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Abstract: In this paper, we present an approach to microadaptivity, i.e. to adaptivity 
within complex learning situations as they occur, e.g., in game-based learning. Integrating 
the competence-based knowledge space theory and the information-processing theory of 
human problem solving we developed a sound model as a basis for microadaptivity and 
continuous competence state monitoring. The architectural design of a first demonstrator is 
presented. 
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Introduction 
 
While adaptivity in Technology Enhanced Learning (TEL) has been an important topic in 
research and development for over a decade now, game-based learning is a rather recent 
advance in the field. The underlying idea is to make use of young people’s motivation in 
computer games for learning purposes. If this is to be successful, the learning nature of the 
game should be as unapparent as possible. 

On the other side, adaptation to the learners’ individual knowledge is very 
important in learning. Its presence ensures that the learning game, based on the learner’s 
actual state of knowledge, provides personalized challenges and support. 

The ELEKTRA project (http://www.elektra-project.org/) aims to introduce a 
learner-centric, personalized approach to game-based learning. In this context it becomes 
apparent that, within the complex learning situations of a game, (i) the learner model must 
be continuously updated based on the learner’s actions in the game and (ii) the interactions 
manifested by the game must be personalized with respect to the learner model. 

In the following, we will present an approach to adaptation, based on 
psychological theories for structuring knowledge and for describing problem solving 
processes. After presenting these theories, we will present our approach to microadaptivity, 
i.e. adaptive and continuous assessment of the learners’ knowledge, and interventions 
within (complex) learning objects [1]. Finally we will present the architectural design of a 
demonstrator which is currently being implemented. 

 
 



1. Theoretical Background 
 
1.1 Competence-based Knowledge Space Theory 
 
The theory of knowledge spaces was originally developed by Doignon and Falmagne [2, 3] 
as a behaviourist approach to model the structure of a domain of knowledge. They 
represent such a domain by a set of test problems which is structured by a prerequisite 
relation (or surmise relation; “if a learner does not master problem a, we can surmise that 
s/he also will not master problem b”). The knowledge state of a learner is defined as the 
subset of test problems s/he can solve, and the set of all possible knowledge states which is 
restricted by the prerequisite relations is called a knowledge space. This model was 
originally developed for the adaptive assessment of knowledge but later was also 
successfully applied to technology enhanced learning, e.g. in the AdAsTra prototype [4] 
and the commercial ALEKS system (http://www.aleks.com/).  

The investigation of the cognitive structures underlying the behaviourist 
knowledge spaces was later started by the group around Albert, and other groups. [5, 3]. 
For instance, Korossy [6] developed the competence-performance approach which was 
subsequently further developed leading to the competence-based knowledge space theory 
(CbKST) [7, 8]. According to CbKST, a domain of knowledge is described by a set of 
(abstract) skills or competences 1  which are structured by a prerequisite relation as 
described above. Skills are assigned to learning objects or test problems within this 
domain as required and as taught or tested competences. Based on the competence 
structures, suitable skills to be learned can be suggested for the individual learner, and 
based on the skill assignments, learning objects can be offered which fit best to the 
learner’s current knowledge state. This approach was successfully implemented in the 
APeLS system [see, e.g., 9, 10] and is currently applied within the iClass project (see 
http://www.iclass.info/).  
 
 
1.2 Information-Processing Theory of Human Problem Solving 
 
In human problem solving, the core model of the information processing theory[11] can be 
summarized for our purpose as follows. The core idea is that of a problem space, the set of 
all problem states a task environment may take. When humans try to solve a problem they 
start at some initial state. Whenever the problem solver performs some action the problem 
state changes according to this action. Thus, the problem solver moves by his/her actions 
through the problem space. This model is strongly influenced by the finite automata model 
from theoretical computer science where the actions correspond to the alphabet of the 
automaton and the movements through the problem space are defined by the transition 
function. 

There exist one or more problem states, the solution states, in which the problem is 
considered to be solved. In the automata analogy, they correspond to the final states. The 
problem states may be scored in a sense of correctness where the correctness of a problem 
state would increase with increasing proximity to a solution state. Similarly, actions are 
also scored by their utility where the utility of an action lies in its contribution to the 
correctness of the problem state. 
 
 

                                                
1 The terms “skill” and “competence” have often been used synonymously by different authors in the context 
of KST extensions. 



2. Microadaptivity in Game-based Learning 
 
Based on the theoretical foundations introduced above we have developed an integrated 
formal description for game-based learning situations. We will introduce this formal 
description using an example in the field of optics from the ELEKTRA project. 

In this example, the learner has to place a flashlight (F), two blinds (B1 and B2), 
and a screen (S) in the right order onto a runner such that the light is narrowed by the 
blinds and hits the screen in a small ray of light. Figure 1 depicts the scene schematically, 
in the initial state (left side) the four objects are on a separate table, and at the end (right 
side) they should be positioned on the ruler in the right order and pointing into the right 
direction. 

 
 
2.1 Basic Formal Framework for Microadaptivity 
  
Actions in computer games (and thus also in game-based learning) mostly involve moving 
objects in the virtual scene2. Therefore, the (current) state of the problem solving process 
can be described by a vector of the positions of all objects. An action would then be to 
move an object to another position. This would, however, lead to infinite problem spaces 
and sets of actions. Therefore, we introduce position categories for each object thus 
keeping the problem space finite. In our example, we define four position categories. For 
each object, we might have (P1) the object is on the runner in the correct position, (P2) the 
object is on the runner but in a false position, (P3) the object is on the target table but not 

                                                
2 This holds also for many objects where we normally do not think of movements. If we think, e.g., of 
switching a light on and off, we often speak of the position of a switch. 

Fig. 2. Position categories for the flashlight. 

Fig. 1. The “blinds in a row” 
problem 



on the runner, and (P4) the object is not on the target table3. Figure 2 shows the four 
position categories for the flashlight. 
We define actions as equivalent to the resulting position categories, i.e. for each object o 
and each of its position categories pio we have an action aio which means “move object o 
into its position category pio.” 
 Looking at the correctness of problem states, we derive it as an integration of 
correctness values of the single objects and their position categories. In our example, we 
might assign, e.g., for each object o a correctness value of 1.00 to the position category p1o, 
a value of 0.60 to p2o, and a value of 0.05 to the categories p3o and p4o. For integrating the 
single correctness values different interpretations are possible. The only necessary 
conditions to the integration function are (i) that it maps into the interval [0,1] and (ii) 
monotonicity holds in all positions. Starting, e.g., from a rule “the problem state is correct 
(i.e. it is a solution state) if all positions are correct” we come up with a logical 
conjunction which might be implemented by the minimum function as it is usual in the 
area of fuzzy logics. 
 So far, we have described the gaming (or problem solving) part of the framework. 
Looking at the CbKST part, we start with a set of competences and a prerequisite relation 
on this set. The link between the CbKST and gaming parts is reached through the skill 
assignment. In pure CbKST we have test problems which are either solved or not. In the 
context of gaming, however, we have actions which are fully correct, fully incorrect or 
something in between. For the (partially or fully) correct actions, we have to specify skills 
required to perform these actions, and for the (partially or fully) incorrect actions, we have 
to specify skills apparently missing for a learner performing these actions. 
 Figure 3 shows the resulting ontological structure combining problem solving 
model and CbKST, thus connecting the underlying formal psychological model with the 
microadaptivity implementation through ontological reasoningin the ELEKTRA 
demonstrator.. For each object, several possible position categories are defined, and for 
each position category, the skills required for performing the action and the skills missing 
when performing the action are specified. The learner, on the other side, has skills and has 
a skill state. 

                                                
3 The number of position categories may differ in other contexts, e.g. for a switch which may have just two 

Fig. 3. Ontological Structure for microadaptivity 



 In the following, we will describe how the framework described by this ontological 
structure can be used for continuous, implicit skill assessment and for microadaptivity. 
 
 
2.2 Realizing continuous, implicit skill assessment  
 
As already mentioned before, the original aim in developing knowledge space theory was 
the adaptive assessment of knowledge, and assessment procedures have been an ongoing 
research topic [see 12, 13, 14]. However, skill assessment in the gaming context differs in 
one very important aspect from these procedures, i.e. the assessment is not based on 
posing test problems to the learner. Instead, we have a continuous and implicit assessment, 
i.e. the assessment is based on interpreting the learners’ activities with respect to their skill 
state. As a consequence, the assessment works directly on the skill level, this is in 
comparison with previous attempts at skill assessment that worked in two steps by first 
determining a performance state and then mapping it onto a skill state. 
 The basic idea of the classical assessment procedures in knowledge space theory is 
to have likelihood estimates over the knowledge space, i.e. estimating the likelihood for 
each knowledge state that it is the current state of the learner. Based on these likelihoods, 
the assessment procedure selects a problem to be posed to the learner according to its 
optimal diagnostic value and afterwards updates the likelihoods according to the observed 
response. These updates may follow the Bayesian update rule or a generalized version of it 
[15, 13]. This loop of selecting test problems and updating the likelihoods is continued 
until the likelihood mass is refined to a sufficient extent to a single knowledge state. The 
learner model can be defined as the likelihood distribution over the knowledge space. 

In game-based learning, however such an explicit assessment is not wanted since it 
would disturb the nature of the game. Instead we have an implicit and continuous 
assessment, i.e. each of the learners’ actions should lead to an update of the likelihood 
distribution and, thus, of the learner model. As a consequence, the assessment consists of 
the following four steps. 

1. The learner performs an action, i.e. s/he moves an object. 
2. The action is interpreted by the required and missing skills of the object’s 

new position category. 
3. The likelihoods of the skill states are updated according to the new positive 

(required skills) and negative (missing skills) evidence. 
4. The likelihoods of the individual skills (of being mastered by the learner) 

are computed analogously to margin probabilities. 
 

For the likelihood update, again the generalized version of the Bayesian update 
rule, the multiplicative rule [15] is used. It applies parameters defining how strong the 
updating effects should be. In this context of implicit assessment, these parameters will 
probably be much smaller than in the classical, explicit assessment procedure. Currently, 
simulation studies are under way to determine “good” values for these parameters. 

Underlying this approach to assessment is the assumption that the game-based 
learning takes place within a learning environment. When the learner enters a learning 
game situation, an initial likelihood distribution is retrieved from this learning 
environment. While the learner is active within the learning game, the implicit and 
continuous assessment as described above takes place, and at the end of the game situation, 
the new likelihood distribution is returned to the environment. 

 

                                                                                                                                              
positions (and position categories), “on” and “off”. 



 
2.3 Realizing microadaptivity through adaptive interventions 
 
The original idea behind developing the concept of microadaptivity was to present 
adaptive hints to the learner depending on her/his progress in the learning game situation. 
This idea has been generalized to the concept of adaptive interventions some of which 
depend on the learner’s skill state while others do not [1]. In the following, we will simply 
give an example list of types of adaptive interventions and triggering events or conditions. 
• A skill activation adaptive intervention may be applied if a user gets «stuck» in some 

area of the problem space and some skills are not used although the user model assumes 
that the user masters these skills. 

• A skill acquisition adaptive intervention may be applied in a similar situation where, 
however, the user model assumes that the user does not master the unused skill. 

• Basically independent of the model is the application of motivational adaptive 
interventions. These might be applied, e. g., if the user does not act at all for a certain, 
unexpectedly long time. 

• Assessment clarification adaptive interventions may be applied, e. g., if the user’s 
actions give contradicting support for and against the assumption of him/her mastering a 
certain skill. 

 
 The conditions under which a certain adaptive intervention is given are to be 
developed on the basis of pedagogical rules; however, these rules will apply the 
microadaptivity framework and utilise the learner model obtained through the assessment 
within the framework. 
 
 
3. Implementing microadaptivity within the ELEKTRA project 
 
The microadaptivity framework developed in the previous section is currently 
implemented within the ELEKTRA project. In this section, we will briefly present the 
architecture of the resulting system with respect to the microadaptivity realization. This 
architecture is shown in Fig. 4. 

The architecture consists of four modules or engines. The learner is connected to 
the ELEKTRA system through the game engine (GE). It provides the non-adaptive parts 
of the game, and as such it is also the user interface to the system. The GE provides 
information on the learner’s action in the game to the skill assessment engine (SAE). The 
SAE updates the learner model (i.e. the skill state likelihoods) according to the procedure 
proposed in Section 2.2 and the information it has in the skill ontology. The resulting 
information about the learner’s skill state and its changes are then forwarded to the 
Educational Reasoner (ER), the pedagogical part of microadaptivity. Based on 
pedagogical rules and learning objectives, the ER gives recommendations on adaptive 
interventions to the adaptation realization (AR) module which maps the abstractly 
formulated educational recommendations onto more concrete game recommendations. In 
this mapping process, data on game elements and information on previously given 
recommendations are considered. The game recommendations are then forwarded to the 
GE which realises them as concrete adaptive interventions in the game. 



 
 

4. Discussion 
 
In this paper, we have given a snapshot of current developments on microadaptivity within 
the ELEKTRA project. Based on well accepted psychological models for problem solving 
and for skill structures, we have developed a framework for microadaptivity, i.e. for 
adaptivity within complex learning objects. The software architecture for the 
implementation has been presented. 
 However, microadaptivity is still in an early stage of research and development, 
and many open issues remain. The underlying framework uses some simplifying 
assumptions like the identity of position categories and actions which means that an action 
can move only one object. Based on the experiences in the ELEKTRA project, the 
framework will be generalised within and beyond the domain of game-based learning. 
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Fig. 4. ELEKTRA architecture for microadaptivity 
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