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Abstract - Routing of contextual information within ubiquitous 

computing environments is a key challenge that must be tackled 

for such environments to be successful. It is accepted that such 

routing systems need to cope with mobile and volatile sources 

and destinations of contextual information, and semantic-based 

publish subscribe systems have been proposed as a means to 

support this. However such systems typically assume a common 

semantic model underpinning the routing which limits their 

ability to cope with heterogeneity. In contrast, the authors have 

developed a semantic-based publish subscribe system that is 

unique in allowing several semantic models to support routing.  

It is known from previous work that the number of semantic 

models in memory directly impacts on performance of routing, 

and that different loading strategies are needed, the selection of 

which is influenced by: the characteristics of the semantic model 

itself, the applications using the system and the network 

environment. This paper however just focuses on the 

experiments that have been undertaken to determine the key 

semantic model characteristics that may influence the selection 

of which loading strategy to use.  

I. INTRODUCTION 

This paper is motivated by the challenge of establishing a 
common service for delivering context information to context-
aware applications central to pervasive computing. Pervasive 
computing aims to support vast volumes of context messages 
from a multitude of sensors embedded in the fabric of 
everyday life reporting upon location, temperature, sound 
levels, RFID sensing to name but a few. Any scalable context 
delivery system must ensure the accurate delivery of context 
events to the consumers that require them.  

There are a number of major challenges in distributing 
such contextual knowledge. The heterogeneity of contextual 
information means elements increasingly need to gather and 
pass contextual information to and from elements of different 
and possibly unknown types. The rapid evolution of sensors, 
actuators and applications leads to uncertainty about the type 
of contextual information that an element will gather, provide, 
route or use in the future. A volatile or mobile peer set means 
that a given element will need to gather or route contextual 
information to or from a frequently changing set of elements. 
These issues will lead to a level of heterogeneity that prevents 
context consumers accurately forming queries to match 
possibly unknown forms of relevant context events.  

To address these challenges we adopt the Publish-
Subscribe (Pub-Sub) paradigm [1] for the distribution of 

context information. The elements requiring contextual 
information express an interest through a subscription which is 
matched to messages published by other elements holding that 
type of information as it changes. Pub-Sub systems are already 
used for loosely coupled communication in a variety of 
applications. However, existing Pub-Sub systems require 
agreements on message types between the developers of 
publishing and subscribing applications. This places severe 
restrictions on the heterogeneity and dynamism of the 
information elements that can be exchanged. One solution to 
this is a Pub-Sub system that filters events based on matching 
client subscriptions to message attributes rather than the full 
message type, a technique known as content based networking. 
Content-Based Networks (CBN) thus facilitate still looser 
coupling between producer and consumer applications than 
Pub-Sub. Several CBN solutions and prototypes exist, e.g. [2] 
[3] [4] [5] [6]. However, widespread CBN deployments have 
been slow to emerge. This is partly due to the difficulty in 
reaching a general compromise between the expressiveness of 
event types and subscription filters and the need both to match 
these efficiently at CBN nodes. This falls well short of 
supporting the heterogeneity and flexibility that ubiquitous 
computing elements and applications require. Selecting a more 
expressive language involves a difficult trade-off, since higher 
level features, e.g. set functions, introduce more complexity 
into a CBN node, and may only be of use to a subset of 
applications.  

Increasingly, researchers are turning to the use of ontology-
based semantics to address this issue. The standardisation of 
ontology languages by the Semantic Web initiative at the 
World Wide Web Consortium (W3C) [7] has spurred an 
increasing number of researchers to use ontology-based 
semantics to support interoperability in heterogeneous and 
evolving systems [8] [9] [10]. A CBN based on messages 
containing semantic mark-up and queries is potentially far 
more flexible, open and reusable to new applications. We call 
such a semantic-based CBN a Knowledge-Based Network 
(KBN).  

In this paper we focus on the problem where semantically 
enhanced messages may have been created using different 
knowledge bases (ontologies) to describe those semantics. We 
first provide more background on knowledge based 
networking and outline a number of strategies to deal with this 
issue. The remaining sections identify and evaluate the 
semantic characteristics and semantic reasoning requirements 
that influence the selection of one of these strategies.  



II. BACKGROUND 

A. Knowledge Based Network 

Knowledge-based networking involves the forwarding of 
messages across a network based on some semantics of the 
data and associated meta data of the message content. In 
previous papers [11] [12] [13] we have described a semantic-
based CBN called the Knowledge Based Network (KBN). 
Producers of knowledge express the semantics of their 
available information based on an ontological representation of 
that information. Consumers express subscriptions upon that 
information as simple semantic queries. This approach 
provides loose semantic coupling between applications, which 
is vital as new waves of applications increasingly rely on using 
the application information, context and services offered by 
existing heterogeneous distributed applications. The particular 
flavour [14] of KBN which is investigated in this paper is an 
extension of Siena [2], which is an implementation of CBN 
middleware. 

The use of an ontology is the key factor for enabling the 
semantic description of knowledge provided, queried and 
being routed around the network in KBN. It allows 
communication and knowledge sharing among distributed 
applications, by providing a semantically rich description and a 
common understanding of a domain of interest.  

Producers and consumers express the semantics of their 
publications and subscriptions according to some shared 
ontology. This same ontology is then used by the KBN routers 
to efficiently route publications towards subscribers that have 
lodged subscriptions that match those publications. However, 
given the rapid evolution and dynamism of many distributed 
applications, there is increasingly a desire to allow applications 
which were designed independently and using different 
information structures to communicate that information 
without the necessity of custom building gateways. This is 
especially true in emerging ad-hoc pervasive computing and 
autonomic environments. Therefore, in some cases it is 
unreasonable to expect that all of the knowledge producers, 
knowledge consumers and knowledge routers have previously 
agreed on a single semantic model.  

B. Related Work 

Currently, a number of solutions utilize ontology 
technology in Pub-Sub systems. S-ToPSS [17] is a semantic-
aware content based network, it proposed three approaches to 
enhance subscriptions and events semantically, in order to 
make the existing centralized syntactic matching algorithm 
semantic-aware meanwhile keep efficiency of current event 
matching technique. Another ontological pub/sub system 
called Ontology-based Pub/Sub system is developed by [8]. 
Aiming to improve expressiveness of events and subscriptions, 
it uses RDF [30] and DAML+OIL [31] techniques to describe 
events and subscriptions, where events and subscriptions are 
represented as RDF graphs and graph patterns respectively.   
[18] developed an independent concept-based layer which is 
built between the notification service and the pub/sub 
applications to provide a high level interaction among 
applications, in order to tackle the problem of event interaction 
among heterogeneous applications. Furthermore, our previous 

work [19] demonstrated how through the use of ontology and 
ontology mapping techniques applications built according to 
different standards (CIM [32] and SMI [33] were used) could 
interchange fault alarms over a Content Based Network (Elvin) 
[3] using an ontology based approach. However all ontological 
Pub/Sub Systems introduced above use a single common 
ontology to provide a semantically rich description and a 
common understanding of a domain among their applications 
in comparison to the extended KBN which supports multiple 
diverse ontologies. 

C. Semantic Mapping in KBN router 

In a previous paper [15] we described how we have 
extended the KBN so that it can cope with the situation where 
applications may be using multiple diverse ontologies. The 
incorporation of semantic interoperability within the KBN 
routers means that applications that subscribe to information 
according to one ontology can expect to receive information 
published according to a different ontology, if there exists a 
mapping between the ontologies. This feature then lowers the 
barrier for participation by applications in any particular KBN. 
Although it will potentially increase the workload of an 
individual KBN router the impact of the extra processing is far 
outweighed by the benefits from enabling semantic 
interoperability between applications. However, where 
possible the dynamic loading, parsing and reasoning of new 
ontologies into the KBN router’s knowledge base should be 
minimised since this merging of ontologies can be a 
particularly expensive operation [16], particularly where this 
operation may need to be performed in a number of routers in 
the network of KBN routers. 

As discussed in the next section we have identified a 
number of different strategies to support semantic mappings 
between ontologies, while this paper focuses on the semantic 
criteria that influence the selection of a strategy to merge these 
mappings. 

D. Mapping Strategies for KBN Router 

If subscriptions or publications contains heterogeneous 
semantic content then an individual KBN router will 
occasionally encounter an unknown concept (or property) that 
is not described in its own knowledge base (routing ontology). 
When a KBN router encounters an unknown ontological 
concept it should browse its set of semantic mappings to 
determine if it is able to handle that unknown concept. Since 
this operation may need to be performed on-the-fly, and may 
be a potentially expensive operation, there exists a number of 
different strategies to do this searching and merging of 
mappings in an efficient manner. Currently there four 
strategies available to incorporate semantic mapping 
information into the KBN router’s routing ontology as follows:  

� The “Every mapping file” Strategy: allows the router to 
load all available mappings and imported ontologies into 
its routing ontology at once. This strategy maximises the 
exploration of mappings to tackle the unknown data 
problem.  

� The “Appropriate mapping file” Strategy: the KBN 
router checks mapping files available and merges 



appropriate mapping ontologies, which contain at least 
one concept used by the conflicting subscription or 
notification 

� The “Appropriate individual mapping” Strategy: 
checks the mappings and merges only the appropriate 
individual mappings into the router’s routing ontology 
rather than the whole mapping file as in the second 
strategy  

� The “Appropriate & reference” strategy: this strategy 
is similar to the third strategy above, however, unloaded 
ontologies referred to in the mapping may also be loaded, 
depending on the combination of mapping relations found, 
and the operator to be applied to the unknown concept.  

The following section focuses on the conditions that 
influence the selection of one of these strategies to incorporate 
semantic mappings. 

III. INFLUENCES ON STRATEGY SELECTION 

Different KBN routers could store different routing 
ontologies along with different numbers of mapping ontologies. 
This can cause significantly different repercussions on the 
reasoning performance of a KBN router executing a specific 
strategy to deal with unknown data. For instance, the “every 
mapping file” strategy is well-suited for the routers which 
store a small number of mapping ontologies, whereas 
strategies that do not import some of the ontologies referenced 
by mappings are well suited for the routers with large number 
of ontologies. Furthermore, the strategies that import 
referenced ontologies are preferable to the large-scale 
environment where the occurrence of unknown data is high. It 
is noticed that in a small scale scenario, it may be possible to 
examine the application running over the KBN to statically 
determine which strategy is most appropriate. However, in a 
large scale deployment, or where the ontologies stored in KBN 
and applications using the KBN may change, then it is 
necessary to dynamically manage and adapt which strategy is 
most appropriate. Hence, different mapping strategies can be 
configured in different KBN routers depending on the 
characteristics of ontologies stored in each KBN router, the 
type of application operating over the KBN, and the network 
environmental state.  

Firstly, ontology characteristics that may impact strategy 
selection at a router are: the size and complexity of the 
applications’ ontologies, routers’ ontologies, mappings and 
referenced ontologies; the number of imported ontologies in a 
mapping file; the ontological mapping operators used in the 
mapping files; and the concept’s position in the ontology’s 
class hierarchy tree.  

Secondly, the application characteristics that may impact 
strategy selection at an individual router are: the rate of 
publications and subscriptions and their active/inactive 
duration; the fault tolerance capability of KBN to respond 
gracefully to an mapping failure (e.g. a mapping is missed so 
an unknown concept or property remains unknown so cannot 
be routed correctly); the tolerance of application to handle 
false positive or false negative subscription matches; etc.  

Finally, the environmental states that may impact strategy 
selection at an individual router are: the network scale, where a 
KBN deployment can range from enterprise scale to internet-
scale; memory resources of an individual router; and the 
number of mapping ontologies stored in each KBN router.  

Given different  possible mapping strategies, our recent 
research has focussed on identifying which of the ontology, 
application and environmental characteristics mentioned above 
will be important in influencing strategy selection and what 
that influence might be with a view to building a  decision 
making component to support strategy selection. However, due 
to space constraints this paper will focus purely on identifying 
the ontology characteristics that will be important for strategy 
selection. 

IV. ONTOLOGY CHARACTERISTICS  

An ontology consists of classes and properties. Classes 
describe the characteristics or concepts of individual things 
within the ontology, while properties describe relationships 
between or about things. The class hierarchy tree in ontology is 
a set of concepts with equivalence or sub-/super-class semantic 
relationships between them, thus it is organised as a class 
taxonomy. Due to the formal nature of how many ontologies 
are specified it is possible to perform some reasoning over the 
classes and their properties to correctly derive this class 
hierarchy (classification or TBox reasoning). The root node is 
semantically the most generic class; whereas the leaves are the 
most specific classes. A sub-class is said to be subsumed by its 
super-classes, while a class subsumes its subclasses.  

From a state of the art survey [20] [21] [22] [23] most 
researchers have taken the number of classes, properties and 
individuals along with the languages that are used to describe 
an ontology, as ontology characteristics to evaluate ontology 
reasoning. The results of such research have shown that these 
simple ontology characteristics are reasonable indicators with 
respect to reasoning performance. For instance, the number of 
classes and properties of an ontology influences the time for a 
reasoner to compute TBox classification (arranging the classes 
and properties into their reasoned hierarchy), while the number 
of individuals determines the amount of ABox realisation 
(finding the types of an individual, in particular its most 
specific type). In our work however, we were interested in 
exploring a wider set of ontology characteristics given that the 
KBN router’s reasoning performance will be influenced by 
having to cope with several ontologies as opposed to just one 
ontology at a time. In order to do this, we designed an 
experiment to explore what these ontology characteristics 
might be.  

The first hypothesis for the experiment was that size and 
expressivity of an individual ontology is a good indicator of 
the reasoning overhead required for that ontology. 

The second hypothesis was that we could predict or bound 
the reasoning overhead for a merged ontology from the 
reasoning overheads of its constituent individual ontologies. 
This would help us select appropriate strategy to efficiently 
tackle heterogeneous data.  



The third hypothesis was that different ontological 
operators used in the mappings would not lead to significantly 
different reasoning overheads in a merged ontology. The 
mapping operators that we consider in this work are rather 
restrictive, i.e., that a class (or property) in one ontology be 
equivalent to or be a sub-/super-class (or property) in another 
ontology. For instance, given a mapping where the equivalence 
operator is applied to link two different classes in different 
ontologies the reasoning requirement for that merged ontology 
is similar to the situation where a sub-class mapping operator 
is used. If the mapping operator does impact performance then 
we may need to include it as a factor in our strategy selection. 

The fourth hypothesis was that the positions of the classes 
within the class hierarchy trees of the constituent ontologies 
will have little effect on the reasoning overhead of the merged 
ontology. Figure 1 shows a concrete example: concept a (root 
node in ont1) and y (middle node in ont2) are the mapped 
classes in a mapping ontology m1 that only contains this one 
mapping. Assuming there is another mapping ontology m2 that 
only specifies that classes a (root node in ont1) and x (root 
node in ont2) are mapped, would m2 have more or less 
reasoning overhead than m1, if the same ontological mapping 
operator being used?  

 

Figure 1. Illustration of classes positions in class hierarchical tree   

V. EXPERIMENTAL METHOD 

Three types of ontologies were used in the experiment: a 
routing ontology that is already loaded by a router and used to 
match and route publications and subscriptions; a number of 
referenced ontologies that contain definitions for classes or 
properties which are not described in the routing ontology; and 
a number of mapping ontologies that each contain semantic 
mappings between classes or properties in the routing ontology 
and referenced ontologies. When a mapping and a referenced 
ontology is incorporated into the routing ontology we use the 
term merged ontology to refer to the resulting ontology. We 
used ontologies from the semantic web research community as 
the routing and referenced ontologies in our experiment and 
manually created the mapping ontologies. These ontologies are 
discussed in section A below and the URLs for these 
ontologies can be found in Appendix 1. In the experiments, we 
measured the reasoning overhead of the ontologies 
individually and afterwards the reasoning overhead of the 
merged ontology. The reasoning overhead metrics used are 

described in section B. The experimental setup is discussed in 
section C. 

A. Test Ontologies 

1) Routing and Referenced Ontologies used 
14 commonly available semantic web ontologies were used 

for our experiments. The selection of these ontologies was 
motivated by the fact that the ontologies are created by 
different people with diverse technical backgrounds. In this 
sense, the ontologies can be considered as representative of the 
natural range and diversity of ontologies that will be expected 
in a ubiquitous computing environment. Secondly, the 
ontologies were chosen in order to reflect a range of 
expressiveness

1
 and ontology sizes, from ontologies with small 

number of statements to ontologies with large number of 
statements. [24] indicates that normally the smallest ontologies 
has less than 100 concepts, medium ontologies has between 
100 and 1000 concepts, and large ontologies has more than 
1000 concepts. However, in our experiment, these ontologies 
are categorised into four sets according to the number of 
statements that are the basic elements in ontology terminology, 
as the number of statements can more precisely reflect the size 
of ontology than the number of concepts. Table 1 summarises 
the ontologies according to the ontology characteristics of 
interest:  

TABLE 1. INDIVIDUAL ONTOLOGY CHARACTERISTICS 

Name Number of 

Statements 

DL Expressivity Imports Annotation 

Teams 262 ALCIF 0 

Foodswapper 350 ALC(D) 0 

University 453 ALCR+OIF(D) 0 

Beer 576 ALHIF(D) 0 

Foaf 808 ALCHIF(D) 0 

Small ontologies 

where number of 

statements is less 

than 1,000 

Mad_cow 1,012 ALCHOIN(D) 0 

Mindswappers 2,303 ALCHIF(D) 3 

Pizza 3,201 ALCF(D) 1 

Transportation 4,847 ALH(D) 0 

Medium 

ontologies where 

number of stmts 

is between 1,000 

and 5,000 

CongoService 5,199 ALCR+HOIF(D) 12 

Economy 5,489 ALH(D) 0 

Wine 5,710 ALCR+HOIF(D) 1 

Large ontologies 

where num of 

stmts is between 

5,000 and 10,000 

MGED 14,501 AL(D) 0 

Galen 64,673 ALCR+HF 0 

Very large 

ontologies where 
num of stmts is 

greater than 

10,000 

B. Created Merged Ontologies  

15 example merged ontologies were manually created by 
the authors.  For the purpose of comparing the reasoning 
overhead of each merged ontology with the reasoning 

                                                           
1  Depending on the expressiveness of an ontology some of the 

following letters can be used to denote the presence of description logic 

features in the ontology, thereby capturing its reasoning complexity:  
AL - Attribute Logic: Conjunction, Universal Value Restriction, Limited 

Existential Quantification; C - Complement (together with AL allows 

Disjunction, Full Existential Quantification);  R - Role Transitivity; H - Role 

Hierarchy; I - Role Inverse; O - Nominal; N - unqualified number restrictions;  

Q – qualified number restrictions; F - only functional number restrictions;  (D) 

– Datatypes. 

a

b c

x

y z

w

Ont:1(loaded) Ont:2(not loaded)

a

b c

x

y z

w

Ont:1(loaded) Ont:2(not loaded)

a

b c

x

y z

w

Ont:1(loaded) Ont:2(not loaded)

 



overhead of its constituent individual ontologies. An individual 
merged ontology has only two mapped classes and two 
constituent individual ontologies that are randomly chosen 
from the ontologies described above.  The characteristics of 
the merged ontologies that were created are shown in Table 2: 

TABLE 2. CHARACTERISTICS OF ONTOLOGIES MERGED USING 
MANUALLY CREATED MAPPINGS 

Name Number of 

Statements 

DL Expressivity Constituent 

Ontologies 

FoodUniversity 695 ALCHOIN(D) Foodswap & 

University  

FoafFood 1,077 ALCHIF(D) Foaf  & Foodswap 

FoafUniversity 1,157 ALCR+HOIF(D) Foaf & University 

BeerMadcow 1,485 ALCHOIN(D) Beer & Mad_cow 

FoafMadcow 1,716 ALCHOIN(D) Foaf & Mad_cow 

BeerMindswaper 2,774 ALCHIF(D) Beer & Mindswappers 

FoodPizza 3,460 ALCF(D) Foodswap & Pizza 

FoafPizza 3,901 ALCHIF(D) Foaf & Pizza 

BeerTransport 5,320 ALHIF(D) Beer & Transportation 

EconomyFood 5,374 ALCH(D) Economy & 

Foodswapper 

EconomyBeer 5,964 ALHIF(D) Economy & Beer 

EconomyTransport 10,239 ALH(D) Economy & 

Transportation 

EconomyCongo 10,599 ALCR+ HOIF(D) Economy & 

CongoService 

EconomyWine 12,336 ALCR+ HOIF(D) Economy & Wine 

EconomyMGED 19,882 ALH(D) Economy & MGED 

In order to investigate the effect of mapping operators and 
mapping positions upon performance, 10 mapping ontologies 
were created by altering some of the merged ontologies above 
to include different mapping operators and applying different 
mapping positions. The equivalence, sub-class, super-class 
mapping operators were all applied to map between classes in 
the two source ontologies.  

In order to evaluate the impact of class position on 
reasoning performance, different classes from the top (T), 
middle (M) and bottom (B) of the class hierarchy trees were 
mapped using the sub-class ontological mapping operator. The 
class position we measured are shown as following: 

• T

Sub

T CBCA  →← : CA and CB refer to classes in two 

different ontologies while the sub-script T means that the 

class is at the top (root) of the ontology’s class hierarchy. 

→←
Sub

 is the sub-class mapping operator used to link 

mapped classes  

• B

Sub

T CBCA  →← : Here the sub-script B means that the 

class is at the bottom (leaf) of the ontology’s class 

hierarchy.  

• B

Sub

B CBCA  →← : Both mapped classes are leaf  nodes 

• M

Sub

M CBCA  →← : Here the sub-script M means that 

the class is at the middle of the ontology’s class hierarchy. 

Both mapped classes are the intermediate nodes 

C. Metrics used for measuring Reasoning Overhead 

Based on previous work [13] [16] the following 
observations are of particular importance: loadtime reasoning 

in comparison to runtime querying is relatively expensive; the 
performance of different reasoners, and the reasoning load, 
will also change in a non-linear fashion depending on the size 
and expressiveness of the ontologies used and the level of 
ontology language used (e.g. OWL-Lite vs. OWL-DL) [21] 
[22] [25] [26] [27]. These observations are particularly 
important if ontologies are added or removed dynamically, as 
would be typical in a ubiquitous computing environment 
where applications will join and depart from the network. It 
was also observed that XML parsing time of the RDF was 
inconsistent and unpredictable and so was omitted from our 
metrics.  Table 3 summarises the reasoning metrics used. 

TABLE 3. PROVIDES A SUMMARY OF THE REASONING 
METRICS  

Measure Metrics Description 

Loadtime 

without parsing 

time 

Is given as the time taken for different reasoners to 

load, and check the ontology, combined with the time 

taken to perform TBox classification, perform ABox 

realisation and an initial query of all concepts 

Loading time The time takes to load ontologies into reasoner 

Consistency 

checking time 

Consistency checking ensures that an ontology does 

not contain any contradictory facts. In DL 

terminology, this is the operation to check the 

consistency of an ABox with respect to a TBox 

Classification 
time 

Classification can be defined as the computation of 
the subsumption hierarchy for classes and properties 

Realisation time 

Realisation finds the most specific classes that an 

individual belongs to, in other words computes the 

direct types for each of the individuals. It should be 

done after classification since direct types are defined 

with respect to a class hierarchy. 

Concept 
querying time 

First time to list all classes of an ontology 

Runtime  
The time taken to perform subsequent queries for the 

set of concepts in ontologies 

D. Experimental setup  

A previously implemented KBN router [14] was extended 
to implement all four of the mapping strategies discussed 
earlier in section section II.D. The Pellet reasoner [28] version 
1.3. beta was embedded into the KBN router. Jena [29] was 
used throughout to access the ontologies and to measure the 
reasoning performance of Pellet. In order to minimise the 
adverse effect of inconsistent network connection speeds on 
reasoning performance all tested ontologies and their imported 
ontologies were cached locally on the machine running the 
tests. All tests were untaken on a Dell Inspiron 9300 laptop 
with 1.73 GHz Intel processor, 2GB of RAM, running 
Windows XP Service Pack 2. For Java-based tools, Sun’s JDK 
1.6.0 was used. All tests were run at least 20 times to provide 
statistically appropriate averages.  

VI. EVALUATION 

To address our first hypothesis we reasoned the selected 
source ontologies to see how reasoning performance was 
dependent on both the number of statements and the 
expressivity of the different ontologies, as shown in section A 
below.  

To test our second hypothesis, we compared the reasoning 
overhead of a merged ontology with the combined reasoning 



overhead of its constituent individual ontologies, and this 
evaluation is discussed in section B. Here we examined if we 
could predict the reasoning overhead of a merged ontology 
given the reasoning overhead of the ontologies that made up 
that merged ontology.  

Our third hypothesis was that the mapping operator used 
had little effect on the reasoning overhead of a merged 
ontology. Here we altered operators within mappings, and the 
results are presented in section C.  

The findings from examining our fourth hypothesis, which 
stated that the hierarchical position of the classes used in 
mappings had little effect on the reasoning overhead of the 
merged ontology, are discussed in section D. Here we mapped 
classes from different positions within the class hierarchy of 
their individual ontologies and compared the reasoning 
overheads of the resulting merged ontologies. 

A. Individual Ontology Reasoning 

Figure 2 presents the reasoning overhead calculated on the 
individual ontologies. In Figure 2 the ontologies are arranged 
from smallest to largest (left to right) with the number of 
statements in each ontology given in parenthesis after its name. 
As can be seen from the times to load and reason and runtime 
performances of the different ontologies in Figure 2 (and with 
reference to Table 1), the reasoning overhead was greater for 
the larger ontologies. This confirms that reasoning 
performance is tied to the number of statements. However it 
was also observed that, although wine ontology is not the 
biggest one in size, it has the largest reasoning overhead. This 
is because it has the most complex structure and DL 
expressivity (see its column in Table 1) among tested 
ontologies. Given these reasoning times and the ontology DL 
expressivity information, an empirical finding is that both DL 
expressivity and ontology size impacts on reasoning 
performance, not just ontology size. 

 

Figure 2. The effect of ontology size on reasoning time 

B. Merged Ontology Reasoning 

We compared the reasoning times of the merged ontologies 
shown in Table 2, with the combined time to reason over the 

two ontologies that constituted it. As shown in Table 3a, 
compared with the combined reasoning overhead of the two 
constituent individual ontologies in individual merged 
ontologies, we observed that most of the merged ontologies 
required less reasoning time. The bolded lines are cases where 
this is not the case. When the reasoning times were analysed in 
detail, most of the ontologies showed lower times for loading, 
classification (TBox), and initial class lookup. The times were 
very similar for consistency checking. However the realisation 
times (ABox) were higher for all merged ontologies. The most 
likely reason for this increased realisation time is that as the 
number of individuals increased in the merged ontologies and 
the reasoner spends more time searching the larger and more 
complex merged class hierarchical tree to find the proper class  
that the individuals belongs to. Another finding of this 
experiment is that the merged ontologies that take significantly 
longer to reason than their constituents have either a very large 
number of statements or most complex DL expressivity. For 
instance, the second largest and most complex merged 
ontology in our experiment, is the one which imported the 
large economy and complex wine ontologies. This also 
confirms our previous analysis discussed in section A on the 
sensitivity of reasoning performance to combination of 
ontology size and DL expressivity. Note from Table 2, that the 
DL expressivity of merged ontologies can be said to be the 
union of the expressivities of their constituent ontologies. 
Finally, we found that the degree of reduction of reasoning 
overhead on two similarly expressive and sized merged 
ontologies are comparable.  

From our experience of using the KBN in different 
application scenarios, the occurrence of unknown concepts or 
properties is much rarer than the number of times that a routing 
ontology would be queried. Therefore we consider runtime 
query time to be an important aspect of KBN performance. 
Table 3b shows the comparison of runtime querying over 
merged ontologies and their constituent ontologies.  Again it 
was found that the largest ontologies took longer to query. 

TABLE 3a. COMPARING THE REASONING TIME OF A MERGED 
ONTOLOGY WITH THE REASONING TIME OF ITS CONSTITUENT 
ONTOLOGIES   

Merged Ontology 

name 

Reasoning 

time: OntA 

milliseconds

: ms  

Reasoning time: 

OntB 

milliseconds: ms 

Reasoning time: 

Merged 

milliseconds: ms 

FoodUniversity 195  148  249  

FoafFood 161  195  234  

FoafUniversity 161  148  215  

BeerMadcow 199  538  638  

FoafMadcow 161  538  600  

BeerMindswaper 199  555  595  

FoodPizza 195  736  827  

FoafPizza 161  736  890  

BeerTransport 199  1,265  1,655  

EconomyFood 2,051  195  2,263 

EconomyBeer 2,051  199  2,500  

EconomyTransport 2,051  1,265  4,026  

EconomyCongo 2,051  1,695  3,586  

EconomyWine 2,051  52,379  90,419,878  

EconomyMGED 2,051  4,122  9,575,935  



 

TABLE 3b. COMPARING THE RUNTIME QUERY TIME OF A 
MERGED ONTOLOGY WITH THE RUNTIME QUERY TIME OF ITS 
CONSTITUENT ONTOLOGIES 

Merged Ontology  

name 

Runtime query 

time: OntA 

microseconds: 

µs 

Runtime query 

time: OntB 

microseconds: 

µs 

Runtime query 

time: Merged 

microseconds: µs 

FoodUniversity 159  154  254  

FoafFood 134  159  172  

FoafUniversity 134  154  219  

BeerMadcow 304  353  657  

FoafMadcow 134  353  304  

BeerMindswapper 304  307  456  

FoodPizza 159  363  459  

FoafPizza 134  363  452  

BeerTransport 304  2,383  2,803  

EconomyFood 2,158  159  1,950  

EconomyBeer 2,158  304  2,205  

EconomyTransport 2,158  2,383  8,730  

EconomyCongo 2,158  793  2,340  

EconomyWine 2,158  610  2,768  

EconomyMGED 2,158  2,380  8,697  

Coupling our findings from section A and section B above, 
we are confident that where the number of statements for each 
ontology is relatively low and where the DL expressivity of 
these ontologies are not complex we can generally predict that 
the reasoning overhead of a merged ontology will be bounded 
by the sum of the reasoning overheads of its constituent 
ontologies.  However, a combination of very large number of 
statements or most complex DL expressivity breaks this 
prediction. We also found that we could predict the reasoning 
overhead of a merged ontology if we already know the 
reasoning overhead of a similar merged ontology.   

C. Impact of Type of Mapping Operators 

As discussed in Section V, the experiment here was 
designed to observe the impact that mapping operators may 
have on reasoning overhead. Since altering mapping operator 
will mainly affect only the structure of TBox classification 
hierarchy and ABox realisation (as opposed to loading and 
consistency checking), we only take classification and 
realisation as the measured metrics in this experiment. Recall 
that the three mapping operators involved were the 
equivalence, sub-class, and super-class operators, which in 
Figure 3 and Figure 4 are represented as EQU, SUB, and SUP 
respectively.  

From the measurement of classification performance 
(Figure 3) and realisation performance (Figure 4), it is unclear 
whether any specific operator type has any major impact on 
reasoning overhead when compared to the other operators. An 
example from the classification timings shown in Figure 3 is 
the observation that reasoning with equivalence operator 
performs better than the other two operators in the 
FoafUniversity ontology. However, in the EconomyTransport 
ontology, the equivalence operator requires slightly more 
overhead than sub-class operator. As seen in Figure 4, three of 
the ten merged selected ontologies performed better with the 

equivalence operator. Yet, slightly better performance can be 
seen with some of the other operators in some of the merged 
ontologies.  Overall from our analysis, we concluded that there 
is no direct relation between types of operators used in the 
mappings and reasoning overhead required to reason the 
resulting merged ontology. This candidate characteristic will 
not be considered as a factor that will influence mapping 
strategies selection.   

 

Figure 3. Classification performance for different operators 

 
Figure 4. Realisation performance for different operators 

D. Impact of Position of Concepts used in Mapping 

As discussed in Section V, the experiment here was 
designed to observe the impact of mapping classes at different 
positions in their respective class hierarchies. Again, like the 
previous experiment, since selection of classes at different 
positions will mainly affect only the structure of TBox 
classification hierarchy and ABox realisation, we again only 
take classification and realisation as the measured metrics in 
this experiment. As discussed in section V we compared when 
the same mapping operator (sub-class) was applied to two top-
level classes (TT), a top-level class and a bottom-level class 
(TB), two bottom level classes (BB) and two mid-level classes 
(MM).  The classification and realisation performance results 
are presented in Figures 5 and 6 respectively. 



 

Figure 5. Classification performance for different concept positions 

 

Figure 6. Realisation performance for different concept positions 

As can be seen from the classification performance (Figure 
5) of different class positions there is no appreciable consistent 
difference for the different class positions. Observing the 
realisation performance (Figure 6), the differing reasoning 
performances on different mapped classes coming from 
different positions is again not appreciable. For instance, the 
mapped classes have almost the same overhead in 
EconomyFood, EconomyTransport, EconomyMGED ontologies, 
whereas in other ontologies: some TT classes have less 
overhead (FoodUniversity); some BB classes lead to better 
performance (FoodPizza).  Hence we have concluded that the 
concept position in class hierarchical tree is not a reliable 
characteristic that should be used in mapping strategies 
selection. 

VII. CONCLUSION 

It is very important for a contextual information routing 
system to be able to cope with mobile, volatile and 
heterogeneous set of context sources and destinations. The 
semantic-based publish - subscribe approach enhanced to cope 
with several semantic models in routing that is outlined in this 
paper has the potential to provide such capability. However for 
it to be efficient we need the loading of semantic models to be 
configurable depending on ontology, application and network 
environment characteristics. To our knowledge, the ability to 
configure how semantic models are to be used in routing is 

unique. The research undertaken for this paper has helped to 
clarify which ontology and mapping characteristics will be 
important for configuration and which are not. Namely we 
have concluded that the combination of size and expressivity 
of ontologies are the important factors for configuration. 
Determining which application and network environment 
characteristics will be important is more straightforward given 
previous research that has been undertaken in these areas. Thus 
we are now in a position to design and implement a decision 
component based on the characteristics of ontologies, 
applications and network that should configure the loading 
strategies so that efficient routing can be enabled.  
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APPENDIX 1 

Web ontologies: 

Teams:  
http://owl.man.ac.uk/2005/sssw/teams 

Foodswap: 
http://www.mindswap.org/dav/ontologies/commonsense/food/foodswap.o
wl 

University:  
http://www.mindswap.org/ontologies/debugging/university.owl 

Beer:  
http://www.purl.org/net/ontology/beer 

Foaf:  
http://xmlns.com/foaf/0.1/index.rdf 

Mad_cow: 
http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/mad_cows.owl 

Mindswapper:  
http://www.mindswap.org/2004/owl/mindswappers 

Pizza:  
http://www.co-ode.org/ontologies/pizza/pizza_20041007.owl 

Transpotation:  
http://reliant.teknowledge.com/DAML/Transportation.owl 

CongoService:  
http://www.daml.org/services/owl-s/1.1/CongoService.owl 

Economy: 
http://reliant.teknowledge.com/DAML/Economy.owl 

Wine:  
http://www.w3.org/2001/sw/WebOnt/guide-src/wine 

MGED:  
http://mged.sourceforge.net/ontologies/MGEDOntology.daml 

Galen:  
http://www.cs.man.ac.uk/~horrocks/OWL/Ontologies/galen.owl 

Mapping ontologies: 

FoodUniversity: 
https://www.cs.tcd.ie/~gsong/ontologies/test/UniversityFoodMapping_Test
.owl 

FoafFood: 
https://www.cs.tcd.ie/~gsong/ontologies/test/foaffoodMapping_Test.owl 

FoafUniversity: 
https://www.cs.tcd.ie/~gsong/ontologies/test/foafuniversityMapping_Test.
owl 

BeerMadcow: 
https://www.cs.tcd.ie/~gsong/ontologies/test/beermadMapping_Test.owl 

EconomyMGED: 
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyMGEDMapping_Te
st.owl 

BeerMindswap: 
https://www.cs.tcd.ie/~gsong/ontologies/test/beermandswapperMapping_T
est.owl 

FoodPizza: 
https://www.cs.tcd.ie/~gsong/ontologies/test/FoodswapPizzaMapping_Test
.owl 

FoafPizza: 
https://www.cs.tcd.ie/~gsong/ontologies/test/foafPizzaMapping_Test.owl 

BeerTransport: 
https://www.cs.tcd.ie/~gsong/ontologies/test/beertransportmapping_test.o
wl 

EconomyFood: 
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyFoodMapping_Test.
owl 

EconomyBeer:: 
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyBeerMapping_Test.
owl 

EconomyTransport: 
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyTransportationMapp
ing_Test.owl 

EconomyCongo: 
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyCongoMapping_Tes
t.owl 

EconomyWine: 
https://www.cs.tcd.ie/~gsong/ontologies/test/EconomyWineMapping_Test.
owl 


