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Abstract 
This study investigates the automatic classijkation of 

the Frank lead ECG into different disease categories. A 
comparison of the peformance of a number of different 
feature sets is presented. The feature sets considered 
include wavelet-based features, standard cardiology 
features, and features taken directly from time-domain 
samples of the ECG. The classijication peformance of 
each feature set was optimised using automatic feature 
selection and choosing the best classifier model from 
linear, quadratic and logistic discriminants. The ECG 
database used contains 500 cases classed into seven 
categories with 100% confidence. Using multiple runs of 
ten-fold cross-validation, the overall seven-way accuracy 
of diflerent feature sets and classijier model combinations 
ranged between 60% and 75%. The best peforming 
classifier used linear discriminants processing selected 
time-domain features. This is also found to be the simplest 
and fastest classifier to implement. 

1. Introduction 
The classification of the electrocardiogram (ECG) into 

different pathophysiological disease categories is a 
complex pattern recognition task. Computer based 
classification of the ECG can achieve high accuracy and 
offers the potential of affordable mass screening for 
cardiac abnormalities. Successhl classification is 
acheved by finding patterns in the ECG that discriminate 
effectively between the required diagnostic categories. 
Conventionally, a typical heart beat is identified from the 
ECG and the QRS, T and possibly P waves are 
characterised using measurements such as magnitude, 
duration and area. Classification is then achieved on the 
basis of these measurements. 

Alternative representations of the diagnostic 
information of the ECG offer a number of advantages. 
Previous studies [l] have shown that it is possible to 
classify using features extracted from the wavelet 
transform of ECG signals and achieve comparable 
diagnostic accuracy to the standard cardiology features. 

An advantage of this representation is that the 
approximate QRS detection point is the only cardiac 
characteristic point required. By eliminating the need to 
find other characteristic points a significant amount of 
computation is saved. 

In this study a system was established for evaluating 
the diagnostic ability of feature sets. For each feature set, 
the classification performance was optimised by automatic 
feature selection and choosing the best classifier model 
from linear, quadratic and logistic discriminants. 

The feature sets evaluated include wavelet-based 
features, standard cardiology features, and features taken 
directly from time-domain samples of the ECG. Both 
single- and multi-beat classifications were considered. 

A database of modest size was employed hence a cross- 
validation scheme was used to estimate the performance 
of the different feature sets. 

2. Methods 

2.1. ECG pre-processing 
The ECG is sampled at 500 Hz then filtered with a 0.5 - 

40 Hz linear phase digital bandpass filter to remove 
unwanted baseline drift and powerline interference. QRS 
complexes were detected with a multi-lead detector [2]. 

2.2. Feature sets 
Five feature sets were used in t h s  study and derived 

using different techniques. All the sets had the age and sex 
of the subject as common members. 

Wavelet transform (WT): this feature set was derived 
from the coefficients of the discrete wavelet transform and 
the methodology has been described previously [l]. 
Briefly, for all detected QRS complexes a data window 
containing the P-QRS-T complexes was isolated using the 
ECG samples in the range 200ms before the R-wave 
maximum points to 400ms after the R-wave maximas. The 
isopotential value was subtracted, and the data window 
multiplied with a Hanning window. A seven-level discrete 
wavelet decomposition of each data window was 

For this study the Frank lead ECG was used. 
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calculated using the Haar wavelet. We previously found 
that the wavelet choice and decomposition level had little 
influence on the classification accuracy [l]. The signal 
information of details 1 and 2 were discarded, as the 
frequencies covered by these levels were higher than 
frequency content of the ECG. There were 76 features per 
lead, hence including the age and sex measures there were 
230 features per beat. 

Standard cardiology features (CARD): This feature 
set was derived from standard QRS features and is 
described fully in [3]. For each QRS detection, the 
associated QRS onset and offset was determined. Features 
were then derived from the scalar leads e.g. QRS duration; 
vector loops e.g. XY area; and 3-D loop e.g. planarity of 
the QRS plane. In all, there were 229 features in this set. 

Time-domain samples (TD): This feature set was 
derived directly from the sample values of each ECG lead. 
After bandpass filtering, the ECG was resampled at 80Hz 
and samples in the range 400ms before the R-wave 
maximum points to 600ms after the R-wave maximum 
were obtained. There were 254 features in this set. 

Features were generated for a representative beat of 
each ECG for all feature sets. In addition, two more 
feature sets were generated using all beats of each ECG 
for the wavelet (WVm) and time-domain (TDm) features 
sets. This facilitated comparison of single-beat versus 
multi-beat classification. 

2.3. Classifiers 
A supervised training technique was used to derive all 

classifiers. In supervised training, a classifier model that 
maps the input features to the required output classes is 
chosen. The model has a set of adjustable parameters that 
are optimised using training data. For this study four 
classifier models were considered. All of the models 
provide a parametric approximation to Bayes rule [4], so 
in response to a set of input features the output of each 
classifier is a set of numbers representing the probability 
estimate of each class. The final classification is obtained 
by choosing the class with the highest probability 
estimate. In the following analysis d represents the number 
of input features and c the number of classes. 

Linear discriminants (LDA) partition the feature 
space into the different classes using a set of hyper-planes. 
Optimisation of the model is achieved through direct 
calculation and is extremely fast relative to other models. 
The number of parameters in the model is (d+2c+l) *d/2. 

Quadratic discriminants (QDA) provide a 
generalisation of linear discriminants and partition the 
feature space using a set of hyper-quadratics. Again, 
optimisation of the model is achieved through direct 
calculation and is extremely fast. The number of 
parameters is significantly more than linear discriminants 
and is c*d*(d+3)/2. For large training sets this model will 
outperform linear discriminants but it is frequently 

- 

outperformed by LDA for smaller sets. 
Both linear and quadratic discriminants assume the 

feature data has a Guassian distribution for each class. 
Linear-logistic discriminants (lin-LOG) impose 

fewer conditions on the feature space partitioning than the 
lineadquadratic discriminants. The model assumes the 
feature data has a class distribution belonging to one of the 
family of exponential distributions. This family includes 
many of the common distributions such as the Gaussian, 
binomial, Bernoulli and Poisson as special cases. Direct 
optimisation of the model parameters is not possible and 
an iterative numerical optimisation techmque is required. 
The number of parameters to optimise is (d+l) *@-I). The 
number of classes is generally less than the number of 
features. Thus, for the classifier models considered here, 
this model has the smallest number of parameters. 

Nonlinear-logistic discriminants (nl-LOG): Similar 
to linear-logistic models except even greater flexibility in 
the feature space partitioning. When implemented as a 
neural network (see below) the number of parameters to 
optimise is (d+l)*h+(h+I)*(c-I) where h is the number 
of hidden units. The number of hidden units controls the 
flexibility of the feature space partitioning. 

Both of the logistic discriminant models were 
implemented with feed-forward neural networks. A 
softmax output stage was used and the (negative) log- 
likelihood error function minimised. Hidden units were 
used in the non-linear logistic model. Optimisation of the 
parameters (weights) of both networks was achieved with 
a gradient-descent algorithm with an adaptive learning rate 
and momentum constant. Training was stopped when the 
successive iterations no longer resulted in a significant 
reduction in the error function. The weights of hidden 
units were optimised with the back-propogation algorithm. 

Although the logistic discrimination models impose 
fewer conditions on the feature partitioning, in practice, 
linear discriminants perform as effectively for ECG 
classification [5]. 

2.4. Feature selection 
The performance of most classifier training algorithms 

is degraded when one or more of the available features are 
redundant or irrelevant. Redundant features occur when 
two or more features are correlated whereas irrelevant 
features do not separate the classes to any useful degree. 
The classification performance of a given set of features 
may often be improved by searching for a subset of the 
features with higher performance. Finding this optimal 
subset is generally computationally intractable for 
anything apart from small feature sets. This is because the 
number of possible subsets rises exponentially with size of 
the feature set. In practice a sub-optimal heuristic search 
such as stepwise procedure is used [4]. A stepwise 
procedure for feature selection was used in this study. 
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Testing Performance Training Performance 
Feature Set LDA QDA lin-LOG nl-LOG LDA QDA- lin-LOG nl-LOG 

CARD 69.3 60.2 68.3 60.3 76.5 85.5 78.9 99.8 
wv 71.1 63.8 70.8 64.2 78.8 88.3 82.7 99.8 

WVm 73.1 67.3 73.0 68.0 78.3 83.9 80.6 97.0 
TDm 74.7 67.9 74.7 69.5 79.1 84.5 81.7 97.8 

TD 71.2 63.3 70.6 64.7 78.0 88.5 81.3 99.9 

Free Parameters 272 1190 108 390 

Table 1: The overall testing and training set accuracies, derived from ten runs of ten-fold cross validation, of 
combinations of feature sets and classifier models. See sections 2.2 and 2.3 for abbreviations. The top 3 rows of results 
derive from classifying using a single beat from the ECG. Rows 4 and 5 are derived from multi-beat classifications. The 
italicised row shows the number of free parameters in each classifier model. 

When comparing the subsets, the best performance 
measure to use is the classification performance but again 
computational restrictions prevent this being implemented. 
We have used Wilk's Lambda, which is a measure of class 
separation to measure the performance of the subsets. A 
low value of Wilk's Lambda indicates good separation of 
the classes and indicates probable hgh  classification 
performance. Hence feature selection involves finding a 
subset with the lowest value of Wilk's Lambda. 

2.5. Multi-beat classification 
For multi-beat classification of an ECG record, the 

classifier processes the feature information of each beat 
separately and finds a set of probabilities for each beat. To 
obtain the final classification, the probabilities for each 
class are averaged across the beats and the class with the 
highest average probability estimate chosen. 

During the training phase, feature data is obtained from 
each beat and treated as separate training examples. By 
using diagnostic information from all beats, more efficient 
use of the available ECG diagnostic information is made. 

2.6. Classification performance estimation 
When developing a classifier it is important to be able 

to estimate the expected performance of the classifier on 
data not used in training. The available data must be 
divided into independent training and testing sets. There 
are a number of schemes for achieving this and the most 
suitable for the size of data set used in this study, is n-fold 
cross validation [6]. This scheme randomly divides the 
available data into n approximately equal size and 
mutually exclusive "folds". For an n-fold cross validation 
run, n classifiers are trained with a different fold used each 
time as the testing-set, while the other n-1 folds are used 
for the training data. The choice of n d u e n c e s  the ratio 
of data used for traininghesting with an optimal value of n 
in the range 5-20. Cross validation estimates are generally 
pessimistically biased, as training is performed using a 
subsample of the available data. 

The randomising process was "stratified" so that all the 
folds contained the same relative proportions of normals 
and the six disease conditions. Studies have shown that 
stratification of the folds decreases both the bias and the 
variance of the performance estimate [6]. 

Cross validation estimates are highly variable and 
depend on the division of the data into folds. A decrease in 
the variance of the performance estimate may be achieved 
by averaging results from multiple runs of cross validation 
where a different random split of the training data into 
folds is used for each run. For this study ten runs of ten- 
fold cross validation were employed. 

In this study we report the overall classification 
accuracy and the individual class sensitivities. The overall 
accuracy is the percentage of total cases correctly 
classified. A class sensitivity is the percentage of cases 
correctly classified of that class. The specificity is the 
sensitivity of the normal class. 

2.7. Implementation 
The work for t h s  project was performed on a 300 h4Hz 

Pentium I1 PC running MATLAB version 5.3. All 
algorithms for feature selection, classifier training and 
data partitioning have been developed inhouse. 
Approximately ten minutes of processing time was 
required to perform cross-validation, feature selection and 
to train linear discriminant classifiers for the multi-beat 
feature sets. 

3. Results 
The ECG database used throughout this study contains 

500 records with 155 normal (NOR) and 345 abnormal 
cases. The classification of every record is known with 
100% certainty based on ECG independent clinical 
information. The abnormal cases comprise left (LVH), 
right (RVH) and bi- (BVH) ventricular hypertrophy; and 
anterior (AMI), inferior (IMI) and combined (MIX) 
myocardial infarction. The numbers of each class are 
shown the bottom row of Table 2. Each case contained 
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Sensitivities 
Feature Set ACC NOR LVH RVH BVH AMI IMI MIX 

Conv 69.3 83 58 40 42 69 78 39 
wv 71 .I 89 63 24 42 68 82 25 
TD 71.2 89 62 27 39 69 81 33 

WVm 73.1 90 66 21 39 72 83 36 
TDm 74.7 90 72 29 42 73 83 38 
Size 155 79 27 25 77 117 32 

Table 2: The test-set overall accuracy performance and class sensitivities for feature sets with the best 
(LDA) classifier. The italicised row shows the size of each class. 

between eight and ten seconds (approximately ten heart 
beats) of digitally sampled data from simultaneously 
recorded Frank lead ECGs. 

The feature sets were processed in an identical way. For 
every run of every fold of cross-validation, automatic 
feature selection was applied to each feature set and 17 
features were identified that maximised the classification 
performance. These features were then used to train the 
classifier and the classification performance on the testing- 
set determined. The nl-LOG models used 16 hidden units. 

Table 1 shows the overall accuracy results for 
classifying each feature set with the different classifier 
models. Both the testing- and training-set results are 
shown. The LDA (69.3-74.7%) model was consistently 
the best performing classifier for all feature sets. It just 
outperformed the lin-LOG model (68.3-74.7%) and 
outperformed the QDA (60.2-67.9%) and nl-LOG (60.3- 
69.3%) by up to 9%. The extra flexibility of the QDA and 
the nl-LOG was seen in the higher training-set results 
(84.5-88.5%, 97.0-99.9% respectively) compared to the 
other models but thls performance did not generalise well 
to unseen test data. 

Table 2 shows overall testing-set accuracy and class 
sensitivities of the best classifier (LDA) on each feature 
set. The single-beat feature set results show that the 
wavelet (71.1%) and time-domain sets (7 1.2%) 
outperformed the cardiology set (69.3%). The multi-beat 
time-domain set was the best classifier (74.7%) and 
outperformed the equivalent wavelet set (73.1%) and both 
outperformed the single-beat sets by at least 1.9%. 

The specificity of the best classifier was 90%. The 
sensitivities of the large abnormal classes, LVH, AMI and 
IMI were 72%, 73% and 83% respectively. The smaller 
abnormal classes, RVH, BVH and MIX didn’t classlfy as 
well; the respective sensitivities were 29%, 42% and 38%. 

Other authors [5,7,8] have attempted a similar ECG 
classification task using other ECG databases. Overall 
accuracy results vary between 66.3% and 77.4%, but 
because of the different proportion of classes in their 
databases a direct comparison of overall accuracy is not 
possible. Nevertheless, the results achieved in this project 
are favourable. 

4. Conclusion 
We compared the ECG classification performance of 

different feature sets using different classifier models. The 
best performing combination was a linear discriminant 
classifier processing selected sample values of the ECG. 

The final structure for the proposed classifier is very 
computationally efficient and easily lends itself to real- 
time implementation. After detection of each R-wave, a 
linear discriminant classifier processes the selected ECG 
samples. A classification is found for each heart beat and 
the final classification found by combining the individual 
classifications. 
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