
 Coping with Diverse Semantic Models when Routing

Ubiquitous Computing Information
Song Guo, John Keeney, Declan O’Sullivan, David Lewis

Knowledge & Data Engineering Group (KDEG)

Centre for Telecommunications Value Chain Research (CTVR)

School of Computer Science & Statistics, Trinity College, Dublin, Dublin, Ireland.

{gsong | John.Keeney | Declan.OSullivan | Dave.Lewis}@cs.tcd.ie

Abstract - Routing of contextual information within ubiquitous

computing environments is a key challenge that must be tackled

for such environments to be successful. It is accepted that such

routing systems need to cope with mobile and volatile sources

and destinations of contextual information, and semantic-based

publish subscribe systems have been proposed as a means to

support this. However such systems typically assume a common

semantic model underpinning the routing which limits their

ability to cope with heterogeneity. In contrast, the authors have

developed a semantic-based publish subscribe system that is

unique in allowing several semantic models to support routing.

It is known from previous work that the number of semantic

models in memory directly impacts on performance of routing,

and that different loading strategies are needed, the selection of

which is influenced by: the characteristics of the semantic model

itself, the applications using the system and the network

environment. This paper however just focuses on the

experiments that have been undertaken to determine the key

semantic model characteristics that may influence the selection

of which loading strategy to use.

I. INTRODUCTION

This paper is motivated by the challenge of establishing a
common service for delivering context information to context-
aware applications central to pervasive computing. Pervasive
computing aims to support vast volumes of context messages
from a multitude of sensors embedded in the fabric of
everyday life reporting upon location, temperature, sound
levels, RFID sensing to name but a few. Any scalable context
delivery system must ensure the accurate delivery of context
events to the consumers that require them.

There are a number of major challenges in distributing
such contextual knowledge. The heterogeneity of contextual
information means elements increasingly need to gather and
pass contextual information to and from elements of different
and possibly unknown types. The rapid evolution of sensors,
actuators and applications leads to uncertainty about the type
of contextual information that an element will gather, provide,
route or use in the future. A volatile or mobile peer set means
that a given element will need to gather or route contextual
information to or from a frequently changing set of elements.
These issues will lead to a level of heterogeneity that prevents
context consumers accurately forming queries to match
possibly unknown forms of relevant context events.

To address these challenges we adopt the Publish-
Subscribe (Pub-Sub) paradigm [1] for the distribution of

context information. The elements requiring contextual
information express an interest through a subscription which is
matched to messages published by other elements holding that
type of information as it changes. Pub-Sub systems are already
used for loosely coupled communication in a variety of
applications. However, existing Pub-Sub systems require
agreements on message types between the developers of
publishing and subscribing applications. This places severe
restrictions on the heterogeneity and dynamism of the
information elements that can be exchanged. One solution to
this is a Pub-Sub system that filters events based on matching
client subscriptions to message attributes rather than the full
message type, a technique known as content based networking.
Content-Based Networks (CBN) thus facilitate still looser
coupling between producer and consumer applications than
Pub-Sub. Several CBN solutions and prototypes exist, e.g. [2]
[3] [4] [5] [6]. However, widespread CBN deployments have
been slow to emerge. This is partly due to the difficulty in
reaching a general compromise between the expressiveness of
event types and subscription filters and the need both to match
these efficiently at CBN nodes. This falls well short of
supporting the heterogeneity and flexibility that ubiquitous
computing elements and applications require. Selecting a more
expressive language involves a difficult trade-off, since higher
level features, e.g. set functions, introduce more complexity
into a CBN node, and may only be of use to a subset of
applications.

Increasingly, researchers are turning to the use of ontology-
based semantics to address this issue. The standardisation of
ontology languages by the Semantic Web initiative at the
World Wide Web Consortium (W3C) [7] has spurred an
increasing number of researchers to use ontology-based
semantics to support interoperability in heterogeneous and
evolving systems [8] [9] [10]. A CBN based on messages
containing semantic mark-up and queries is potentially far
more flexible, open and reusable to new applications. We call
such a semantic-based CBN a Knowledge-Based Network
(KBN).

In this paper we focus on the problem where semantically
enhanced messages may have been created using different
knowledge bases (ontologies) to describe those semantics. We
first provide more background on knowledge based
networking and outline a number of strategies to deal with this
issue. The remaining sections identify and evaluate the
semantic characteristics and semantic reasoning requirements
that influence the selection of one of these strategies.

II. BACKGROUND

A. Knowledge Based Network

Knowledge-based networking involves the forwarding of
messages across a network based on some semantics of the
data and associated meta data of the message content. In
previous papers [11] [12] [13] we have described a semantic-
based CBN called the Knowledge Based Network (KBN).
Producers of knowledge express the semantics of their
available information based on an ontological representation of
that information. Consumers express subscriptions upon that
information as simple semantic queries. This approach
provides loose semantic coupling between applications, which
is vital as new waves of applications increasingly rely on using
the application information, context and services offered by
existing heterogeneous distributed applications. The particular
flavour [14] of KBN which is investigated in this paper is an
extension of Siena [2], which is an implementation of CBN
middleware.

The use of an ontology is the key factor for enabling the
semantic description of knowledge provided, queried and
being routed around the network in KBN. It allows
communication and knowledge sharing among distributed
applications, by providing a semantically rich description and a
common understanding of a domain of interest.

Producers and consumers express the semantics of their
publications and subscriptions according to some shared
ontology. This same ontology is then used by the KBN routers
to efficiently route publications towards subscribers that have
lodged subscriptions that match those publications. However,
given the rapid evolution and dynamism of many distributed
applications, there is increasingly a desire to allow applications
which were designed independently and using different
information structures to communicate that information
without the necessity of custom building gateways. This is
especially true in emerging ad-hoc pervasive computing and
autonomic environments. Therefore, in some cases it is
unreasonable to expect that all of the knowledge producers,
knowledge consumers and knowledge routers have previously
agreed on a single semantic model.

B. Related Work

Currently, a number of solutions utilize ontology
technology in Pub-Sub systems. S-ToPSS [17] is a semantic-
aware content based network, it proposed three approaches to
enhance subscriptions and events semantically, in order to
make the existing centralized syntactic matching algorithm
semantic-aware meanwhile keep efficiency of current event
matching technique. Another ontological pub/sub system
called Ontology-based Pub/Sub system is developed by [8].
Aiming to improve expressiveness of events and subscriptions,
it uses RDF [30] and DAML+OIL [31] techniques to describe
events and subscriptions, where events and subscriptions are
represented as RDF graphs and graph patterns respectively.
[18] developed an independent concept-based layer which is
built between the notification service and the pub/sub
applications to provide a high level interaction among
applications, in order to tackle the problem of event interaction
among heterogeneous applications. Furthermore, our previous

work [19] demonstrated how through the use of ontology and
ontology mapping techniques applications built according to
different standards (CIM [32] and SMI [33] were used) could
interchange fault alarms over a Content Based Network (Elvin)
[3] using an ontology based approach. However all ontological
Pub/Sub Systems introduced above use a single common
ontology to provide a semantically rich description and a
common understanding of a domain among their applications
in comparison to the extended KBN which supports multiple
diverse ontologies.

C. Semantic Mapping in KBN router

In a previous paper [15] we described how we have
extended the KBN so that it can cope with the situation where
applications may be using multiple diverse ontologies. The
incorporation of semantic interoperability within the KBN
routers means that applications that subscribe to information
according to one ontology can expect to receive information
published according to a different ontology, if there exists a
mapping between the ontologies. This feature then lowers the
barrier for participation by applications in any particular KBN.
Although it will potentially increase the workload of an
individual KBN router the impact of the extra processing is far
outweighed by the benefits from enabling semantic
interoperability between applications. However, where
possible the dynamic loading, parsing and reasoning of new
ontologies into the KBN router’s knowledge base should be
minimised since this merging of ontologies can be a
particularly expensive operation [16], particularly where this
operation may need to be performed in a number of routers in
the network of KBN routers.

As discussed in the next section we have identified a
number of different strategies to support semantic mappings
between ontologies, while this paper focuses on the semantic
criteria that influence the selection of a strategy to merge these
mappings.

D. Mapping Strategies for KBN Router

If subscriptions or publications contains heterogeneous
semantic content then an individual KBN router will
occasionally encounter an unknown concept (or property) that
is not described in its own knowledge base (routing ontology).
When a KBN router encounters an unknown ontological
concept it should browse its set of semantic mappings to
determine if it is able to handle that unknown concept. Since
this operation may need to be performed on-the-fly, and may
be a potentially expensive operation, there exists a number of
different strategies to do this searching and merging of
mappings in an efficient manner. Currently there four
strategies available to incorporate semantic mapping
information into the KBN router’s routing ontology as follows:

� The “Every mapping file” Strategy: allows the router to
load all available mappings and imported ontologies into
its routing ontology at once. This strategy maximises the
exploration of mappings to tackle the unknown data
problem.

� The “Appropriate mapping file” Strategy: the KBN
router checks mapping files available and merges

appropriate mapping ontologies, which contain at least
one concept used by the conflicting subscription or
notification

� The “Appropriate individual mapping” Strategy:
checks the mappings and merges only the appropriate
individual mappings into the router’s routing ontology
rather than the whole mapping file as in the second
strategy

� The “Appropriate & reference” strategy: this strategy
is similar to the third strategy above, however, unloaded
ontologies referred to in the mapping may also be loaded,
depending on the combination of mapping relations found,
and the operator to be applied to the unknown concept.

The following section focuses on the conditions that
influence the selection of one of these strategies to incorporate
semantic mappings.

III. INFLUENCES ON STRATEGY SELECTION

Different KBN routers could store different routing
ontologies along with different numbers of mapping ontologies.
This can cause significantly different repercussions on the
reasoning performance of a KBN router executing a specific
strategy to deal with unknown data. For instance, the “every
mapping file” strategy is well-suited for the routers which
store a small number of mapping ontologies, whereas
strategies that do not import some of the ontologies referenced
by mappings are well suited for the routers with large number
of ontologies. Furthermore, the strategies that import
referenced ontologies are preferable to the large-scale
environment where the occurrence of unknown data is high. It
is noticed that in a small scale scenario, it may be possible to
examine the application running over the KBN to statically
determine which strategy is most appropriate. However, in a
large scale deployment, or where the ontologies stored in KBN
and applications using the KBN may change, then it is
necessary to dynamically manage and adapt which strategy is
most appropriate. Hence, different mapping strategies can be
configured in different KBN routers depending on the
characteristics of ontologies stored in each KBN router, the
type of application operating over the KBN, and the network
environmental state.

Firstly, ontology characteristics that may impact strategy
selection at a router are: the size and complexity of the
applications’ ontologies, routers’ ontologies, mappings and
referenced ontologies; the number of imported ontologies in a
mapping file; the ontological mapping operators used in the
mapping files; and the concept’s position in the ontology’s
class hierarchy tree.

Secondly, the application characteristics that may impact
strategy selection at an individual router are: the rate of
publications and subscriptions and their active/inactive
duration; the fault tolerance capability of KBN to respond
gracefully to an mapping failure (e.g. a mapping is missed so
an unknown concept or property remains unknown so cannot
be routed correctly); the tolerance of application to handle
false positive or false negative subscription matches; etc.

Finally, the environmental states that may impact strategy
selection at an individual router are: the network scale, where a
KBN deployment can range from enterprise scale to internet-
scale; memory resources of an individual router; and the
number of mapping ontologies stored in each KBN router.

Given different possible mapping strategies, our recent
research has focussed on identifying which of the ontology,
application and environmental characteristics mentioned above
will be important in influencing strategy selection and what
that influence might be with a view to building a decision
making component to support strategy selection. However, due
to space constraints this paper will focus purely on identifying
the ontology characteristics that will be important for strategy
selection.

IV. ONTOLOGY CHARACTERISTICS

An ontology consists of classes and properties. Classes
describe the characteristics or concepts of individual things
within the ontology, while properties describe relationships
between or about things. The class hierarchy tree in ontology is
a set of concepts with equivalence or sub-/super-class semantic
relationships between them, thus it is organised as a class
taxonomy. Due to the formal nature of how many ontologies
are specified it is possible to perform some reasoning over the
classes and their properties to correctly derive this class
hierarchy (classification or TBox reasoning). The root node is
semantically the most generic class; whereas the leaves are the
most specific classes. A sub-class is said to be subsumed by its
super-classes, while a class subsumes its subclasses.

From a state of the art survey [20] [21] [22] [23] most
researchers have taken the number of classes, properties and
individuals along with the languages that are used to describe
an ontology, as ontology characteristics to evaluate ontology
reasoning. The results of such research have shown that these
simple ontology characteristics are reasonable indicators with
respect to reasoning performance. For instance, the number of
classes and properties of an ontology influences the time for a
reasoner to compute TBox classification (arranging the classes
and properties into their reasoned hierarchy), while the number
of individuals determines the amount of ABox realisation
(finding the types of an individual, in particular its most
specific type). In our work however, we were interested in
exploring a wider set of ontology characteristics given that the
KBN router’s reasoning performance will be influenced by
having to cope with several ontologies as opposed to just one
ontology at a time. In order to do this, we designed an
experiment to explore what these ontology characteristics
might be.

The first hypothesis for the experiment was that size and
expressivity of an individual ontology is a good indicator of
the reasoning overhead required for that ontology.

The second hypothesis was that we could predict or bound
the reasoning overhead for a merged ontology from the
reasoning overheads of its constituent individual ontologies.
This would help us select appropriate strategy to efficiently
tackle heterogeneous data.

The third hypothesis was that different ontological
operators used in the mappings would not lead to significantly
different reasoning overheads in a merged ontology. The
mapping operators that we consider in this work are rather
restrictive, i.e., that a class (or property) in one ontology be
equivalent to or be a sub-/super-class (or property) in another
ontology. For instance, given a mapping where the equivalence
operator is applied to link two different classes in different
ontologies the reasoning requirement for that merged ontology
is similar to the situation where a sub-class mapping operator
is used. If the mapping operator does impact performance then
we may need to include it as a factor in our strategy selection.

The fourth hypothesis was that the positions of the classes
within the class hierarchy trees of the constituent ontologies
will have little effect on the reasoning overhead of the merged
ontology. Figure 1 shows a concrete example: concept a (root
node in ont1) and y (middle node in ont2) are the mapped
classes in a mapping ontology m1 that only contains this one
mapping. Assuming there is another mapping ontology m2 that
only specifies that classes a (root node in ont1) and x (root
node in ont2) are mapped, would m2 have more or less
reasoning overhead than m1, if the same ontological mapping
operator being used?

Figure 1. Illustration of classes positions in class hierarchical tree

V. EXPERIMENTAL METHOD

Three types of ontologies were used in the experiment: a
routing ontology that is already loaded by a router and used to
match and route publications and subscriptions; a number of
referenced ontologies that contain definitions for classes or
properties which are not described in the routing ontology; and
a number of mapping ontologies that each contain semantic
mappings between classes or properties in the routing ontology
and referenced ontologies. When a mapping and a referenced
ontology is incorporated into the routing ontology we use the
term merged ontology to refer to the resulting ontology. We
used ontologies from the semantic web research community as
the routing and referenced ontologies in our experiment and
manually created the mapping ontologies. These ontologies are
discussed in section A below and the URLs for these
ontologies can be found in Appendix 1. In the experiments, we
measured the reasoning overhead of the ontologies
individually and afterwards the reasoning overhead of the
merged ontology. The reasoning overhead metrics used are

described in section B. The experimental setup is discussed in
section C.

A. Test Ontologies

1) Routing and Referenced Ontologies used
14 commonly available semantic web ontologies were used

for our experiments. The selection of these ontologies was
motivated by the fact that the ontologies are created by
different people with diverse technical backgrounds. In this
sense, the ontologies can be considered as representative of the
natural range and diversity of ontologies that will be expected
in a ubiquitous computing environment. Secondly, the
ontologies were chosen in order to reflect a range of
expressiveness

1
 and ontology sizes, from ontologies with small

number of statements to ontologies with large number of
statements. [24] indicates that normally the smallest ontologies
has less than 100 concepts, medium ontologies has between
100 and 1000 concepts, and large ontologies has more than
1000 concepts. However, in our experiment, these ontologies
are categorised into four sets according to the number of
statements that are the basic elements in ontology terminology,
as the number of statements can more precisely reflect the size
of ontology than the number of concepts. Table 1 summarises
the ontologies according to the ontology characteristics of
interest:

TABLE 1. INDIVIDUAL ONTOLOGY CHARACTERISTICS

Name Number of

Statements

DL Expressivity Imports Annotation

Teams 262 ALCIF 0

Foodswapper 350 ALC(D) 0

University 453 ALCR+OIF(D) 0

Beer 576 ALHIF(D) 0

Foaf 808 ALCHIF(D) 0

Small ontologies

where number of

statements is less

than 1,000

Mad_cow 1,012 ALCHOIN(D) 0

Mindswappers 2,303 ALCHIF(D) 3

Pizza 3,201 ALCF(D) 1

Transportation 4,847 ALH(D) 0

Medium

ontologies where

number of stmts

is between 1,000

and 5,000

CongoService 5,199 ALCR+HOIF(D) 12

Economy 5,489 ALH(D) 0

Wine 5,710 ALCR+HOIF(D) 1

Large ontologies

where num of

stmts is between

5,000 and 10,000

MGED 14,501 AL(D) 0

Galen 64,673 ALCR+HF 0

Very large

ontologies where
num of stmts is

greater than

10,000

B. Created Merged Ontologies

15 example merged ontologies were manually created by
the authors. For the purpose of comparing the reasoning
overhead of each merged ontology with the reasoning

1 Depending on the expressiveness of an ontology some of the

following letters can be used to denote the presence of description logic

features in the ontology, thereby capturing its reasoning complexity:
AL - Attribute Logic: Conjunction, Universal Value Restriction, Limited

Existential Quantification; C - Complement (together with AL allows

Disjunction, Full Existential Quantification); R - Role Transitivity; H - Role

Hierarchy; I - Role Inverse; O - Nominal; N - unqualified number restrictions;

Q – qualified number restrictions; F - only functional number restrictions; (D)

– Datatypes.

a

b c

x

y z

w

Ont:1(loaded) Ont:2(not loaded)

a

b c

x

y z

w

Ont:1(loaded) Ont:2(not loaded)

a

b c

x

y z

w

Ont:1(loaded) Ont:2(not loaded)

overhead of its constituent individual ontologies. An individual
merged ontology has only two mapped classes and two
constituent individual ontologies that are randomly chosen
from the ontologies described above. The characteristics of
the merged ontologies that were created are shown in Table 2:

TABLE 2. CHARACTERISTICS OF ONTOLOGIES MERGED USING
MANUALLY CREATED MAPPINGS

Name Number of

Statements

DL Expressivity Constituent

Ontologies

FoodUniversity 695 ALCHOIN(D) Foodswap &

University

FoafFood 1,077 ALCHIF(D) Foaf & Foodswap

FoafUniversity 1,157 ALCR+HOIF(D) Foaf & University

BeerMadcow 1,485 ALCHOIN(D) Beer & Mad_cow

FoafMadcow 1,716 ALCHOIN(D) Foaf & Mad_cow

BeerMindswaper 2,774 ALCHIF(D) Beer & Mindswappers

FoodPizza 3,460 ALCF(D) Foodswap & Pizza

FoafPizza 3,901 ALCHIF(D) Foaf & Pizza

BeerTransport 5,320 ALHIF(D) Beer & Transportation

EconomyFood 5,374 ALCH(D) Economy &

Foodswapper

EconomyBeer 5,964 ALHIF(D) Economy & Beer

EconomyTransport 10,239 ALH(D) Economy &

Transportation

EconomyCongo 10,599 ALCR+ HOIF(D) Economy &

CongoService

EconomyWine 12,336 ALCR+ HOIF(D) Economy & Wine

EconomyMGED 19,882 ALH(D) Economy & MGED

In order to investigate the effect of mapping operators and
mapping positions upon performance, 10 mapping ontologies
were created by altering some of the merged ontologies above
to include different mapping operators and applying different
mapping positions. The equivalence, sub-class, super-class
mapping operators were all applied to map between classes in
the two source ontologies.

In order to evaluate the impact of class position on
reasoning performance, different classes from the top (T),
middle (M) and bottom (B) of the class hierarchy trees were
mapped using the sub-class ontological mapping operator. The
class position we measured are shown as following:

• T

Sub

T CBCA →← : CA and CB refer to classes in two

different ontologies while the sub-script T means that the

class is at the top (root) of the ontology’s class hierarchy.

→←
Sub

 is the sub-class mapping operator used to link

mapped classes

• B

Sub

T CBCA →← : Here the sub-script B means that the

class is at the bottom (leaf) of the ontology’s class

hierarchy.

• B

Sub

B CBCA →← : Both mapped classes are leaf nodes

• M

Sub

M CBCA →← : Here the sub-script M means that

the class is at the middle of the ontology’s class hierarchy.

Both mapped classes are the intermediate nodes

C. Metrics used for measuring Reasoning Overhead

Based on previous work [13] [16] the following
observations are of particular importance: loadtime reasoning

in comparison to runtime querying is relatively expensive; the
performance of different reasoners, and the reasoning load,
will also change in a non-linear fashion depending on the size
and expressiveness of the ontologies used and the level of
ontology language used (e.g. OWL-Lite vs. OWL-DL) [21]
[22] [25] [26] [27]. These observations are particularly
important if ontologies are added or removed dynamically, as
would be typical in a ubiquitous computing environment
where applications will join and depart from the network. It
was also observed that XML parsing time of the RDF was
inconsistent and unpredictable and so was omitted from our
metrics. Table 3 summarises the reasoning metrics used.

TABLE 3. PROVIDES A SUMMARY OF THE REASONING
METRICS

Measure Metrics Description

Loadtime

without parsing

time

Is given as the time taken for different reasoners to

load, and check the ontology, combined with the time

taken to perform TBox classification, perform ABox

realisation and an initial query of all concepts

Loading time The time takes to load ontologies into reasoner

Consistency

checking time

Consistency checking ensures that an ontology does

not contain any contradictory facts. In DL

terminology, this is the operation to check the

consistency of an ABox with respect to a TBox

Classification
time

Classification can be defined as the computation of
the subsumption hierarchy for classes and properties

Realisation time

Realisation finds the most specific classes that an

individual belongs to, in other words computes the

direct types for each of the individuals. It should be

done after classification since direct types are defined

with respect to a class hierarchy.

Concept
querying time

First time to list all classes of an ontology

Runtime
The time taken to perform subsequent queries for the

set of concepts in ontologies

D. Experimental setup

A previously implemented KBN router [14] was extended
to implement all four of the mapping strategies discussed
earlier in section section II.D. The Pellet reasoner [28] version
1.3. beta was embedded into the KBN router. Jena [29] was
used throughout to access the ontologies and to measure the
reasoning performance of Pellet. In order to minimise the
adverse effect of inconsistent network connection speeds on
reasoning performance all tested ontologies and their imported
ontologies were cached locally on the machine running the
tests. All tests were untaken on a Dell Inspiron 9300 laptop
with 1.73 GHz Intel processor, 2GB of RAM, running
Windows XP Service Pack 2. For Java-based tools, Sun’s JDK
1.6.0 was used. All tests were run at least 20 times to provide
statistically appropriate averages.

VI. EVALUATION

To address our first hypothesis we reasoned the selected
source ontologies to see how reasoning performance was
dependent on both the number of statements and the
expressivity of the different ontologies, as shown in section A
below.

To test our second hypothesis, we compared the reasoning
overhead of a merged ontology with the combined reasoning

overhead of its constituent individual ontologies, and this
evaluation is discussed in section B. Here we examined if we
could predict the reasoning overhead of a merged ontology
given the reasoning overhead of the ontologies that made up
that merged ontology.

Our third hypothesis was that the mapping operator used
had little effect on the reasoning overhead of a merged
ontology. Here we altered operators within mappings, and the
results are presented in section C.

The findings from examining our fourth hypothesis, which
stated that the hierarchical position of the classes used in
mappings had little effect on the reasoning overhead of the
merged ontology, are discussed in section D. Here we mapped
classes from different positions within the class hierarchy of
their individual ontologies and compared the reasoning
overheads of the resulting merged ontologies.

A. Individual Ontology Reasoning

Figure 2 presents the reasoning overhead calculated on the
individual ontologies. In Figure 2 the ontologies are arranged
from smallest to largest (left to right) with the number of
statements in each ontology given in parenthesis after its name.
As can be seen from the times to load and reason and runtime
performances of the different ontologies in Figure 2 (and with
reference to Table 1), the reasoning overhead was greater for
the larger ontologies. This confirms that reasoning
performance is tied to the number of statements. However it
was also observed that, although wine ontology is not the
biggest one in size, it has the largest reasoning overhead. This
is because it has the most complex structure and DL
expressivity (see its column in Table 1) among tested
ontologies. Given these reasoning times and the ontology DL
expressivity information, an empirical finding is that both DL
expressivity and ontology size impacts on reasoning
performance, not just ontology size.

Figure 2. The effect of ontology size on reasoning time

B. Merged Ontology Reasoning

We compared the reasoning times of the merged ontologies
shown in Table 2, with the combined time to reason over the

two ontologies that constituted it. As shown in Table 3a,
compared with the combined reasoning overhead of the two
constituent individual ontologies in individual merged
ontologies, we observed that most of the merged ontologies
required less reasoning time. The bolded lines are cases where
this is not the case. When the reasoning times were analysed in
detail, most of the ontologies showed lower times for loading,
classification (TBox), and initial class lookup. The times were
very similar for consistency checking. However the realisation
times (ABox) were higher for all merged ontologies. The most
likely reason for this increased realisation time is that as the
number of individuals increased in the merged ontologies and
the reasoner spends more time searching the larger and more
complex merged class hierarchical tree to find the proper class
that the individuals belongs to. Another finding of this
experiment is that the merged ontologies that take significantly
longer to reason than their constituents have either a very large
number of statements or most complex DL expressivity. For
instance, the second largest and most complex merged
ontology in our experiment, is the one which imported the
large economy and complex wine ontologies. This also
confirms our previous analysis discussed in section A on the
sensitivity of reasoning performance to combination of
ontology size and DL expressivity. Note from Table 2, that the
DL expressivity of merged ontologies can be said to be the
union of the expressivities of their constituent ontologies.
Finally, we found that the degree of reduction of reasoning
overhead on two similarly expressive and sized merged
ontologies are comparable.

From our experience of using the KBN in different
application scenarios, the occurrence of unknown concepts or
properties is much rarer than the number of times that a routing
ontology would be queried. Therefore we consider runtime
query time to be an important aspect of KBN performance.
Table 3b shows the comparison of runtime querying over
merged ontologies and their constituent ontologies. Again it
was found that the largest ontologies took longer to query.

TABLE 3a. COMPARING THE REASONING TIME OF A MERGED
ONTOLOGY WITH THE REASONING TIME OF ITS CONSTITUENT
ONTOLOGIES

Merged Ontology

name

Reasoning

time: OntA

milliseconds

: ms

Reasoning time:

OntB

milliseconds: ms

Reasoning time:

Merged

milliseconds: ms

FoodUniversity 195 148 249

FoafFood 161 195 234

FoafUniversity 161 148 215

BeerMadcow 199 538 638

FoafMadcow 161 538 600

BeerMindswaper 199 555 595

FoodPizza 195 736 827

FoafPizza 161 736 890

BeerTransport 199 1,265 1,655

EconomyFood 2,051 195 2,263

EconomyBeer 2,051 199 2,500

EconomyTransport 2,051 1,265 4,026

EconomyCongo 2,051 1,695 3,586

EconomyWine 2,051 52,379 90,419,878

EconomyMGED 2,051 4,122 9,575,935

TABLE 3b. COMPARING THE RUNTIME QUERY TIME OF A
MERGED ONTOLOGY WITH THE RUNTIME QUERY TIME OF ITS
CONSTITUENT ONTOLOGIES

Merged Ontology

name

Runtime query

time: OntA

microseconds:

µs

Runtime query

time: OntB

microseconds:

µs

Runtime query

time: Merged

microseconds: µs

FoodUniversity 159 154 254

FoafFood 134 159 172

FoafUniversity 134 154 219

BeerMadcow 304 353 657

FoafMadcow 134 353 304

BeerMindswapper 304 307 456

FoodPizza 159 363 459

FoafPizza 134 363 452

BeerTransport 304 2,383 2,803

EconomyFood 2,158 159 1,950

EconomyBeer 2,158 304 2,205

EconomyTransport 2,158 2,383 8,730

EconomyCongo 2,158 793 2,340

EconomyWine 2,158 610 2,768

EconomyMGED 2,158 2,380 8,697

Coupling our findings from section A and section B above,
we are confident that where the number of statements for each
ontology is relatively low and where the DL expressivity of
these ontologies are not complex we can generally predict that
the reasoning overhead of a merged ontology will be bounded
by the sum of the reasoning overheads of its constituent
ontologies. However, a combination of very large number of
statements or most complex DL expressivity breaks this
prediction. We also found that we could predict the reasoning
overhead of a merged ontology if we already know the
reasoning overhead of a similar merged ontology.

C. Impact of Type of Mapping Operators

As discussed in Section V, the experiment here was
designed to observe the impact that mapping operators may
have on reasoning overhead. Since altering mapping operator
will mainly affect only the structure of TBox classification
hierarchy and ABox realisation (as opposed to loading and
consistency checking), we only take classification and
realisation as the measured metrics in this experiment. Recall
that the three mapping operators involved were the
equivalence, sub-class, and super-class operators, which in
Figure 3 and Figure 4 are represented as EQU, SUB, and SUP
respectively.

From the measurement of classification performance
(Figure 3) and realisation performance (Figure 4), it is unclear
whether any specific operator type has any major impact on
reasoning overhead when compared to the other operators. An
example from the classification timings shown in Figure 3 is
the observation that reasoning with equivalence operator
performs better than the other two operators in the
FoafUniversity ontology. However, in the EconomyTransport
ontology, the equivalence operator requires slightly more
overhead than sub-class operator. As seen in Figure 4, three of
the ten merged selected ontologies performed better with the

equivalence operator. Yet, slightly better performance can be
seen with some of the other operators in some of the merged
ontologies. Overall from our analysis, we concluded that there
is no direct relation between types of operators used in the
mappings and reasoning overhead required to reason the
resulting merged ontology. This candidate characteristic will
not be considered as a factor that will influence mapping
strategies selection.

Figure 3. Classification performance for different operators

Figure 4. Realisation performance for different operators

D. Impact of Position of Concepts used in Mapping

As discussed in Section V, the experiment here was
designed to observe the impact of mapping classes at different
positions in their respective class hierarchies. Again, like the
previous experiment, since selection of classes at different
positions will mainly affect only the structure of TBox
classification hierarchy and ABox realisation, we again only
take classification and realisation as the measured metrics in
this experiment. As discussed in section V we compared when
the same mapping operator (sub-class) was applied to two top-
level classes (TT), a top-level class and a bottom-level class
(TB), two bottom level classes (BB) and two mid-level classes
(MM). The classification and realisation performance results
are presented in Figures 5 and 6 respectively.

Figure 5. Classification performance for different concept positions

Figure 6. Realisation performance for different concept positions

As can be seen from the classification performance (Figure
5) of different class positions there is no appreciable consistent
difference for the different class positions. Observing the
realisation performance (Figure 6), the differing reasoning
performances on different mapped classes coming from
different positions is again not appreciable. For instance, the
mapped classes have almost the same overhead in
EconomyFood, EconomyTransport, EconomyMGED ontologies,
whereas in other ontologies: some TT classes have less
overhead (FoodUniversity); some BB classes lead to better
performance (FoodPizza). Hence we have concluded that the
concept position in class hierarchical tree is not a reliable
characteristic that should be used in mapping strategies
selection.

VII. CONCLUSION

It is very important for a contextual information routing
system to be able to cope with mobile, volatile and
heterogeneous set of context sources and destinations. The
semantic-based publish - subscribe approach enhanced to cope
with several semantic models in routing that is outlined in this
paper has the potential to provide such capability. However for
it to be efficient we need the loading of semantic models to be
configurable depending on ontology, application and network
environment characteristics. To our knowledge, the ability to
configure how semantic models are to be used in routing is

unique. The research undertaken for this paper has helped to
clarify which ontology and mapping characteristics will be
important for configuration and which are not. Namely we
have concluded that the combination of size and expressivity
of ontologies are the important factors for configuration.
Determining which application and network environment
characteristics will be important is more straightforward given
previous research that has been undertaken in these areas. Thus
we are now in a position to design and implement a decision
component based on the characteristics of ontologies,
applications and network that should configure the loading
strategies so that efficient routing can be enabled.

ACKNOWLEDGMENT

This work is funded by Science Foundation Ireland under
Grant No.03/CE3/I405: Centre for Telecommunications
Value-Chain Research (CTVR) and Grant No 05/RFP/CMS014.

REFERENCES

[1] Meier, R., Cahill, V., “Taxonomy of Distributed Event-Based
Programming Systems“, The Computer Journal, volume 48, number 5,
pp 602-626, 2005.

[2] Carzaniga, A., Rosenblum, D. S., Wolf, A. L., “The Design and
Evaluation of a Wide-Area Event Notification Service”, ACM
Transactions on Computer Systems, Vol.19, Issue 3, August, 2001.

[3] Segall, B. et al, “Content-Based Routing in Elvin4”, In Proceedings of
AUUG2K, Canberra, 2000.

[4] Pietzuch, P., Bacon, J., "Peer-to-Peer Overlay Broker Networks in an
Event-Based Middleware". in Proceedings of 2nd International
Workshop on Distributed Event-Based Systems, (DEBS03), at ACM
SIGMOD/PODS Conference, California, June, 2003.

[5] Chand, R., Felber, P.A., “A Scalable Protocol for Content-Based
Routing in Overlay Networks”, IEEE International Symposium on
Network Computing and Applications, Cambridge, MA , April 2003.

[6] Strom et al., “Gryphon: An Information Flow Based Approach to
Message Brokering“, In Intl. Symp. on Software Reliability Engineering
1998.

[7] Berners-Lee, T., Hendler, J., Lassila, O., “The Semantic Web”,
Scientific American, May 2001.

[8] Wang, J., Jin, B., Li, J., “An ontology-based publish/subscribe system”.
In Proceedings of the 5th ACM/IFIP/USENIX international Conference
on Middleware, 2004.

[9] Masuoka, R., Labrou, Yannis, Parsia, B., Sirin, E., “Ontology-Enabled
Pervasive Computing Applications”, IEEE Intelligent Systems, Sep-Oct
2004, pp 68-72.

[10] Belecheanu, R., Jawaheer, G., Hoskins, A., McCann, J.A., Payne, T.,
“Semantic web meetings autonomic ubicomp” in Proceedings of the
Workshop on Semantic Web Technology for Mobile and Ubiquitous
Applications, Hiroshima, Japan, 2004.

[11] Lynch, D., Keeney, J., Lewis, D., O'Sullivan, D., "A Proactive approach
to Semantically Oriented Service Discovery", in Proceedings of the
Second Workshop on Innovations in Web Infrastructure (IWI 2006),
Co-located with the 15th International World-Wide Web Conference,
Edinburgh, Scotland. May 2006.

[12] Keeney, J., Lewis, D., O'Sullivan, D., "Benchmarking Knowledge-
based Context Delivery Systems", in Proceedings of the International
Conference on Autonomic and Autonomous Systems (ICAS 06),
Silicon Valley, USA, July 19-21, 2006.

[13] Keeney, J., Lynch, D., Lewis, D., O’Sullivan, D., "On the Role of
Ontological Semantics in Routing Contextual Knowledge in Highly
Distributed Autonomic Systems",Tech. Report (TCD-CS-2006-15),
Dept of Computer Science, Trinity College Dublin. 2006.

[14] Keeney, J., Lewis, D., O'Sullivan, D., "Ontological Semantics for
Distributing Contextual Knowledge in Highly Distributed Autonomic

Systems", Journal of Network and System Management, Special Issue
on Autonomic Pervasive and Context-aware Systems, Volume 15,
Number 1, March, 2007.

[15] Guo, S., Keeney, J., O’Sullivan, D., Lewis, D., “Adaptive Semantic
Interoperability Strategies for Knowledge Based Networking”, in
Proceddings of the International Workshop on Scalable Semantic Web
Knowledge Base Systems, (SSWS 2007), at OTM 2007, Vilamoura,
Portugal, 21-29 Nov, 2007.

[16] Lewis, D., Keeney, J., O'Sullivan, D., Guo, S., "Towards a Managed
Extensible Control Plane for Knowledge-Based Networking", in
Proceedings of the 17th IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management Large Scale
Management, (DSOM 2006), at Manweek 2006, Dublin, Ireland, 23-25
October, 2006.

[17] Petrovic, M., Burcea, I., Jacobsen, H.-A., “S-ToPSS: Semantic Toronto
Publish/Subscribe System”. In Proceeding of the International
Conference on Very Large Databases (VLDB03), Berlin, Germany, 9 –
12 September, 2003.

[18] Cilia, M., Antollini, M., Bornhovd, C., And Buchmann, A, “Dealing
with Heterogeneous Data in Pub/Sub systems: The Concept-Based
Approach”, in Proceedings of 3rd International Workshop on
Distributed Event-Based Systems, (DEBS04), Edinburgh, Scotland, 24
– 25 May 2004.

[19] Keeney, J., Lewis, D., O'Sullivan, D., Roelens, A., Boran, A.,
Richardson, R., "Runtime Semantic Interoperability for Gathering
Ontology-based Network Context", in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS 2006),
Vancouver, Canada. 3-7 April, 2006.

[20] Lefort, L., Taylor, K., Ratcliffe, D., “Towards Scalable Ontology
Engineering Patterns: Lessons Learned from an Experiment based on
W3C's Part-whole Guidelines “, in Proceedings of the 2nd Australasian
Workshop on Advances in Ontologies, (AOW 2006), Hobart, Australia,
5 December, 2006.

[21] Pellet Performance, www.mindswap.org/2003/pellet/performance.shtml

[22] Motik, B., Sattler, U., “Practical DL Reasoning over Large Aboxes with
KAON2”, found at:
http://www.fzi.de/KCMS/kcms_file.php?action=link&id=580, expected
publication 2006.

[23] Tempich, C., Volz, R.: “Towards a Benchmark for Semantic Web
Reasoners - an Analysis of the DAML Ontology Library”, in
Proceedings of Evaluation of Ontology-based Tools, (EON2003), at 2nd
International Semantic Web Conference (ISWC 2003), Florida, USA,
20-23 October, 2003.

[24] Gardoso, J., “The Semantic Web Vision: Where are We?”, IEEE
Intelligent System, Sept-Oct 2007, pp.22-26, 2007.

[25] Pan, Z., “Benchmarking DL Reasoners Using Realistic Ontologies”, in
Proceeding of the International Workshop on OWL: Experience and
Directions, (OWLED2005), Galway, Ireland. 11-12 November, 2005.

[26] Guo, Y., Heflin, J., Pan, Z., “An Evaluation of Knowledge Base
Systems for Large OWL Datasets”, Technical Report, CSE Dept., Leigh
University, 2004.

[27] Guo, Y., Heflin, J., “LUBM: A Benchmark for OWL Knowledge Base
Systems”, Journal of Web Semantics, Volume 3, Issue 2, 2005.

[28] Parsia, B., Sirin, E., “Pellet: An OWL-DL Reasoner”, in Proceddings of
3rd International Semantic Web Conference, (ISWC 2004), Hiroshima,
Japan, 7-11 November, 2004.

[29] Carroll, J., Dickinson, I., Dollin, C., “Jena: Implementing the Semantic
Web Recommendations”, in Proceddings of the 13th International
World Wide Web Conference, (WWW 2004), New York, 17-22 May,
2004. http://jena.sourceforge.net/

[30] Resource Description Framework: http://www.w3.org/RDF/

[31] DAML+OIL: http://www.w3.org/TR/daml+oil-reference

[32] Common Information Model v 2.10.1, DMTF 2005:
http://www.dmtf.org/standards/cim/cim_schema_v2101

[33] Structure of Management Information:
http://en.wikipedia.org/wiki/Structure_of_Management_Information

APPENDIX 1

Web ontologies:

Teams:
http://owl.man.ac.uk/2005/sssw/teams

Foodswap:
http://www.mindswap.org/dav/ontologies/commonsense/food/foodswap.o
wl

University:
http://www.mindswap.org/ontologies/debugging/university.owl

Beer:
http://www.purl.org/net/ontology/beer

Foaf:
http://xmlns.com/foaf/0.1/index.rdf

Mad_cow:
http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/mad_cows.owl

Mindswapper:
http://www.mindswap.org/2004/owl/mindswappers

Pizza:
http://www.co-ode.org/ontologies/pizza/pizza_20041007.owl

Transpotation:
http://reliant.teknowledge.com/DAML/Transportation.owl

CongoService:
http://www.daml.org/services/owl-s/1.1/CongoService.owl

Economy:
http://reliant.teknowledge.com/DAML/Economy.owl

Wine:
http://www.w3.org/2001/sw/WebOnt/guide-src/wine

MGED:
http://mged.sourceforge.net/ontologies/MGEDOntology.daml

Galen:
http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/galen.owl

Mapping ontologies:

FoodUniversity:
https://www.cs.tcd.ie/~gsong/ontologies/test/UniversityFoodMapping_Test
.owl

FoafFood:
https://www.cs.tcd.ie/~gsong/ontologies/test/foaffoodMapping_Test.owl

FoafUniversity:
https://www.cs.tcd.ie/~gsong/ontologies/test/foafuniversityMapping_Test.
owl

BeerMadcow:
https://www.cs.tcd.ie/~gsong/ontologies/test/beermadMapping_Test.owl

EconomyMGED:
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyMGEDMapping_Te
st.owl

BeerMindswap:
https://www.cs.tcd.ie/~gsong/ontologies/test/beermandswapperMapping_T
est.owl

FoodPizza:
https://www.cs.tcd.ie/~gsong/ontologies/test/FoodswapPizzaMapping_Test
.owl

FoafPizza:
https://www.cs.tcd.ie/~gsong/ontologies/test/foafPizzaMapping_Test.owl

BeerTransport:
https://www.cs.tcd.ie/~gsong/ontologies/test/beertransportmapping_test.o
wl

EconomyFood:
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyFoodMapping_Test.
owl

EconomyBeer::
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyBeerMapping_Test.
owl

EconomyTransport:
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyTransportationMapp
ing_Test.owl

EconomyCongo:
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyCongoMapping_Tes
t.owl

EconomyWine:
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyWineMapping_Test.
owl

