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Abstract. Recent ensemble clustering techniques have been shown to
be effective in improving the accuracy and stability of standard clus-
tering algorithms. However, an inherent drawback of these techniques is
the computational cost of generating and combining multiple clusterings
of the data. In this paper, we present an efficient kernel-based ensem-
ble clustering method suitable for application to large, high-dimensional
datasets such as text corpora. To decrease the time required to gener-
ate the ensemble members, we employ a prototype reduction scheme that
makes use of a density-biased selection strategy to construct a smaller
kernel matrix that represents a good proxy for the original data. Eval-
uations performed on text data demonstrate that this process leads to
a significant decrease in running time, while maintaining high clustering
accuracy.

1 Introduction

Ensemble techniques have been successfully applied in supervised learning to
improve the accuracy and stability of classification algorithms, where the ra-
tionale is that the combined judgement of a group of predictors is superior to
that of an individual (Breiman, 1996). In contrast, cluster analysis methods
have often involved the repeated execution of a clustering procedure, followed
by the manual selection of an individual solution that maximises a user-defined
criterion. However, rather than merely selecting a “winning” partition, recent
work has shown that combining the strengths of an ensemble of clusterings can
often yield better results (e.g. Fred, 2001; Strehl & Ghosh, 2002). Given a col-
lection of clusterings generated on data originating from the same source, the
primary aim of ensemble clustering is to aggregate the information provided by
the collection to produce a more accurate clustering of the data. Additionally,
ensemble methods can often afford greater stability, which refers to the ability of
a clustering procedure to consistently produce similar solutions across multiple
trials. Although the underlying “base” clustering algorithm, such as standard
k-means with random initialisation, may produce many different partitions of
the data of varying accuracy, by combining these partitions we can produce a
single definitive solution.

Unfortunately, an inherent drawback of unsupervised ensemble techniques is
the computational cost of generating and combining a large number of clusterings



of the same data. This is particularly problematic for large, high-dimensional
datasets such as text corpora. While reducing the number of ensemble members
appears to be a natural solution, an ensemble consisting of too few members is
likely to result in an unstable solution that is little better than that produced
by the base clustering algorithm.

Greene & Cunningham (2006a) recently proposed an efficient approach for
stability-based validation suitable for the task of estimating the number of clus-
ters in large datasets, which is based on the use of a novel prototype reduction
scheme. It is apparent that an issue common to both stability analysis and en-
semble clustering is the requirement to produce a large, diverse collection of base
clusterings. In this paper, we seek to expand upon that work by showing that the
principles underlying the reduction technique may also be relevant in improving
the efficiency of other computationally costly learning methods. Specifically, we
propose a complete ensemble learning process for document clustering that ap-
plies correspondence-based aggregation in conjunction with kernel clustering on
a matrix constructed using density-biased prototype selection.

The remainder of this paper is organised as follows. The next section pro-
vides a summary of relevant work relating to ensemble clustering and prototype
reduction. In Section 3 we discuss our proposed clustering scheme, with a partic-
ular focus on its application to text data. To demonstrate the effectiveness of the
scheme, Section 4 provides comparisons to existing standard and ensemble clus-
tering methods on real-world text datasets. These experiments show that the
reduced ensemble clustering process leads to a significant decrease in running
time, while maintaining high clustering accuracy.

2 Related Work

2.1 Ensemble Clustering

Ensemble clustering is based on the idea of combining multiple clusterings of a
given dataset X = {x1,...,2,} to produce a superior aggregated solution. These
techniques generally follow a process as illustrated in Figure 1, which consists of
two distinct phases:

1. Generation: Construct a collection of 7 base clustering solutions, denoted
as C = {Cy,...,C;}, which represents the members of the ensemble. This
is typically done by repeatedly applying a given clustering algorithm in a
manner that leads to diversity among the members.

2. Integration: Once a collection of ensemble members has been generated, a
suitable integration function is applied to combine them to produce a final
“consensus” clustering C:

fi{C..Cy—C

In practice, this often involves the application of an additional clustering
procedure to an intermediate representation of C.

We now summarise the most popular generation and integration techniques that
have been proposed in recent literature.
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Fig. 1. Generic ensemble clustering process.

Generation. It has frequently been demonstrated that supervised ensembles
are most successful when constructed from a set of accurate classifiers whose er-
rors lie in different parts of the data space (e.g. Opitz & Shavlik, 1996). Similarly,
unsupervised ensemble procedures typically seek to encourage diversity with a
view to improving the quality of the information available in the integration
phase. A variety of strategies have been proposed to achieve this goal, including
random initialisation (Jain & Fred, 2002), feature extraction based on random
projection (Fern & Brodley, 2003), random parameter selection (Jain & Fred,
2002) and the combination of sets of “weak” partitions (Topchy et al., 2003).
However, by far the most commonly used strategy has been to employ unbiased
random sampling to produce partitions on different subsets of the same dataset.
Many authors (e.g. Leisch, 1999; Dudoit & Fridlyand, 2003) have suggested
the use of a bootstrapping aggregation or “bagging” technique, where subsets
of the original data are produced by independently drawing with replacement.
A related technique involves applying subsampling without replacement, where
typically 60-80% of the data objects are used when generating each base cluster-
ing (Minaei-Bidgoli et al., 2004; Fern & Brodley, 2004). Having chosen a sample
of data, an ensemble member is generated by applying a suitable base clustering
algorithm, such as standard k-means with random initialisation.

Integration. In supervised learning, it has been observed that the success of
an ensemble technique depends not only on the presence of a diverse set of
base classifiers, but also on the ability of the integration method to exploit the
resulting diversity (Brodley & Lane, 1996). Similarly, the choice of a suitable
method for combining an ensemble of clusterings will greatly affect the accuracy
of the final clustering solution (Greene et al., 2004).

Several different approaches have been proposed for performing the task of
integration. The most popular has been to use the information provided by the
ensemble members to derive a new measure of similarity between data objects.
This information may be represented in the form of a pairwise co-association ma-
trix, which can be subsequently used by a similarity-based clustering algorithm
to produce a final partition of the data (Fred, 2001). Rather than examining
pairwise associations between objects, several authors have suggested analysing
the relationships between the individual clusters contained in all partitions in
C. These relationships may be modelled in the form of a weighted hypergraph



(Strehl & Ghosh, 2002) or a bipartite graph (Fern & Brodley, 2004), which may
subsequently be divided using popular graph partitioning or spectral clustering
techniques.

The graph-based approach proposed by Strehl & Ghosh (2002) is based on
the assumption that there will be a direct relationship between individual clus-
ters across different partitions in C. This concept of correspondence has been
explicitly used by several authors for combining collections of clusterings. Dudoit
& Fridlyand (2003) proposed a method, referred to as BagClust1, which involves
aligning the clusters in each newly generated base partition with those in the ex-
isting ensemble clustering. The new cluster assignments may then be viewed as
votes indicating the strength of assignment of an object to each of the k clusters
in the current ensemble. Once all ensemble members have been added, a final
clustering is obtained by taking the majority cluster for each object. Note that
this approach assumes that each partition contains a fixed number of clusters k.

2.2 Prototype Reduction

Prototype reduction has been extensively used in supervised learning to improve
the efficiency of learning tasks involving large datasets. These techniques are
concerned with producing a minimal set of objects or prototypes to represent
the data, while ensuring that a classifier applied to this set will perform approx-
imately as well as on the original dataset. In the literature, reduction techniques
are generally divided into two broad categories: prototype selection techniques
seek to identify a subset of representative objects from the original data, while
prototype extraction techniques involve the creation of an entirely new set of
objects. A variety of supervised reduction schemes have been proposed in the
literature (see Bezdek & Kuncheva, 2001). One particularly novel technique, de-
scribed by Kim & Oommen (2005), involves using a standard reduction scheme
to produce a reduced set of prototypes, from which a smaller kernel matrix is
constructed. Ensemble classifier methods are then employed using this matrix
to compensate for any loss in accuracy resulting from the application of the
reduction procedure.

While most work in prototype reduction has focused on supervised learn-
ing tasks, the concept has also been used to improve the efficiency of cluster
analysis procedures. Greene & Cunningham (2006a) proposed an unsupervised
kernel-based reduction scheme, where new prototypes are formed by locally com-
bining subsets of the original dataset. Specifically, n extracted prototypes may be
potentially constructed by finding the mean of each object together with its set
of p nearest neighbours. From these, a subset of n’ < n prototypes are selected
using a density-biased selection strategy to ensure that all cluster structures in
the data are adequately represented. Rather than computing explicit represen-
tations for the new prototypes in the original feature space, the values in the full
n X n kernel matrix K are used to directly construct a reduced n’ x n’ matrix K’.
This representation is subsequently used to decrease the computational expense
of performing stability-based validation.



3 Proposed Method

As noted previously, a significant disadvantage of ensemble techniques is the
computational cost of repeatedly generating and combining partitions of a given
dataset. In particular, the feasibility of applying popular techniques such as those
described in Section 2.1 may be greatly limited by the number of objects n. The
number of feature m used to represent the objects can also limit their usefulness
when working with high-dimensional data, such as document collections.

3.1 Kernel-Based Ensemble Clustering

To avoid having to repeatedly recompute similarity values in the original fea-
ture space, we choose to represent the data in the form of an n x n kernel
matrix K, where K;; indicates the affinity between objects x; and z;. The ad-
vantage of using kernel methods in the context of ensemble clustering derives
from the fact that, having constructed a single kernel matrix, we may subse-
quently generate multiple partitions without referring back to the original data.
The standard k-means algorithm with cosine similarity has commonly been used
in document clustering. Therefore, an intuitive choice for a base clustering algo-
rithm is to make use of the corresponding kernelised k-means algorithm applied
to a normalised linear kernel (Schélkopf & Smola, 2001). However, while this
kernel represents a suitable choice for document clustering, like many kernel
functions applied to sparse data, its matrix will often suffer from the problem
of diagonal dominance. This phenomenon occurs when, for a given kernel func-
tion, self-similarity values are large relative to between-object similarities. This
can negatively impact upon the accuracy and stability of centroid-based kernel
clustering algorithms. To address this issue, we make use of kernel k-means with
algorithm adjustment as described by Greene & Cunningham (2006b).

To encourage diversity among the ensemble members, we apply subsampling
without replacement and apply randomly-initialised kernel clustering to the se-
lected rows of the kernel matrix. Minaei-Bidgoli et al. (2004) demonstrated that
ensembles created in this way can lead to results that are comparable to boot-
strap aggregation, while requiring less computational time to produce the base
clusterings. We have observed similar behaviour when this generation approach
is applied to text data, where we employ a sampling factor 5 = 0.8. After each
subsampling is partitioned, we produce a clustering of all n objects by applying
a classification scheme to predict memberships for the out-of-sample objects.
This is similar to the approach used in prediction-based validation (Tibshirani
et al., 2001), where a classifier is selected so as to “mimic” the behaviour of
the clustering algorithm. In this context, we apply a kernel nearest centroid
prediction method, where each missing object is assigned to the most similar
pseudo-centroid in the base clustering.

Once a collection of base clusterings C has been generated, we integrate the
collection by employing a correspondence clustering technique similar to the Bag-
Clust! algorithm proposed by Dudoit & Fridlyand (2003). Unlike other ensemble
clustering schemes, the final clustering of the data is constructed incrementally



1. Construct full kernel matrix K and set counter ¢ = 0.
2. Increment ¢ and generate base clustering C;:
(i) Produce a subsampling without replacement.
(ii) Apply adjusted kernel k-means with random initialisation to the samples.
(iii) Assign each out-of-sample object to the nearest centroid in Cs.
3. If ¢ =1, initialise V as the n x k binary membership matrix for C;.
Otherwise, update V as follows:
(i) Compute the current consensus clustering C from V such that

z; € C; if j = argmax Vj;
J

(i) Find the optimal correspondence 7(C:) between the clusters in C; and C.
(iii) For each object x; assigned to the j-th cluster in w(C), increment Vj;.
4. Repeat from Step 2 until C is stable or t = Tmae.
5. Return the final consensus clustering C.

Fig. 2. Kernel-based correspondence clustering.

as each ensemble member is generated, so that we do not require the application
of a subsequent clustering procedure to produce a final solution. Additionally,
this scheme avoids the large storage overhead of maintaining an intermediate
representation of the collection C, which is a notable drawback of graph-based
integration schemes. In practice, we observe that correspondence-based integra-
tion produces more stable results than other schemes such as those based on
pairwise co-assignment, which are often highly sensitive to the choice of final
clustering algorithm (Greene et al., 2004).

The kernel-based correspondence clustering scheme proceeds as summarised
in Figure 2. Having generated the first ensemble member C;, a n x kK membership
matrix V is constructed such that:

Vi — 1ifxi€CjinC1
E 0 otherwise.

As each subsequent clustering C; is generated, the values in V are updated.
Unlike when combining classifiers, the clusters in each partition will not have
a pre-defined label. Therefore, each new set of clusters must be aligned with
those that have been previously generated. The current consensus clustering
C is computed by taking the majority cluster label for each object based on
the row values in V. We then find the best match between those clusters and
the existing clusters in C;. The optimal permutation 7(C;) may be found in
O(k?) time by solving the minimal weight bipartite matching problem using the
Hungarian method (Kuhn, 1955). For each object z; assigned to the j-th cluster
in 7(C;), we then increment the entry V;;. When all ensemble members have
been generated, C represents the final consensus clustering of the data.

An issue that is often overlooked in ensemble clustering is the choice of a
suitable value for the number of ensemble members 7. If 7 is too large, the
running time of the ensemble process will be prohibitive. On the other hand, if 7



is too small, it is likely that the final ensemble solution will be unstable due to the
stochastic nature of the generation scheme. One benefit of the correspondence
clustering approach is that, by performing the integration process in parallel with
the generation phase, we may easily determine whether the ensemble process may
be terminated. Specifically, we choose to automatically stop generating ensemble
members when the the cluster assignments in C remain unchanged for a fixed
number of generations. The process may also be terminated if the number of
members t reaches a pre-defined maximum value 7y,q-

3.2 Ensemble Clustering with Kernel Reduction

The ensemble clustering approach introduced in Section 3.1 allows each base
clustering to be generated without referring back to the original feature space.
However, for larger datasets, the computational cost of repeatedly applying an
algorithm requiring O((#n)?) time may still be prohibitive. Clearly, decreasing
n would make the ensemble process significantly less computationally expensive.
Therefore, we now expand upon the work described by Greene & Cunning-
ham (2006a), showing that the principles underlying the kernel-based prototype
reduction technique may also be used to greatly improve the efficiency of en-
semble clustering. Briefly, the proposed techniques involves applying prototype
reduction, performing correspondence clustering on the reduced representation
and subsequently mapping the resulting aggregate solution back to the original
data. An outline of the entire process is illustrated in Figure 3.

The initial reduction process follows that described in Greene & Cunning-
ham (2006a). Firstly, the original n x n kernel matrix K is transformed to a
condensed n’ x n’ matrix K’, where n’ = 2 and p is a user-defined parameter
controlling the reduction rate. Specifically, n extracted prototypes may be po-
tentially constructed by finding the mean of each object together with its set of p
nearest neighbours. From these, a subset of n’ < n prototypes are selected using
a density-biased selection strategy. The matrix K’ may be directly constructed
from the affinity values in K without referring back to the original feature space.
In practice, we use a reduction rate of p = 4 and consider prototypes constructed
from small, homogenous neighbourhoods (p = 5), as these parameter values were
previously shown to be useful for a range of text datasets.

Reduction Mappin O
Ensemble O pping
- 2] (00

Full Reduced Reduced Final
Kernel Kernel Clustering Clustering

Fig. 3. Ensemble clustering process with prototype reduction.



1. Construct full n x n kernel matrix K from the original data X.

2. Apply prototype reduction to form the n’ x n’ reduced kernel matrix K’.

3. Apply kernel-based correspondence clustering using K’ as given in Figure 2 to
produce a consensus clustering C’.

4. Construct a full clustering ¢ by assigning a cluster label to each x; based on the
nearest cluster in C'.

5. Apply adjusted kernel k-means using C as an initial partition to produce a
refined final clustering of X.

Fig. 4. Kernel-based correspondence clustering with prototype reduction.

Once we have constructed the reduced kernel matrix, the ensemble cluster-
ing process is performed as given in Figure 2. The application of the proposed
reduction strategy results in a significant decrease in the computational cost of
this process. When generating each ensemble member, the cost of clustering is
reduced to O(( ’%”)2). In addition, the time required to construct a cost matrix
for the Hungarian matching method and the time needed to update V are both
decreased to O(n).

After the ensemble process has terminated, the problem remains of deriving
a final clustering C of the original n data objects from the consensus clustering
of reduced prototypes C’. An intuitive way of achieving this is to assign each
original object x; to the nearest centroid in C’. Just as each reduced prototype
can be decomposed into a set of p + 1 original objects, we can also decompose
the centroid of each reduced cluster into the mean of all the original objects
which form the reduced prototypes assigned to that cluster. In practice, we can
identify the nearest cluster based on values in the original kernel matrix K and
the list of nearest neighbours used to form the reduced prototypes. This mapping
of C' to a clustering of X can be performed in time O(n'n). To further improve
the accuracy of this solution, we suggest a refinement procedure that involves
applying adjusted kernel k-means to C using the full matrix K. In practice, we
observe that this generally requires very few reassignment iterations, while lead-
ing to a noticeable increase in clustering accuracy. The entire ensemble process
with prototype reduction is summarised in Figure 4.

4 Evaluation

4.1 Experimental Setup

In order to assess the techniques proposed in Section 3, we conducted a compari-
son on ten datasets that have previously been used in the evaluation of document
clustering algorithms (see Table 1). For further information regarding these col-
lections, consult Greene & Cunningham (2006a). To pre-process the datasets we
applied standard stop-word removal and stemming techniques. We subsequently
removed terms occurring in less than three documents and applied log-based
TF-IDF normalisation to the feature vectors.



Dataset |Description Documents| Terms | k
bbc News articles from BBC 2225 9635 5
bbcsport |Sports news articles from BBC 737 4613 5
classic CISI/CRAN/MED sets 7097 8276 | 4
classic3 |CACM/CISI/CRAN/MED sets 3893 6733 | 3
cstr Computer science technical abstracts 505 2117 4
ngl7-19 |Overlapping newsgroups 2625 12020 | 3
ng3 Well-separated newsgroups 2928 12357 | 3
reutersd |Top 5 categories from Reuters-21578 2317 4627 5
reviews |Entertainment articles from TREC 4069 18152 | 5
sports Sports news articles from TREC 8580 14615 | 7

Table 1. Details of experimental datasets.

The primary focus of our evaluation was to consider the effects of applying
prototype reduction prior to ensemble clustering, in terms of accuracy, stability
and running time. Specifically, we compare three variations of correspondence-
based ensemble clustering: using standard k-means on the original feature space
(COR-KM), adjusted kernel k-means on the full kernel matrix (COR-AA) and
adjusted kernel k-means on the reduced kernel matrix (COR-RED). For these
techniques, we average the results over 25 trials. In each trial, we automatically
terminate the ensemble process after 30 stable iterations have elapsed or when
Tmaz = 250 ensemble members have been generated. As a baseline comparison,
we also include two base clustering algorithms: k-means with cosine similarity
(KM) and adjusted kernel k-means using a normalised linear kernel (AA). For
these experiments, we performed random initialisation and averaged the results
over 250 trials to compensate for the inherent instability of both algorithms. In
all cases, we set the number of clusters k to correspond to the number of natural
classes in the data.

4.2 Comparison of Algorithm Accuracy

To evaluate algorithm accuracy, we employ external validation based on the
normalised mutual information (NMI) measure (Strehl & Ghosh, 2002). Table 2
summarises the mean and standard deviation of the NMI scores for the five clus-
tering methods under consideration. On all datasets, the kernel-based ensemble
techniques lead to an improvement over both base clustering algorithms. These
techniques also performed at least as well as correspondence-based ensemble
clustering using standard k-means on the original feature space (COR-KM), and
frequently achieved higher accuracy. We suggest that the applicable of a diago-
nal dominance reduction technique, which limits the influence of self-similarity,
contributes to this improvement. In addition, the results in Table 2 show that in
several cases correspondence clustering after prototype reduction (COR-RED)
performed better than clustering on the full kernel matrix. We suggest that the
use of neighbourhood centroids as prototypes allows the production of a robust
partition that may not be easily obtained by clustering on the full dataset using
standard initialisation strategies. The subsequent application of a full cluster-



Dataset KM AA COR-KM COR-AA COR-RED
bbc 0.81 £ 0.08 | 0.85 £ 0.06 {0.88 + 0.00|0.88 £ 0.00 |0.88 £+ 0.00
bbesport | 0.73 £ 0.10 | 0.80 £+ 0.08 | 0.87 4+ 0.01 | 0.90 + 0.00 | 0.89 £ 0.03
classic 0.70 £ 0.04 | 0.74 £ 0.02 | 0.69 £ 0.00 | 0.75 = 0.00 | 0.75 £+ 0.00
classic3 0.93 £ 0.08 | 0.94 £ 0.06 {0.95 £+ 0.00|0.95 £ 0.00 |0.95 £+ 0.00
cstr 0.69 £ 0.05 | 0.74 £ 0.04 | 0.76 &£ 0.01 | 0.76 £ 0.01 |0.77 £+ 0.03
ngl7 041 £0.12 | 042 £0.13 | 0.47 £0.04 | 0.51 = 0.05 |0.55 £+ 0.04
ng3 0.83 £0.10 | 0.84 £ 0.10 | 0.89 £ 0.00 | 0.90 £ 0.00 |0.91 £ 0.00
reutersb | 0.55 £ 0.07 | 0.59 £ 0.04 | 0.60 = 0.00 | 0.61 £ 0.00 |0.61 £+ 0.01
reviews 0.56 £ 0.08 | 0.58 £ 0.05 |0.61 £ 0.00| 0.61 &= 0.00 |0.61 £+ 0.00
sports 0.62 £ 0.05 | 0.67 £ 0.06 | 0.66 = 0.01 |0.70 £ 0.02 | 0.69 £ 0.02

Table 2. Accuracy (NMI) scores for base and ensemble clustering methods.

ing phase allows this partition to be refined to produce a more accurate final
solution.

Both KM and AA exhibited considerable instability due to the sensitivity of
these algorithms to the choice of initial clusters, which is reflected in the high
deviation scores in Table 2. In contrast, the ensemble methods tend to be far
more robust, frequently producing identical or highly similar partitions. Only in
the case of the bbesport and cstr datasets did the ensemble methods suffer any
noticeable degradation in stability due to prototype reduction. This is likely to
be due to the small size of the datasets, and we suggest that a higher number
of ensemble members may be appropriate for smaller text datasets. As the time
required to generate each member for small datasets is extremely low, this should
not pose a significant problem in practice.

4.3 Comparison of Algorithm Efficiency

Another important aspect of our evaluation was to assess the computational
gains resulting from prototype reduction. Table 3 provides a list of the mean
running times for the ensemble clustering experiments, which were performed
on a Pentium IV 3.4GHz, 2GB RAM running Sun Java 1.5. The cost of the
mapping and refinement procedures in COR-RED has the effect that the com-
putational savings are not as dramatic as those observed by Greene & Cunning-
ham (2006a) in stability analysis. However, the gains afforded by working on a
reduced kernel matrix are still very significant. Only in the case of the classic
dataset did reduction fail to significantly reduce computational cost relative to
the other ensemble techniques. Note that the application of the early termina-
tion technique for correspondence clustering also has a significant influence on
the running times in Table 3.

We did observe that the procedures running on the full n x n kernel matri-
ces (COR-AA) took significantly longer than those performed using standard
k-means, particularly as n increases. This results from the fact that the imple-
mentation of k-means in our toolkit is optimised to take advantage of the sparse
nature of text data. However, we note that this improvement only occurs for
datasets whose term-document matrix consists of at least 98% zero values, and



Dataset COR-KM | COR-AA | COR-RED
bbc 95 215 13
bbcsport 27 34 1
classic 101 6181 157
classic3 32 359 26
cstr 7 14 1
ngl7 85 753 40
ng3 57 485 19
reutersb 40 395 26
reviews 281 1722 81
sports 968 17954 579

Table 3. Mean running times (in seconds) for ensemble clustering procedures.

is specific to the use of sparse matrix storage and the cosine similarity measure.
In contrast, we suggest that the reduced ensemble procedure introduced in this
paper may be used to increase the efficiency of ensemble clustering when applied
to a wide range of data and when using an arbitrary similarity metric. In addi-
tion, further optimisations may be possible for certain types of data when using
a sparse kernel matrix representation.

We note that it is possible to further reduce the computational time of en-
semble generation by using a smaller factor for subsampling (e.g. 3 = 0.4). How-
ever, as discussed by Minaei-Bidgoli et al. (2004), a critical sampling size for
a given dataset is required to match the accuracy afforded by more expensive
bagging generation strategies. For several datasets, using smaller subsamplings
lead to a less accurate consensus clustering and higher instability. Consequently,
we suggest that using prototype reduction with a relatively high sampling rate
(i.e. B = 0.8) represents a pragmatic choice for providing sufficient diversity and
ensuring stability on a range of datasets.

5 Conclusion

In this paper we built upon our previous work by investigating the use of pro-
totype reduction in ensemble clustering. Specifically, we introduced an efficient
method for ensemble clustering based on the use of kernel learning methods and
density-biased prototype reduction. We evaluated this method on real-world text
datasets, where the reduced ensemble clustering process was shown to frequently
afford a significant decrease in running time, while maintaining high clustering
accuracy. In several cases, the proposed method out-performed more computa-
tionally costly ensemble techniques operating on the original data.

While we have applied kernel-based prototype reduction in conjunction with
a correspondence clustering scheme, we suggest that the kernel-based proto-
type reduction may also be useful when employing other ensemble integration
schemes, such as those based on analysing pairwise co-assignments. In future,
we intend to apply these techniques to other domains where ensemble clustering
has previously been applied.
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