processor solves 

the shortest path problem for all sources across its sub-network.  Multiple processors share 

boundary nodes while the remaining nodes are known as interior nodes.  The program is 

terminated when all the processor lists are empty.  Only 32 sources were used for ease of 

analysis where transportation networks can have upwards of hundreds or thousands of sources 

to solve for.  Tremblay and Florian [70] state that computing implementations based on 

topological subdivisions of the network are not likely to be more efficient than the 

decomposition by destination approach. Tremblay and Florian [70] look at temporal, or 

dynamic, shortest paths quoting Ziliaskopoulos and Mahmassani [82, 83, reported in 84] as the 

only previous contributors to the area, see above.  The parallelisation strategies implemented 

use a decomposition-by-origin approach with good results found on a shared memory machine. 
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3. Methodology 

The major objective for the parallelisation of the SATURN model was to improve the model’s 

performance so as to be able to apply the model to computationally intensive, and hence time 

intensive, transportation problems that otherwise might not be assessed.  The strategy for 

programming the SATURN model in parallel is to take the most CPU computationally 

intensive components of the model (calculation of the shortest paths) and to parallelise this 

section in such a way that the resulting parallel version of the model converges, is accurate, has 

a more efficient performance and is portable. 

 

3.1 Strategy 

Any parallel version of SATURN [75] shall, in modifying the relevant algorithms and code, 

ensure that the parallel model can be used on a number of different systems with a minimum of 

difficulty.  Although this research will be applying the parallel solution on an IBM RS/6000 

SP2 supercomputer, the final solution will be compatible with most parallel systems.  The IBM 

SP2 has 48 Power2SC processors, although only 16 were utilised in this research due to 

administrative restrictions as a result of the workload on the machine; see Section 4 for a 

description of the system.  In order to do this the solution has been designed to be compatible 

with both distributed memory and shared memory systems. 

 

The implementation of a number of subtasks making up part of a larger overall problem 

depends on the type of parallel computing architecture being used, i.e., shared or distributed 

memory using perhaps SIMD or MIMD parallel architecture.  For example, in a distributed 

memory message passing system each subtask is modelled as a process and each process has 

its own address space.  Communication happens between processes operating on their own 

data along channels between exactly one pair of processes.  Each process may have many input 
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or output (I/O) channels.  This is known as the communication sequential process model [14] 

for parallel execution, which was initially developed by Hoare [41] in the 1970’s and is the 

basis for the message passing paradigm.  This model is commonly used in communication 

libraries such as, for example, the MPI interface [50, 76]. Two basic functions, called ‘send’ 

and ‘receive’, are generally used to send and receive the information along channels between 

processes. 

 

The MPI interface has been generally accepted as the message passing interface of preference 

in parallel computing environments [39].  The main function of MPI is to communicate data 

from one process to another much as the TCP/IP mechanism does for lower level networks.  

While message passing provides the most obvious way of programming a physically 

distributed memory parallel system, it can also be used on shared memory and sequential 

computer systems and, as such, can be used as the basis for the development of efficient 

portable programs on all computer architectures [39].  The design of portable programming 

interfaces was based on the design being sufficiently abstract from the individual parallel 

system hardware requirements.  The resulting design and research undertaken to achieve 

portable programming interfaces provided the experience for the development of MPI [35].  

Also, the involvement of the majority of parallel computer manufacturers ensured that no 

machine was disadvantaged by the MPI specification.  Two MPI specifications have been 

produced; an annotated reference manual by Snir et al. [64] for MPI-1 with a revision, also by 

Snir et al. [65], and an analogy for the MPI-2 specification by Gropp et al. [36].  However, 

excluding the positive aspects of the development of portable programming interfaces, the 

main success of the message passing paradigm is due to its efficiency, scalability for large 

numbers of processors and portability for many different parallel systems and applications 

[39]. 
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PVM is a system designed for managing and coordinating parallel systems.  It was produced 

by researchers at Emory University, the University of Tennessee, Knoxville, and Oak Ridge 

National Laboratory as a research development project [30, 66].  When the development of the 

MPI interface began PVM was the most popular message passing system in use.  It has been 

regarded that MPI and PVM have been competing to become the message passing standard 

since then, however, two of PVM’s principle developers, Jack Dongarra and Al Geist, were 

also key to the development of MPI [39]. 

 

The design objectives for MPI and PVM differed greatly.  PVM was designed for use on 

networks of workstations and problems to do with interoperability and resource management.  

As a result its message passing facilities are not very sophisticated.  In contrast, MPI’s 

development focused on message passing and is intended to provide high performance on 

tightly-coupled homogeneous parallel computing architectures, which it has achieved [39].  

Gropp and Lusk [34] also provide a comparison between PVM and MPI finding MPI more 

credible than other message passing libraries because of the consultative process involved in its 

creation.  Development of message passing aspects of PVM were stopped after Version 3.4 in 

favour of research into distributed, heterogeneous environments for networks of workstations 

while some of PVM’s major strengths, such as its resource management capabilities, have been 

incorporated into MPI.  Today the majority of parallel computer producers support MPI as 

their primary message passing interface with other interfaces available for reasons of 

compatibility with legacy codes [39]. 

 

Chabini et al. [14] implemented two versions of code for the assignment area: one using a 

distributed memory platform and message passing and the other using a shared memory 
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platform and threads.  The drawback of the shared memory version is the limited scalability.  

Most shared memory systems are more expensive and use fewer processors than distributed 

systems.  At some stage further processors cannot be used as the contention between 

processors in trying to access the memory at the same time becomes too large.  

Supercomputers such as the CRAY range can cost millions of dollars for onsite installation but 

can take existing sequential programs written in computer languages such as C, C++ and 

FORTRAN and convert the code so that it can run in parallel on the machine with minimal 

effort on the behalf of the programmer.  MIMD machines are far cheaper and offer far greater 

flexibility in the way problems are distributed, examples being transputers and distributed 

networks of workstations.  However, they are harder to set-up and program in parallel [40].  An 

example of a SIMD machine is the CM-2 connection machine, see Zenios [78].  The majority 

of parallel systems becoming available belong to the MIMD category however [3]. 

 

Chabini et al.’s [14] distributed memory message passing version uses PVM instead of MPI.  

However, Chabini et al. [14] and others also opted for a master-slave paradigm whereas a 

Single-Program, Multiple-Data (SPMD) paradigm is being used here.  The SPMD approach 

should be more efficient and scale better over multiple processors.  The SPMD paradigm is an 

approach where each processor runs the same program but acts on different set of data.  The 

way in which this works is that a duplicate of the parallel program is distributed over multiple 

processors and each duplicate program runs in parallel acting on a different set of data and 

communicating between each other only when altered data is needed by the other processors in 

order for the parallel application to continue.  This communication also occurs at 

approximately the same time across multiple processors because each processor works on an 

equal share of the data and performs the same tasks on this data.  Allied to this the MPI 

interface will be utilised to maximise performance from a message passing point of view. 
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3.2 Parallel programming, shortest paths and assignment 

The shortest path problem has been shown to take up over 80 percent of the overall CPU time 

for SATALL.  For every origin in the network a shortest path is found to every possible 

destination so the same computations are made to achieve a shortest path for every Origin-

Destination (O-D) pair.  In programming the shortest path problem in parallel a simple 

decomposition by origin is used where the total number of origins is divided into a number of 

subtasks in such a way that each subtask can be issued to a separate processor for analysis.  

Each subtask then corresponds to the computation of a subset of the total number of origins 

and has the same code as all the other subtasks.  The label-correcting single-source D’Esopo 

modification to Moore’s algorithm is being used as the shortest path algorithm of choice.  

Though not the fastest algorithm for specific network sizes and configurations the algorithm 

performs very well over a wide range of transportation applications unlike other well known 

algorithms such as Dijkstra’s label-setting algorithm, which needs to be invoked in different 

ways to achieve good performance depending on the specific circumstances.  Chabini et al. 

[14] has found that a slow sequential algorithm can lead to very good speedups when the serial 

version of the algorithm is coded and the computation of shortest paths is shared for subsets of 

origins among processors. 

 

From a hardware perspective fine-grained, or massively, parallel systems have in the order of 

thousands of processors whereas coarse-grained parallel systems would usually have a couple 

of dozen processors.  The grain, referred to above, is a description of the size of the data packet 

that a processor can handle in Random Access Memory (RAM).  Fine-grained processors have 

perhaps 16-20 Kbytes of RAM whereas coarse-grained processors may have gigabytes of 

RAM available. 
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From a software perspective, the use of partition in decomposition consists of determining the 

size of each of the subtasks to be assigned to each processor.  Depending on the resulting size 

of each subtask three levels of parallelisation are produced; fine, medium and coarse-grained.  

In fine-grained parallelism each subtask can represent an operating instruction, as compared to 

coarse-grained parallelism where each subtask can represent a procedure or loop.  In order to 

do this other criteria must also be considered.  Allocation looks at assigning each subtask to a 

processor so that priority constraints amongst subtasks are respected.  Load balancing is tightly 

interconnected with allocation and partition.  The main objective of load balancing is to keep 

all the processors in use, as far as is practicable, and equally loaded in terms of the execution 

times of the processes allocated to them.  Fine-grained subtasks are useful for load balancing 

but can result in an increase in communication overheads.  Coarse-grained subtasks can result 

in long idle times for processors that have finished their subtask and are waiting for other 

processors to finish so that the algorithm can continue in a synchronised manner. 

 

The main problem with parallelising the single source shortest path problem is that the problem 

is inherently sequential with a large number of iterations taking short periods of time, yielding 

very small grain sizes.  One way to overcome this problem is to perform more computations 

within each subtask, so as to increase the grain size [84]. 

 

It was decided to create a set of ‘coarse-grained’ subtasks based on the fact that the shortest 

path routine is called so frequently and is so computationally intensive.  In addition to this each 

shortest path computation is independent of every other shortest path computation, which 

means that shortest path calculations for different origin-destination pairs can be executed 

simultaneously.  Therefore, the use of coarse-grained subtasks is profitable in the context of 

this strategy due to the fact that the areas to be reprogrammed in parallel are substantial in 
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terms of computation and can run in parallel without having to communicate very often with 

other subtasks also running in parallel.  This reduces the inefficiencies associated with 

communication overheads, which would be incurred in a fine-grained parallelisation as 

subtasks running in parallel would have to communicate more frequently; see Chabini [13] for 

more detail of fine-grained parallelism in shortest path theory.  Creating these subtasks is 

achieved by dividing the total number of origins by the number of processors being used for 

the implementation, an early implementation of which is due to Chabini [14].  The result is that 

there is a very high ratio of ‘computational execution to data input’, which is what allows 

distribution of the sequential code and a parallelisation approach based around the shortest path 

loop instead of inside the shortest path algorithm. 

 

This represents a very pragmatic approach, which should give better performance than fine-

grained parallelisation of the shortest path algorithm, which has proved very difficult; see the 

review in Section 2.3 for more detail.  Each processor in the distributed system will have a 

copy of the transportation network, the trip matrix and a copy of the sequential shortest path 

algorithm.  The parallelisation will result in each processor having a coarse-grained subtask 

that will be able to find the shortest paths for a subset of origins equal to the total number of 

origins divided by the total number of processors plus some remainder, and, once each 

processor has found the shortest paths for its subset of origins, it then assigns the respective 

flows to this newly found subset of shortest paths based on the O-D demand given in the trip 

matrix.  When this has been completed the shortest path information with the assigned flows 

having also been loaded in parallel are gathered together by each processor from the other 

processors and reconstituted.  The program continues in this fashion for each iteration of the 

assignment with the updated network flow information until convergence or a stopping 

parameter has been reached.  This approach avoids the centralised approach described by 
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Hislop et al. [40], which is limited by the computational bottleneck inherent in a centralised 

system arising from traffic levels, or the transportation network, becoming too large. 

 

4. Results and Discussion 

A number of different samples were analysed on three different platforms.  Comparisons were 

then drawn between outputs from the parallel model and outputs from the sequential model on 

each system.  The machines that were used were the Intel dual processor i686, the IBM 

RS/6000 F50 (4-processor) SMP shared memory system and the IBM RS/6000 Scalable 

POWERParallel SP2 supercomputer. 

 

The IBM RS/6000 SP2 System is a distributed memory multi-processor parallel system 

composed of processor nodes.  Each node contains a single Power2SC processor running at 

160MHz and runs its own copy of the AIX V4.3.3 operating system.  Its peak performance is 

640 MFLOPS with 4 FP results/clock, an L1 Instruction Cache of 32 K and an L1 Data Cache 

of 128 K.  The memory configuration is as follows: 

• Node 01 >> node 16: 1 GB memory; 

• Node 17 >> node 26: 512 MB memory; 

• Node 27 >> node 48: 256 MB memory. 

The total peak performance of the system is 30GFlops.  The nodes are connected together 

using the High Performance Switch Omega Network.  For this research 256MB of memory 

were assigned, as a minimum, to the execution of the program per processor. 

 

The IBM RS/6000 F50 is a shared memory system with 4 PowerPC-604 processors running 

IBM’s UNIX variant, AIX V4.3.3, and using a Symmetric Multi-Processing (SMP) 

interconnection.  Each processor has a peak performance of 332 MFLOPS with an L1 
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instruction cache of 32 K, L1 data cache of 32 K, L2 cache of 256 KB and an L2 associativity 

of one. 

 

The GDA trip matrix has 432 fine zones, with finer zones in the City Centre and coarser zones 

further out, giving 432 sources (O-Ds). The highway network is made up of a simulation 

network and a buffer network, combining to give over 1,220 simulation nodes (junctions) and 

3,900 links throughout the GDA.  The model uses up approximately 1.5 MB of space when 

running on each processor; this was found using the AIX command ‘TOP’.  Convergence and 

accuracy were assessed over smaller sample networks before the parallel model was run for the 

entire Greater Dublin Area until convergence was reached. 

 

4.1 Convergence 

The parallel model was run on both parallel systems and sequentially over a single processor.  

Convergence was reached after the same number of iterations for all model runs.  Once it was 

clear that the parallel model converged the output was compared to that of the sequential 

SATURN model.  ISTOP is a percentile convergence parameter that stops the loop between the 

simulation and assignment from continuing if ‘ISTOP’ percentage of the link flows change by 

less than a predefined value, 5 percent in this case.  After the 15th loop the following output is 

produced for the parameter ISTOP where ISTOP is set equal to 90%. 

• For the SATURN model run on the IBM ibix machine, using one processor, 89.8 percent of 

the assigned flows are within 5% of their values from the previous simulation/assignment 

iteration. 

• For the i686 dual processor machine, using two processors, 90.7% of the assigned flows are 

within 5% of their values from the previous simulation/assignment iteration. 
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• For the IBM ibix machine, using four processors, 91.3% of the assigned flows are within 

5% of their values from the previous simulation/assignment iteration. 

This demonstrates that the parallel model converges with the same or greater accuracy than the 

sequential SATURN model.  This has been found to hold for any number of processors that 

have been used, up to and including 16 processors.  It is noted that ISTOP is converging more 

quickly as more processors are used although the authors recognise that ISTOP gives a strong 

indication of convergence but does not give proof of convergence.  In the first case above, 

using the IBM ibix machine, the model has not converged on the 15th loop as only 89.8% of the 

assigned flows are within 5%.  This means that it will have to go through a 16th loop to 

converge, hence adding a considerable amount of time to the overall running time of the 

model. 

 

There are no apparent reasons for the differences in the rates of convergence viewed above as 

the convergence theory remains unchanged for the parallel application.  However, the trend, as 

small as it appears to be, persists leading to the tentative conclusion that perhaps the 

decomposition of origins has a deterministic effect on the convergence theory of the model or, 

perhaps, an explicit effect on the numerical computation of convergence itself.  Further 

research is necessary to establish what effect, if any, there appears to be. 

 

4.2 Comparison of Model Outputs 

Initially a small sample was used to determine whether the parallel model was running 

accurately.  This sample has the parameter MASL (multiple assignment simulation loops) set 

equal to three.  MASL controls the number of assignment/simulation loops so when MASL is 

set equal to three the program is stopped after three loops.  The resulting output from the single 

processor and the parallel model run using four processors on the IBM ibix machine differ by 
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less than one percent, as demonstrated in Table 2 below.  In practice the accuracy of the model 

output has been found to hold for any number of processors that have been used, up to and 

including 16 processors on the IBM SP2. 

 SATURN 
(sequential, single process

IBM ibix 
(shared memory, 
processors) 

TRANSIENT QUEUES           (PCU. HRS./HR.) 5970 5987 

OVER CAPACITY QUEUES  (PCU. HRS./HR.) 24821 24638 

LINK CRUISE TIME               (PCU. HRS./HR.) 16231 16231 

TOTAL TRAVEL TIME           (PCU. HRS./HR.) 47022 46856 

TRAVEL DISTANCE              (PCU. KMS./HR.) 837029 837050 

OVERALL AVERAGE SPEED                (KPH) 17.8 17.9 

Table 2: Sequential SATURN output compared with parallel model output. 

Once the accuracy and convergence of the parallel model were determined the models 
performance was assessed. 
 
4.3 Performance 
 
The performance of a parallel computer system, combining a software element in the parallel 

algorithm and a hardware element in the parallel platform, needs to be assessed.  The definition 

of performance depends on the reason behind the use of parallel programming in the first 

place.  In general a reduction in the computation time of the program is sought.  Hence, the 

improvement in performance is measured by comparing the sequential time to run the program 

on a single processor against that of the parallel application across a number of processors. 

 

The speed-up is defined as the ratio of the elapsed time, or serial time, when executing a 

program on a single processor, Ts, to the execution time when a number of processors, n, are 

available, T(n).  Therefore; S(n) = Ts / T(n).  This measures the gain in speed between using 
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one processor and ‘n’ processors to solve a problem.  It may also be interpreted as the average 

number of processors kept busy during the execution of the problem [14]. 

 

As more processors are assigned to the execution of a problem it is expected that the speedup 

will increase.  However, it may also be expected that the total idle time will increase due to 

communication overheads between processors and processes, the software structure, and, 

contention between different components of the system for shared resources, i.e., two 

processors trying to access the same memory block at the same time in a share memory parallel 

computer [24].  Overheads due to I/O are, in the case examined here, not included in the 

assessment of the performance of the parallel system.  The overheads, as described above, are 

said to be represented by including them in the service demands of the various subtasks.  In 

this way one can assume that they are fixed and do not vary with the number of processors 

being used nor with the scheduling procedure for the subtasks [24]. 

 

The efficiency, ‘E’, is defined by Eager et al. [24] as the average utilization of the ‘n’ allocated 

processors.  Ignoring I/O the efficiency of a single processor system is 1 and hence, the 

speedup is equal to 1.  The relationship between efficiency and speedup, described by Eager et 

al. [24] as the average processor utilization, can then be defined by E(n) = S(n) / n, leading us 

to the definition of linear speedup, i.e., where the efficiency remains at 1 while the number of 

processors increases beyond two.  Linear speedup is impossible for the same reasons idle time 

exists, as described above.  Studies such as those by Minsky et al. [51] and Lee et al. [46] have 

tried to define the ‘typical’ speedup though this is impossible in general terms as the speedup 

of each implementation of a parallel algorithm depends on the characteristics of the entire 

parallel system, which are invariably different for each parallel application. 
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The average parallelism measure was first introduced by Gurd et al. [37] in their review of the 

architecture and performance of the “Manchester Prototype Dataflow Computer”.  They found 

that programs with a similar value of average parallelism exhibit virtually identical speedup 

curves and that the higher the value, the closer the program got to achieving 100 percent 

utilization, i.e., an efficiency of 1 on a graph.  This seems to indicate that the measure of 

average parallelism is all that is necessary to ascertain an accurate description of its speedup 

curve, regardless of other factors such as the source code language, the time variance of 

parallelism, etc.  Gurd et al. [37] also concluded that larger applications codes exhibited the 

same patterns as simpler samples.  Eager et al. [24] give 4 definitions of the average 

parallelism, one of which is: 

• The average number of processors that remain busy during the execution of a software 

system given an unlimited number of available processors. 

 

Profiles that plot benefit against cost are common in many areas.  The concept of there being a 

‘knee’ in such a profile is a fundamental one, see Denning [18].  The ‘knee’ is the point where 

the benefit per unit cost is maximised.  The execution time-efficiency profile is one such cost-

benefit profile in parallel systems.  Eager et al. [24] give two motivational stand points for the 

use of this graph in parallel systems: 

(1) Efficiency is viewed as an indication of benefit (as efficiency goes up so does benefit) 

and execution time as an indication of cost (as execution time goes up so does cost).  

The system objective that can be taken from this is to achieve efficient usage of each 

processor while taking into account the cost to users in the form of increased execution 

times. 

(2) Execution time is taken as an indication of benefit (lower the execution time the higher 

the benefit) and efficiency is taken as an indication of cost (lower the efficiency the 
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higher the cost).  The objective that can be taken from this is to achieve low execution 

times while taking into account the utilization cost of low efficiency. 

 

On the execution time – efficiency profile each point represents the execution time verses the 

efficiency for a certain number of processors.  The ‘knee’ occurs where the ratio, ‘R’, of 

efficiency to execution time, E(n) / Tn, is maximised, where ‘n’ is the number of processors 

allocated to the computation at this point.  Eager et al. [24] proves that at the ‘knee’ of the 

execution time – efficiency profile a speedup, S(n), and efficiency, E(n), of at least 50 percent 

of their maximum is guaranteed.  All the processors are being utilized at least 50 percent at this  



 32

 

N, the number of processors used to run the model 

 1 2 4 8 16 

T(n) of total model 115.25mins 82.1mins 48.73mins 33.66mins 23.63mins 

T(n) of parallel section 105.05mins 71.14mins 38.13mins 22.53mins 12.87mins 

Sequential segment 10.2mins 10.96mins 10.61mins 11.14mins 10.77mins 

S(n) of total model (seq. i 1 1.4 2.36 3.42 4.88 

S(n) of ass. and s.p. (
section) 1 1.48 2.76 4.66 8.16 

E(n) of total model (seq. 1 0.7 0.59 0.43 0.31 

E(n) of ass. and s.p. (p
section) 1 0.74 0.69 0.58 0.51 

R of total model 0.0087 0.0085 0.012 0.0127 0.0129 

R of parallel section 0.0095 0.01 0.0182 0.0259 0.0396 
 

Table 3: The time taken to complete the parallel model on the SP2 machine, with and 

without the sequential section; the speed-up, S(n); the efficiency, E(n); and the ratio of 

efficiency to execution time, R. 

 

point but if one more processor is added then it would be utilized no more than 50 percent.  It 

is further shown that the location of the ‘knee’, i.e., the number of processors used at this 

location, is well approximated by the average parallelism, where the same guarantees regarding 

speedup and efficiency are identical to those at the ‘knee’. 

 

A graph of speed-up against the number of processors being used (NPROC) for the model with 

the sequential section of the model included, and, for the parallel section only can be seen in 

Figure 1.  The graph also shows the theoretical maximum, where there is a linear relationship 

between the number of processors used and the resulting performance gain, shown as the 
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“Optimum Performance”.  This graph was produced by solving the GDA trip matrix 

assignment/simulation problem using 1, 2, 4, 8 and 16 processors.  More processors were not 

used because of administrative limitations due to large system demand and workload. 

 

It is noted from Table 3 and Figure 1 that while the speed-up for the complete model drops off 

quickly with a value of 4.88 for 16 processors, the performance of the parallel section of the 

model is far better with a value of 8.16 for 16 processors.  The obvious reason for this is that 

the sequential section of the parallel model takes the same amount of time to complete no 

matter how many processors are being used.  This is reinforced by examining the efficiency of 

the model.  The efficiency, E(n), of the model decreases quickly as the relative importance of 

the sequential section increases.  The sequential section represents 9 percent of the execution 

time, T(n), of the model using 1 processor but it represents 54 percent when 16 processors are 

used.  As such the sequential nature of the model represents the dominant limiting factor in the 

parallel implementation. 

 

It is also noted that the efficiency, E(n), execution time, T(n), profile of the model, represented 

by the ratio of one to the other, R, while still increasing for 16 processors at 0.0129, appears to 

be levelling off quite quickly.  This is expected due to the sequential section, however it does 

suggest that the ‘knee’ of the model, as described earlier, lies somewhere around 0.013.  This 

point gives a reasonably accurate location for the average parallelism of the model as described 

earlier. 

 

The efficiency, E(n), of the parallel section, compromising the shortest paths problem and the 

loading of flows to these shortest paths, decreases far slower than the complete model as 

expected, see Table 3, but the ratio, R, is increasing with additional processors leading to the 
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conclusion that the number of processors needed to reach the ‘knee’ for the parallel section is 

far more than is available for this research.  Examining Figure 1 it is noted that for the parallel 

section, after an initial drop in performance from 1 to 2 processors, the performance recovers 

and an almost linear relationship is noted for 4, 8 and 16 processors.  The rate of decrease of 

the efficiency is reducing and the ratio, R, suggests that the pattern of the graph will continue 

for a considerable number of extra processors.   

 

Using a direct comparison of the times taken for completion of the model using different 

values of NPROC, it can be seen that the SP2 machine is also far more efficient even using just 

one processor.  This is mainly due to the amount of Random Access Memory (RAM) available 

on  
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NPROC, the number of processors used to run the model 

 1 2 4 8 16 

SP2 (multiple proc.s) 115:45mins 82:10mins 48:53mins 33:38mins 23:40mins 

IBM Ibix (4 proc) 171:55mins 101:08mins 63:25mins   

Intel (2 proc) 163:05mins 95:56mins    

 

Table 4: The time taken to complete the parallel model, with the sequential section and 

I/O included, for the three systems analysed. 

 

the SP2 machine, which far exceeds that of the shared memory Ibix machine or the dual 

processor Intel machine.  The times shown in Table 4, in minutes, give the total time taken for 

the model run to completion using three different machines over 1, 2, 4, 8 and 16 processors. 

 

Using just one processor the SP2 machine takes approximately 115 minutes as compared to 

that of 172 minutes and 163 minutes for the Ibix and Intel computers respectively.  Using 8 or 

16 processors the time is 3.4 and 4.9 times faster than a single processor respectively.  The 

time of 23.66 minutes for the SP2 machine to complete the model run using 16 processors 

saves 92 minutes when compared to the time taken for a single processor and saves 148 

minutes and 139 minutes when compared to the time taken for a single processor to finish the 

job on the Ibix and Intel respectively. 
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5. Conclusions 

• The parallel model is converging accurately and at the same rate, as expected, when 

compared to that of the sequential SATURN model.  However, it also appears that as more 

processors are used convergence occurs more quickly than with the sequential model, 

though the difference in convergence performance is not particularly significant and is 

most likely incidental, further research could be undertaken to determine any abstract 

effects from the parallelisation process.  For a more viable improvement in the convergence 

performance itself perhaps research on the model algorithms themselves would be more 

useful. 

• The ISTOP number was used in the research to give an indication of performance but 

further work would be required to investigate a mathematical proof that the parallel 

algorithm will converge. 

• The output from the parallel model is within one percent of the results from the sequential 

model for the scenarios tested over a number of runs. 

• The speed-up of the model (including the sequential section and the parallel section) 

against the number of processors being used is approximately 80% of the CPU time for the 

sequential model.  The speed-up of the total parallel model is approximately equal to 5 for 

the program running over 16 processors.  However, if one does a similar comparison but 

only looking at the parallelised module an increase in speed-up to approximately 8.16 is 

found for 16 processors. 

• The most computationally intensive part of the SATURN code has been successfully 

reprogrammed in parallel.  However, part of it remains in sequential format.  Further work 

would include reprogramming of the remaining sequential parts to run in parallel.  With 

respect to shortest path theory, it is concluded from the literature review of parallelisation 
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within the field that any attempt to parallelise the shortest path algorithm itself is unlikely 

to prove worthwhile from a performance standpoint. 
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Figure 1:  Speed-up versus the number of processors used for the optimum performance, for 
the actual performance of the model, and, for the parallel section performance 
compromising the shortest path problem and assignment of flows. 

 
 

Performance graph of Speed-up against the number of processors used, NPROC, for the ideal 
performance, for the complete model, and, for the parallelised section of the model.
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