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Abstract 
 
Recent advances in neuroimaging technologies have allowed ever more detailed studies 

of the human brain. The combination of neuroimaging techniques with genetics may 

provide a more sensitive measure of the influence of genetic variants on cognitive 

function than behavioural measures alone. Here we present a review of functional 

magnetic resonance imaging (fMRI) studies of genetic links to executive functions, 

focusing on sustained attention, working memory and response inhibition.  In addition to 

studies in the normal population, we also address findings from three clinical 

populations: schizophrenia, ADHD and Autism Spectrum Disorders. While the findings 

in the populations studied do not always converge, they all point to the usefulness of 

neuroimaging techniques such as fMRI as potential endophenotypes for parsing the 

genetic aetiology of executive function. 
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I. Introduction 
 

The abilities to control and inhibit action and to use memory to guide future behaviour 

are fundamental aspects of human cognition that allow us to function successfully in 

complex environments.  In evolutionary terms, the development of such “executive” 

capacities has in large part paralleled the development of the frontal lobe of the human 

brain.  It is perhaps unsurprising that individual differences in executive capacity may be 

attributed, at least in part, to genetic variation (see Goldberg & Weinberger, 2004 for a 

review)  Inroads to studying the genetic underpinnings of neuronal processes underlying 

executive functions have traditionally been made by investigating hereditary disorders 

characterised by deficits in these processes. Technological advances have meant that the 

effects of allelic variation in genes involved in neurotransmission can now be partially 

observed using neuroimaging techniques such as magnetic resonance imaging (MRI). 

This review draws on findings from both genetics and neuroimaging in an effort to 

elucidate our current understanding of the influence of genetic variants on the 

neuropsychology of healthy and psychiatric populations.  

 

For the purposes of this review, we focus on three executive functions and their genetic 

and neurological correlates: sustained attention, working memory and response 

inhibition.  We focus on studies of three heritable psychiatric disorders, namely attention 

deficit hyperactivity disorder (ADHD), autism and schizophrenia, and compare findings 

from these disorders with studies of normal populations in an attempt to clarify the 

genetics of executive function. Although a body of research has addressed the impact of 

genetic factors on morphological changes in these orders, the implications of these 

findings are beyond the scope of this review, and we limit ourselves to a discussion of 

functional MRI studies.  
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II. Disorders 

Schizophrenia 

Symptoms 

Schizophrenia is characterised by a large variety of symptoms, usually subdivided into 

‘positive’ (e.g. hallucinations, delusions) and ‘negative’ (e.g. flattening of affect, apathy, 

poverty of speech) symptoms (see Capuano et al., 2002 for an overview). 

 

Executive function deficits 

Deficits in a broad range of executive functions are commonly seen in schizophrenia 

(Goldberg et al., 2003). A large body of research has shown that participants with 

schizophrenia routinely perform poorly on the Wisconsin Card Sorting Test (WCST), one 

of the most common tests of executive function (see Heinrichs & Zakzanis, 1998 for a 

review). The performance of patients with schizophrenia in different aspects of executive 

function has been independently assessed, and deficits have been observed in tests of 

sustained attention (Heinrichs & Zakzanis, 1998), working memory (Heaton et al., 2001), 

conflict resolution (Wang et al., 2005) and response inhibition (Badcock et al., 2002) .  

 

Genetic evidence 

Schizophrenia is known to be highly heritable, with estimates ranging from 68-89% 

(Jones and Cannon 1998; National Institute of Mental Health’s Genetics Workgroup, 

1998).  The cognitive deficits of the disorder also appear to have a heritable component, 

with unaffected siblings of schizophrenic patients displaying inferior performance on the 

WCST compared with controls (Egan, Goldberg, Gscheidle et al., 2001). A frequently 

expressed view is that schizophrenia is the result of specific variation in a large number 

of genes, each with small effect (Risch & Rao, 1990). 

 

ADHD 

Symptoms 
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Attention deficit hyperactivity disorder (ADHD) is a common childhood-onset 

psychiatric condition, characterised by age-inappropriate levels of behavioural 

impulsivity, hyperactivity and inattention (American Psychiatric Association, 1994). The 

disorder is relatively common, with estimates ranging around 3-5% of school age 

children (Buitelaar, 2002), persisting into adulthood in about 30-50% of cases (Weiss & 

Hechtman, 1993). 

 

Executive function deficits 

Individuals with ADHD typically show impairments of executive function, particularly in 

the domains of working memory (including spatial and verbal working memory), 

sustained attention and response inhibition, although the extent of these deficits varies 

from child to child (Nigg, 2005). Two reviews (Nigg, 2005; Willcutt et al., 2005) found 

that case/control differences for these functions were associated with Cohen’s d effect 

sizes between .46 and .75, suggesting that these executive functions discriminate 

reasonably well between individuals with and without ADHD.  

 

Genetic evidence 

ADHD has a strong genetic component, with additive effects of multiple genes 

explaining around 80% of an individual’s susceptibility to ADHD (Thapar et al., 1999). 

Studies looking at ADHD prevalence show siblings of an individual with ADHD to be 

three to five times more likely to be affected with ADHD than the general population 

(Faraone et al., 1993), while monozygotic twins have a concordance of 50-80% 

compared with 33% for dizygotic twins (Bradley & Golden, 2001). Studies investigating 

the influence of candidate genes have mostly focused on the catecholamine system 

(specifically dopamine and noradrenaline), as well as genes associated with the 

indolamine serotonin  (see Voeller, 2004 for an overview).  

 

Autism Spectrum Disorders 

Symptoms 
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Autism, high-functioning autism and Asperger’s syndrome, grouped under the term 

autism spectrum disorders (ASDs), are neurodevelopmental disorders clinically defined 

by deficits in social behaviour, delayed onset of verbal and non-verbal communication 

and unusual patterns of restricted, repetitive behaviours and interest, before the age of 

three years (American Psychiatric Association, 1994).   

 

Executive function deficits 

Abnormalities in executive function in the ASDs include deficits in working memory 

(Silk et al., 2006), planning (Ozonoff & Jensen, 1999), set shifting (Verte et al., 2005), 

response inhibition (Johnson, Robertson et al., 2007), and different aspects of attention, 

including orienting (Townsend et al., 1996) and shifting (Rinehart et al., 2006). 

 

Genetic evidence 

The ASDs have a strong genetic component to their aetiology (Bailey et al., 1995) with 

heritability estimates of up to 90% (Ronald et al., 2006).  Each of the three core 

behaviours of the ASDs may have independent genetic origins (Ronald et al., 2006).  The 

genetic origins of the ASDs are complex; no one gene has been unequivocally identified 

as containing risk alleles for autism.  In a recent review of the genome-wide linkage 

studies for autism and the ASDs, 94 loci were reported as potential candidate genes 

(Yang & Gill, 2007).   

 

III. Endophenotypes 

 

ADHD, the ASDs and Schizophrenia are representative of many complex psychiatric 

disorders, in that symptoms and aetiologies may vary widely among patients. This 

renders the detection of candidate genes highly problematic. A hypothesised solution to 

this problem is the application of endophenotypes, which are measurable quantitative 
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traits that lie intermediate between gene function and behaviour, and can be more clearly 

linked to genetic variation (Gottesman & Gould, 2003). 

 

Neuroimaging technologies such as functional magnetic resonance imaging (fMRI) 

provide a sensitive measure of the efficiency of cognitive networks and may be a more 

suitable assay of underlying genetic influences than purely behavioural measures. The 

utility of fMRI may be particularly apparent in conditions where individual differences in 

behavioural measures are minimal due to either ceiling or floor effects on the 

neurocognitive task under study.  Neuroimaging of cortical activity during performance 

of behavioural tests of sustained attention, response inhibition and working memory may 

therefore provide more sensitive endophenotypes for disorders of the executive system 

than behavioural testing alone. 

 

IV. Functions 

Sustained attention: 

Sustained attention refers to the ability to maintain focus on a task without exogenous 

alerting (Robertson et al., 1997). Heritability estimates for sustained attention vary 

considerably depending on the measure employed, ranging from around 20% to 70% 

(Boomsma, 1998; Heiser et al., 2006). 

 

A catecholamine (dopamine and noradrenaline) model of attention has been proposed 

which relies heavily on the activity of the right frontal and parietal cortices (Levy & 

Swanson, 2001; Posner & Peterson, 1990). Performance of sustained attention tasks has 

been consistently shown to activate a fronto-parietal cortical network, largely lateralised 

to the right hemisphere (Lawrence et al., 2003), although left prefrontal cortex 

(Fassbender et al., 2004) and subcortical regions including the thalamus and putamen 

(Kinomura et al., 1996; Paus et al., 1997) have also been implicated.  
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Sustained Attention in Normal Populations 
Researchers have investigated the role of several dopaminergic genes in the modulation 

of attention.  The COMT gene codes for the catechol-O-methyltransferase enzyme, 

responsible for the degradation of dopamine. The Met allele of a polymorphism at 

position 158 within this gene breaks down dopamine more slowly and results in higher 

levels of cortical dopamine (Lachman et al., 1996) than the Val allele. While Blasi et al. 

(2005) found an association between COMT and attentional control, others (Fossella et 

al., 2002; Stefanis et al., 2004) found no association between COMT genotype and 

sustained attention in normal populations.  

 

Two fMRI studies of attentional control (Blasi et al., 2005; Heinz & Smolka, 2006) 

found lower activity levels in the anterior cingulate with increasing dose of the COMT 

Met allele. Combined with findings that the Met allele is associated with better 

performance of this task, this indicates that the Met allele produces a more focused 

response, and contributes towards a more efficient prefrontal attention network than the 

Val allele (also see Winterer et al., 2006).  In contrast with this interpretation, Fan et al. 

(2003) found that increased efficiency of the conflict network in the Attention Network 

Test (ANT) was associated with augmented activity in the anterior cingulate.  In a study 

of the effects of the dopaminergic genes MAOA and DRD4 (coding for the dopamine D4 

receptor) on attention networks, the authors found that the alleles of the two genes that 

were known to be associated with better performance on the task were associated with 

increased, not decreased cortical activity. Some association of a polymorphism in Exon 

III of DRD4 with attention problems in normally-developing children had previously 

been demonstrated  (Auerbach et al., 2001; Schmidt et al., 2001), however no association 

was found between any variant of the DRD4 gene and the efficiency of the ANT alerting 

network (Fossella et al., 2002).  The alerting network is assayed by comparing response 

times under a condition in which participants must maintain response readiness in the 

absence of an alerting cue, compared to response times when this alerting cue is 

provided.  Thus, the alerting network may be considered somewhat analogous to the 
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sustained attention network described above, as in both cases attention must be 

maintained without exogenous alerting.  

 

Fossella and colleagues did however find the efficiency of the alerting network to be 

modulated by a 30bp promoter region polymorphism in the MAOA gene, responsible for 

the degradation of serotonin and noradrenaline. The neurotransmitter serotonin and its 

associated genes have traditionally been considered to play a role in affective and 

emotional regulation (see other articles within this special edition). In a different context, 

however, polymorphisms in the gene coding for the serotonin transporter (5HTT) have 

also been linked with differences in activation of the anterior cingulate during a Stroop-

type task (Canli et al., 2005).  

 

Sustained Attention in Schizophrenia 
Difficulties with sustained attention are a well known symptom of schizophrenia 

(Egeland et al., 2003). Although patients with schizophrenia show significant deficits on 

tests of sustained attention relative to their unaffected relatives, the family members 

perform less well than control subjects (e.g. Cornblatt et al., 1999), indicating a familial 

risk profile for sustained attention deficits in schizophrenia. Patients with schizophrenia 

have been reported to display lower levels of activation in anterior and posterior 

cingulate, right lateral frontal cortex and superior temporal gyrus during performance of 

tasks requiring sustained attention (Carter et al., 1997; Kiehl & Liddle, 2001). 

 

The nicotine system has been implicated in the modulation of attention in schizophrenia 

(Harris et al., 2004), and one study reported an association between a polymorphism in 

Exon 5 of the CHRNA4 gene, coding for the nicotinic acetylcholine α4 subunit, and 

performance on an auditory oddball task measuring sustained attention (Winterer et al., 

2007). Variation at the CHRNA4 locus was also associated with the efficiency of 

attention networks in the anterior cingulate and parietal cortex.  

 

Sustained attention difficulties in schizophrenia have also been related to variation in 

several other genes, including the serotonin 2A receptor gene (Ucok et al., 2007), DISC1 
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(Liu et al., 2006) and dysbindin (Donohoe et al., 2007), but not to COMT genotype 

(Smyrnis et al., 2007). 

 

Sustained attention in ADHD 
Inferior target detection on tasks of sustained attention is reliably reported in children 

with ADHD compared to matched controls (e.g. Johnson, Kelly et al., 2007a), although it 

has been suggested that the absence of robust time-on-task effects in ADHD argues 

against significant impairment in sustained attention (Stins et al., 2005). More recent 

work within the cognitive neurosciences, however, shows that brief lapses of sustained 

attention, as measured by poor target detection, are preceded by momentary reductions of 

activity in frontal control regions (Weissman et al., 2006).  Sustained attention deficits in 

ADHD may thus be influenced by both a failure in the moment-to-moment control of 

attention as well as a more gradual diminution in arousal over time (Johnson, Kelly et al., 

2007a). 

 

While we have found no studies relating specific candidate genes to functional brain 

differences in children with ADHD during sustained attention performance, a number of 

genes thought to modulate sustained attention in the disorder have been identified. A 

number of polymorphisms in the gene encoding the dopamine transporter (DAT1) have 

been tested for association with ADHD.  A VNTR in the 3’ untranslated region of the 

gene has been associated with a diagnosis of ADHD in many (e.g. Barkley et al., 2006; 

Barr et al., 2001; Gill et al., 1997) but not all (e.g. Todd et al., 2001) populations. An 

association between the 10-repeat allele of this marker and sustained attention deficits has 

been reported in ADHD (Bellgrove, Hawi, Kirley et al., 2005).  

 

In addition to this finding, the 7-repeat allele of the DRD4 gene has been associated with 

increased errors of commission in individuals with ADHD, when performing sustained 

attention tasks (Kieling et al., 2006), but see Bellgrove, Hawi, Lowe et al (2005) for a 

contrasting result. In children with ADHD, performance on sustained attention tasks has 

also been linked to variation in the DBH gene (Bellgrove, Mattingley et al., 2006). DBH 

codes for the dopamine β-hydroxylase enzyme which catalyses the conversion of 
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dopamine to noradrenaline. ADHD children with two copies of an allele that was 

previously associated with ADHD (A2 allele of an Intron 5 polymorphism) performed 

more poorly on a test of sustained attention than ADHD children possessing fewer copies 

of this allele (Bellgrove, Hawi et al., 2006). The Val variant of the COMT gene has been 

associated with better performance on a sustained attention task, in children with ADHD 

(Bellgrove, Domschke et al., 2005), contrary to what is typically found in the general 

population. 

 

Sustained Attention in ASDs 
Only a handful of studies have investigated sustained attention in children with ASD and 

most studies have reported intact sustained attention (for a review see Johnson, Robertson 

et al., 2007). To date, there have been no functional neuroimaging studies of sustained 

attention in autism spectrum disorders, however given the neuroanatomical debate as to 

whether the parietal cortex is implicated in autism (for a review see Schmitz et al., 2007), 

it would be valuable to examine the function of the frontal and parietal cortices during a 

sustained attention task in people with ASD (Sanders et al., 2007).  It may be the case 

that, as was found in other tests of executive function (Schmitz et al., 2006), normal 

performance is achieved by a number of compensatory mechanisms which might be 

observed with fMRI. 

 

We are not aware of any studies that have examined the impact of any candidate genes on 

brain function during sustained attention in ASD.  

 

Working Memory: 

The classical view of working memory (see Baddeley, 1992) maintains that it is a system 

for the short-term storage of information, composed of a central executive and two 

‘slave’ systems, a phonological loop and a visuospatial sketchpad, which temporarily 

store auditory and visual information, respectively. This view accords with the common 

division of working memory processes into those dealing with storage or maintenance of 

information, and those dealing with manipulation of that same information. Working 
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memory appears to have a significant genetic component, with estimates of its heritability 

ranging from 33% to 49% (Ando et al., 2001; Wright et al., 2001). 

 

The process of working memory is largely subserved by the prefrontal cortex (although 

the role of the dorsolateral prefrontal cortex (DLPFC) remains controversial; McCarthy et 

al., 1994; Petrides, 1994) in conjunction with regions of the parietal cortex, and is known 

to be mediated by dopaminergic systems (Mehta et al., 2001; Muller et al., 1998). 

Dopamine is believed to have an inverted U-shaped dose/response curve for working 

memory whereby either too much or too little dopamine will result in sub-optimal 

performance (Vijayraghavan et al., 2007). Noradrenaline has also been shown to be a key 

neurotransmitter for working memory (see Chamberlain et al., 2006 for a review). 

Similarly to dopamine, an optimal level of noradrenaline appears critical for working 

memory.  

 

Working Memory in Normal Populations 
A number of studies have examined the impact of COMT genotype on working memory 

in healthy controls. While several studies found no significant differences in working 

memory performance among genotype groups (e.g. Bertolino, Blasi et al., 2006; Bruder 

et al., 2005; Stefanis et al., 2004), those studies that did find differences converge to 

suggest that the less active Met allele is associated with better verbal or numerical 

working memory performance (e.g. Diamond et al., 2004; Goldberg et al., 2003).  

 

The relevance of the COMT Val/Met polymorphism to working memory was 

demonstrated in an fMRI study. Amphetamine, which binds to the dopamine transporter 

and reduces reuptake of extrasynaptic dopamine, was administered to participants with 

differing COMT genotypes prior to performance of a working memory task. 

Amphetamine resulted in improvement in cortical efficiency and reaction time for 

Val/Val participants, while it reduced cortical efficiency and impaired performance in the 

most difficult task condition for Met/Met participants (Mattay et al., 2003). The 

implication of this is that efficient performance of prefrontal-dependent tasks relies on the 

presence of an optimal level of extrasynaptic dopamine. The increase in dopamine 
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occasioned by the administration of amphetamine will therefore have differential effects 

on performance depending on the baseline dopamine levels produced by COMT 

genotype.  

 

Two studies of the effects of this polymorphism on brain activation during performance 

of a non-spatial working memory n-back task found the Met allele to be associated with a 

more focused, efficient cortical response than the Val allele (Bertolino, Blasi et al., 2006; 

Egan, Goldberg, Kolachana et al., 2001). Bertolino and colleagues also assessed the 

impact of the 3’ VNTR in the DAT1 gene on cortical activation during this task; not only 

was the 10-repeat allele associated with a more efficient cortical network, but 

homozygosity for both the DAT1 10-repeat allele and the COMT Met allele was linked 

with the most focused response of all, indicating an additive effect of these genes on the 

working memory cortical network. Similarly, Caldú et al. (2007) found homozygosity for 

both the DAT1 9-repeat allele and COMT Val allele to be associated with the highest 

level of activation during an n-back task. An association was also reported between 

variation in the DRD2 gene and working memory ability in normal participants. This 

association was strengthened when interaction with the COMT Val/Met polymorphism 

was investigated (Xu et al., 2007).  

 

An association of the G444A marker of the DBH gene with spatial working memory 

performance has been demonstrated.  Increasing dosage of the high-activity G allele is 

associated with lower levels of the DβH in plasma and cerebrospinal fluid (Cubells et al., 

1998), and was found to be linked to greater accuracy on the more difficult conditions of 

a spatial working memory storage task, but not on a visuospatial attention task 

(Parasuraman et al., 2005). The G444A marker has previously been shown to be in strong 

linkage disequilibrium with the main functional variant controlling plasma DβH levels, 

the C-1021T polymorphism (Zabetian et al., 2003), however no links with spatial 

working memory have been demonstrated for this marker. The authors found no 

association of a polymorphism in the CHRNA4 gene, reported to be linked with 

visuospatial attention, with spatial working memory in this study. Research performed in 

other groups has indicated no association between working memory performance and 
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variation in the DAT1 (Bertolino, Blasi et al., 2006), 5HTT (Hariri et al., 2002), NET 

(Szöke et al., 2006) or MAOA (Yu et al., 2005) genes.  

 

Working Memory in Schizophrenia 
Working memory deficits are a core neuropsychological symptom of schizophrenia 

(Goldman-Rakic, 1991). The extent of these deficits is thought to be mediated by a 

number of genes, including COMT (Egan, Goldberg, Kolachana et al., 2001), Reelin 

(Wedenoja et al., 2007), Neureglin (Stefanis et al., 2007), DISC1 (Burdick et al., 2005), 

DAT1 (Rybakowski et al., 2006) and several of the dopamine receptor genes  

(Rybakowski et al., 2005; Szekeres et al., 2004).  

 

Abnormalities in prefrontal function during performance of working memory tasks are 

frequently reported in schizophrenia. Many of these studies indicate hypoactivation of 

lateral prefrontal cortex (e.g. Barch & Csernansky, 2007), while others describe either 

increased activation in those areas (Callicott et al., 2000; Manoach et al., 1999), or no 

apparent difference from control participants (Walter et al., 2007). This has led to the 

suggestion that changes in cortical activation with increasing task demands or memory 

load may also follow an inverted-U shaped curve. This appears to be the case even after 

controlling for the effect of COMT genotype (Bertolino, Caforio et al., 2006). 

Abnormalities in parietal activation are also common; schizophrenic patients appear to 

demonstrate decreased activation in dorsal and ventral inferior parietal cortex (Barch & 

Csernansky, 2007; Schneider et al., 2007), however some contradictory results have also 

been reported (Mendrek et al., 2005; Thermenos et al., 2005). 

 

A genetic link to the functional abnormalities observed in the brains of schizophrenic 

patients is supported by the discovery that the unaffected first degree relatives of patients 

display significantly greater DLPFC activation than controls during working memory 

tasks (e.g. Callicott et al., 2003). The majority of genetic neuroimaging studies of 

working memory in schizophrenia address the impact of COMT genotype on cortical 

response. The consensus of these studies is that increasing gene dosage of the Met allele 

is associated with a more efficient prefrontal cortical response during performance of 
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working memory tasks (Bertolino, Caforio et al., 2006; Egan, Goldberg, Kolachana et al., 

2001; Ho et al., 2005). Further, improvement in both behavioural working memory 

performance and prefrontal efficiency following a course of the antipsychotic medication 

olanzapine is predicted by Met allele load (Bertolino et al., 2004).  

 

Cortical activity relating to working memory may be affected in schizophrenia by genes 

involved in other neurochemical systems; for example, a schizophrenia-associated 

polymorphism in the DISC1 gene has been shown to have an effect on hippocampal 

activation during working memory (Callicott et al., 2005).   

 

Working Memory in ADHD 
A number of studies suggest that individuals with ADHD demonstrate problems with 

working memory. For example, medication-naïve children with ADHD were found to be 

impaired in spatial-working memory, compared with control children or children with 

ADHD on stimulant medication (Barnett et al., 2001). Impairments in working memory 

in individuals with ADHD are associated with low levels of striatal dopamine (e.g. Frank 

et al., 2007), and often respond well to stimulant medications that increase dopaminergic 

activity (for a review see Pietrzak et al., 2006). 

 

A growing number of studies have used functional imaging to investigate ADHD (see 

Fassbender & Schweitzer, 2006 for an overview). Based on the current evidence, they  

suggest that in individuals with ADHD the processing of executive functions such as 

sustained attention, response inhibition and working memory is often taken over by other 

(presumably unaffected) regions, while hypoactivity is observed in those (affected) 

regions that are typically engaged in processing the task. Individuals with ADHD show 

reduced activation in prefrontal areas (as well as other regions including cerebellum and 

occipital cortex) when engaged in a verbal working memory task (Valera et al., 2005). 

Relatively few studies have imaged spatial working memory in ADHD, despite the robust 

effect sizes associated with behavioural measures of spatial working memory (see 

Martinussen et al., 2005, pp. for a meta-analysis). Reductions in activity within the right 

parietal lobe, as well as occipital areas including the cuneus and precuneus, have been 
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observed during mental rotation, a process requiring the spatial storage of relations 

between objects (Silk et al., 2005; Vance et al., 2007).  

 

Very few studies of genetic effects on working memory in ADHD have been published. 

A recent article by Levy (2007) reviewed the relationship between COMT 

polymorphisms and response to treatment medication in individuals with ADHD. 

Individuals possessing the more active Val variant typically perform better with stimulant 

medication on tests that assess working memory, unlike individuals homozygous for the 

Met variant whose performance decreases. A study by Dorval and colleagues (2007) 

found the GRIN2B gene to be associated with ADHD symptoms such as inattentiveness 

and hyperactivity, but not with either verbal working memory or short term memory (also 

see Adams et al., 2004 for similar negative findings regarding the link between GRIN2A 

and working memory).  

 

Working Memory in ASDs 
People with ASD frequently demonstrate deficits in working memory (for a review see 

Russo et al., 2007). A number of functional imaging studies have been conducted 

examining differences in cortical activation in participants with ASD during performance 

of working memory tasks. A study by Koshino and colleagues (2005) using an N-back 

working memory task with letter stimuli found that, despite the absence of any 

differences in performance,  adults with ASD showed less activation in the left prefrontal 

regions than controls, especially in DLPFC, inferior frontal gyrus and posterior pre-

central sulcus.  The authors suggest that as verbal working memory is related to the left 

prefrontal cortex, and non-verbal working memory to the right, the adults with ASD may 

have been processing the letter stimuli as visual codes rather than verbal information.  

These participants also showed increased activation of the right parietal cortex and 

decreased activation of the left, again suggesting that the letter stimuli were processed as 

non-verbal, visual graphics rather than using a phonological code. A later study by the 

same group (Koshino et al., 2007) found less activation in left prefrontal and right 

posterior temporal cortices during an N-back working memory task using facial stimuli. 

The implication here is that participants with ASD process faces purely as objects, 
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without the emotional element. Functional connectivity analyses suggested lower 

connectivity with the frontal areas but normal connectivity with the parietal cortices, 

indicating a fundamentally different cortical network for working memory processing in 

autism. This makes any extrapolation of findings to a normal population highly 

problematic.  

 

Similar differences in cortical activation were observed in the performance of several 

other working memory tasks; on a mental rotation task, adolescents with ASD 

demonstrated less activation in the DLPFC, anterior cingulate, the lateral and medial 

premotor area and the caudate nucleus, but normal activation in the parietal cortices (Silk 

et al., 2006), while on a spatial working memory task, adults with ASD showed less 

activation of the DLPFC and posterior cingulate cortex than controls (Luna et al., 2002).  

Normal activation was shown in the anterior cingulate cortex, insula, basal ganglia, 

thalamus and lateral cerebellum.  

 

Although we are aware of no studies examining the effects of specific candidate genes in 

working memory in ASDs, it appears that spatial working memory deficits, as measured 

by the delayed oculomotor response task, may have a genetic component.  Parents of 

children with ASD demonstrated poorer spatial accuracy than a control group, but normal 

levels of premature saccades (eye movements towards a stimulus) and normal latency of 

remembered saccades, suggesting the parents of ASD probands exhibited spatial working 

memory deficits (Koczat et al., 2002).  We are aware of no functional imaging studies, 

however, addressing genetic links to working memory deficits in ASD. 

 

Response Inhibition: 

Response inhibition, the ability to withhold a prepotent response to a stimulus, is 

considered to be a critical measure of executive function (Chambers et al., 2006; 

Dempster & Brainerd, 1995), and is often assessed by the use of Go/No-Go or Stop 

Signal tasks. Studies with the unaffected family members of clinical groups with 

response inhibition deficits  have indicated that the ability to inhibit a response includes a 
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heritable component (e.g. Slaats-Willemse et al., 2003). The extent of that heritability is 

however unclear, varying from 0 to 54% (Groot et al., 2004; Heiser et al., 2006).  

 

In a similar fashion to sustained attention, correct inhibition of a prepotent response 

recruits a distributed cortical network largely lateralised to the right hemisphere (Garavan 

et al., 1999), with heavy reliance on both parietal and ventral prefrontal cortices (Aron et 

al., 2003; Chambers et al., 2006; Menon et al., 2001). The role of dopamine in response 

inhibition has been described in a number of studies (e.g. Mink, 2001; Roesch-Ely et al., 

2005). For example, one study administered the dopamine precursor levodopa to 

participants during performance of a Go/No-Go task (Hershey et al., 2004). The resulting 

increase in cortical dopamine levels led to lower activation in right parietal and cerebellar 

regions in the absence of any difference in performance accuracy or reaction time. This 

implies more efficient response inhibition processing with increased dopamine levels. 

 

Response Inhibition in Normal Populations 

A number of genes of the dopaminergic system have been implicated in the process of 

response inhibition, although few studies have addressed this relationship in normal 

populations. In one study however, normal children homozygous for the 10 repeat allele 

of DAT1 were found to perform less well on a test of response inhibition than children 

with one copy of the allele (Cornish et al., 2005), further highlighting the contribution of 

that allele to executive function.  A more recent study has reported an interaction between 

polymorphisms of the DRD4 and DAT1 genes on response inhibition.  Carriers of the 7-

repeat DRD4 allele who were also homozygous for the 10-repeat DAT1 allele displayed 

poorer response inhibition on a stop-signal task (Congdon et al, 2007). 

 

A body of evidence has indicated a role for the serotonin system in impulse control and 

response inhibition (Lucki, 1998). A logical progression of this was that a polymorphism 

in the serotonin transporter gene (5HTT), which leads to reduced gene transcription and 

diminished serotonin uptake (Lesch et al., 1996), might be involved in these processes. 

Nevertheless, a number of studies (Clark et al., 2005; Fallgatter et al., 1999) failed to 
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demonstrate an association between the 5HTTLPR polymorphism and performance on 

either a CPT or stop signal reaction time task.   

 

The TPH2 gene exercises control over tryptophan hydroxylase, a rate-limiting enzyme in 

the catalysis of serotonin from tryptophan (Grahame-Smith, 1964). Variation in this gene 

has been associated with increased error rates on the ANT conflict network measure, 

indicating decreased impulse control (Reuter et al., 2007), and with reaction times in a 

Stop Task (Stoltenberg et al., 2006), although this trend was only significant for male 

participants. Variation in this gene is known to influence amygdala reactivity, but we are 

not aware of any neuroimaging studies addressing disparity in any executive functions 

relating to this gene. 

 

Some evidence has been provided for association between the serotonergic MAOA gene 

and response inhibition in normal populations (Passamonti et al., 2006). Variation in a 

promoter-region polymorphism of this gene was not significantly associated with 

performance of a Go/No-Go task (although carriers of the high-activity allele tended to 

make more errors of commission), but differences in cortical activation during 

performance of the task were observed. Carriers of the less active allele, which would be 

expected to degrade noradrenaline and serotonin more slowly, displayed higher levels of 

cortical activity in bilateral extrastriate cortex and right superior parietal cortex, but lower 

activation levels in right ventrolateral prefrontal cortex than carriers of the high-activity 

allele.  

 

Response Inhibition in Schizophrenia 

Difficulty with response inhibition is representative of the general neuropsychological 

deficits seen in schizophrenia (Wykes et al., 2000), and patients have been shown to 

demonstrate poor performance in response inhibition tasks relative to healthy controls 

(Thoma et al., 2007). One of the most frequently reported neurocognitive markers of 

schizophrenia is difficulty with performance of antisaccades, that is, voluntary inhibition 

of automated ocular saccades towards a light stimulus (Crawford et al., 1995; Fukushima 
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et al., 1988). Antisaccade performance has been closely linked with capacity for response 

inhibition (Donohoe et al., 2006). 

 

A commonly reported neurological sign of schizophrenia is frontal hypoactivity during 

performance of executive function tasks (Chua & McKenna, 1995), and patients have 

been shown to demonstrate reduced activity in the left anterior cingulate and DLPFC 

during response inhibition tasks (Rubia et al., 2001). Schizophrenic patients and their 

healthy siblings both fail to show normal increases in striatal activation during 

preparation for response inhibition (Vink et al., 2006).  

 

Response inhibition in schizophrenia may be influenced by COMT genotype; one study 

found that participants homozygous for the Met allele outperformed those in possession 

of one or two copies of the Val allele on a Stroop test (Ehlis et al., 2007). We are aware 

of no other studies addressing the effect of specific genes on response inhibition in 

schizophrenia, or on associated cortical activity.  

 

Response Inhibition in ADHD 

A recent review article by Wodka and colleagues (2007) suggests that response inhibition 

should be seen as one of the key deficits in ADHD, even when cognitive task demands 

are minimal (but see also Rommelse et al., 2007). Deficiencies in response inhibition 

have been proposed as a valuable cognitive endophenotype for ADHD (Aron & Poldrack, 

2005). 

 

In a study with normal participants (Bellgrove et al., 2004), behavioural differences such 

as increased response variability and an increase in commission errors (both of which 

have been observed in ADHD, see Johnson, Kelly et al., 2007b; Wodka et al., 2007), 

were shown to dissociate the brain regions used in a Go/No-Go task. Efficient response 

inhibition was associated with activity in regions including the middle frontal and inferior 

frontal gyri. These regions are often found to be affected in ADHD, being smaller in size 

and often displaying hypofunction (Durston et al., 2004), suggesting that the poor 
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performance of people with ADHD on these tasks may be exacerbated by relying on 

compromised brain regions.  

 

The 7-repeat allele of a VNTR in the DRD4 gene has been associated with an impulsive 

and inaccurate response style in children with ADHD, independent of symptom severity 

(Langley et al., 2004). The 10-repeat polymorphism of the DAT1 gene has also been 

implicated in deficiencies in response inhibition in a population-based sample of boys 

who scored high on a measure of ADHD symptoms (Cornish et al., 2005). This strongly 

implies a role for the DRD4 and DAT1 genes in particular, and the dopamine system in 

general, in the process of response inhibition.  

  

Although response inhibition deficits have been observed in ADHD, and have been 

linked with a number of genetic markers, no studies to date have examined genetic 

effects on abnormalities in cortical activation observed during response inhibition in 

children with ADHD. 

 

Response Inhibition in ASDs 

The issue of whether or not children with ASDS display deficits on response inhibition 

tasks is contentious (Sanders et al., 2007).  Studies have demonstrated normal response 

inhibition abilities on tasks such as the Stroop test (Goldberg et al., 2005; Ozonoff & 

Jensen, 1999), the stop signal paradigm (Ozonoff & Strayer, 1997), and inhibition in the 

neutral condition of a Go/No-Go task (Ozonoff & McEvoy, 1994).  Other studies have 

shown deficits on the prepotent inhibition of a Go/No-Go task (Ozonoff & McEvoy, 

1994), the Windows task (Ozonoff & McEvoy, 1994) , the random Sustained Attention to 

Response Task  (SART; Johnson, Robertson et al., 2007), oculomotor anti-saccade task 

(Luna et al., 2007) and the Detour Reaching task (Hughes & Russell, 1993).   

 

Despite normal behavioural performance on a Go/No-Go task, functional imaging 

showed increased activation of the frontal and parietal cortices in a group of adults with 

ASD, compared with controls (Schmitz et al., 2006).  Greater left hemisphere activity in 
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the inferior and orbitofrontal cortices may indicate an alternative, compensatory 

mechanism in these participants (Schmitz et al., 2006). In another Go/No-Go task, adults 

with ASD showed normal behavioural performance but reduced brain activation in the 

right cingulate gyrus, right insula, right inferior frontal gyrus, right premotor cortex, but 

normal activation in the parietal cortices (Kana et al., 2007).  In a slightly more difficult 

condition of the task including a working memory component, participants with ASD 

displayed activation in the anterior cingulate and parietal cortex and increased activity in 

premotor regions, areas associated with processing cues in readiness to respond. 

 

No specific candidate genes have as yet been associated with response inhibition deficits 

in autism. 

 

V. Conclusions 

Investigations into the genetic correlates of individual differences in executive control 

have to date produced disparate findings. Initial positive results are frequently not 

replicated in subsequent studies (see for example the often contradictory literature 

relating variation in the DRD4 gene to sustained attention in ADHD). These disparities 

can be partially attributed to small effect sizes of individual genes, and the fact that 

multiple genes may contribute to a single function. In addition, while the various 

executive functions may be relatively easily discriminated at the behavioural level, the 

distinctions between them are less clear cut at the genetic level, with similar genetic 

foundations appearing to support a wide variety of functions. Similarly, imaging studies 

reveal that the three executive functions discussed here display extensive overlap in the 

brain regions recruited; working memory, sustained attention, and response inhibition all 

activate functional networks involving prefrontal and parietal regions. To some extent 

this may reflect common components to these functions, allowing us to group them 

together under the name ‘executive functions’. Careful manipulation of the task 

characteristics has, however, been shown to dissociate between partially overlapping and 

interacting functional networks in these regions (see e.g. Corbetta & Shulman, 2002; 

Lungu et al., 2007; Wager & Smith, 2003). This again underpins the importance of using 
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cognitive endophenotypes which maximally dissociate the underlying function and 

associated brain regions. 

 

The low power common to studies of this kind has led to the current trend for large scale 

consortia that can conduct genome-wide association studies of disorders or processes to 

give firm leads on candidate genes and to identify quantitative trait loci.  This approach 

also has the potential to identify novel variants for which no a priori hypothesis for an 

association with executive control exists. To date, no genome-wide association studies of 

sustained attention, spatial working memory or response inhibition have been conducted. 

To some extent, imaging studies may be helpful in providing the power that is sought in 

genetic studies by acting as endophenotypes with higher signal-to-noise ratios. Cognitive 

neuroscience allows us to define cognitive-neuroanatomical models which can constrain 

linkages between a gene and a process based on what we know about where the gene is 

expressed and how a cognitive function is influenced by different neurotransmitters. For 

example, working memory is known to activate prefrontal regions, and to be heavily 

dependent on dopamine (Vijayraghavan et al., 2007). The discovery that the dopamine 

transporter is sparse in prefrontal cortex led to an appreciation of the role of catechol-O-

methyltransferase as the main vehicle for dopamine clearance in the prefrontal cortex, 

and provided a rationale for association studies of the COMT gene with working memory 

performance (Sesack et al., 1998).  

 

Furthermore, genetics may be used to test cognitive-neuroanatomical models of 

cognition. As yet, no studies of which we are aware have demonstrated a double 

dissociation between genetic links to the neurological correlates of two discrete executive 

functions, although studies of this nature have been conducted to discriminate genetic 

effects on cortical activation related to emotional processing from activation related to 

working memory (Hariri et al., 2002; Heinz & Smolka, 2006). The scope for real 

discovery in this area is broad; it might, for example, be possible to find a dissociation 

between genes for spatial versus verbal working memory, or for sustained versus spatial 

attention. The current developments in neuroimaging and genetics are therefore 
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producing what may be one of the most informative lines of research in the field of 

executive function. 
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