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ABSTRACT

Content based analysis has traditionally been posed in the
context of identifying some material in response to a user
query. This paper illustrates that given a content based anal-
ysis process that can identify semantic events in a sequence,
that sequence can then be changed in various ways. A Mo-
tion Keyframe is presented to re-express the viewing of a se-
quence. The notion of content analysis for control of other
media processing engines is introduced. Tennis footage is
used to illustrate the ideas since sports in general contains
strong contextual information.

1. INTRODUCTION

Content based analysis for visual media has traditionally
been posed in the context of indexing/retrieval or summa-
rization. The scenario is that in order to access information
in non-text media, automated extraction of content based
cues like colour, shape and motion, can yield more flexible
access than is possible with manually input text metadata
only. Recent work has emphasised the importance of the
user context in bridging the semantic gap between feature
extraction and manipulation and the interpretation of this in-
formation for the benefit of the user. This paper presents the
notion that there are wider implications of this kind of tech-
nology for content aware media processing in general. It
focuses on the sports genre because it is an example of high
commercial and popular importance as well as providing a
well established user context within which the semantic gap
is bridgeable [6, 1, 9].

A first example, already explored in [3] points out that
by detecting important events in a media stream it is possi-
ble to alter the bitrate allocated to the stream in proportion
to importance. Thus at a high action, and semantically rel-
evant event in sports, the bit rate allocated would allow the
full frame rate motion to be viewed. For low activity events,
still frames at a low frame rate could be transmitted. Thus
in tennis for instance, each contact with the ball will result

Work funded by Enterprise Ireland (MUSEDTYV, CASMS), HEA and
European Union (MOUMIR, MUSCLE).

ISBN: 952-15-1364-0

in high frame rate motion while otherwise a series of low
frame rate stills would be transmitted. The idea is that this
will allow high bandwidth sports events to be viewed over
narrow bandwidth wireless links.

In fact that example is just one from many possibili-
ties. In a broader context, consider the object based cod-
ing in MPEG4 or H.26x. Object segmentation from any
video stream is a difficult and well researched task. It is
well understood that given an arbitrary video stream it is
very unlikely that objects of any semantic relevance could
be reliably extracted from such a stream in a manner that
would be useful for any kind of object based manipulation
or editing. However, within a specified context a solution to
the problem is possible. Consider sports footage of well de-
fined games like tennis in which player position and camera
orientation are well understood a-priori. This information
can be used to determine the number and type of objects
in each scene given that a content based view classification
can be performed as in [6, 5]. In sports each view has spec-
ified content e.g. the court shot in tennis would contain the
court and two players. This makes the segmentation prob-
lem tractable as information about the specific colour and
motion of relevant objects can then be made available.

The idea of content aware media processing can be taken
further. If events in sports can be identified and tagged with
a level of importance, why not use this information to fun-
damentally change the nature of the image representation?
The representation can be altered to match the user need.
For instance, for viewing sports on low quality displays in
poor lighting conditions (e.g. mobile devices), the seman-
tically relevant objects can be highlighted or enlarged. In
the case of presenting a clickable menu of scenes to nav-
igate through an event, a keyframe image that represents
motion as well as semantic objects in some intuitive way
would improve the user interfacing. In media streaming,
the images themselves could be re-expressed in a way that
alters the bandwidth without affecting the semantics of the
event. This is content adaptation in its broadest sense. In
the next section, the notion of a Motion Based Key Frame is
presented as an expression of content aware media process-
ing. This kind of keyframe is appropriate in all the contexts



Fig. 1. Onion Skinning fo create the effect of motion in a
still [7].

discussed.

2. THE MOTION BASED KEY FRAME

Comic strip artists have long been used to conveying the no-
tion of movement in a single image. Figure 1 is an example
of a technique known as onion skinning and the effect is
clear. That technique can be used to collapse semantic ob-
ject behaviour over a series of frames, onto a single image.
This kind of effect has been considered for gesture classifi-
cation (the motion history image (MHI) [2]) as well as artis-
tic purposes [10]. The paper Salient Stills [10] by Massey
and Bender proposes to collapse frames into a single frame
based representation. However, the authors rely on explicit
segmentation and motion from MPEG decoding to create
the effect. In practice the segmentation operation is never
robust unless the context is known. In the context discussed
in this paper, given the known domain: sports, and the avail-
ability of robust event detectors based on content analysis, it
is possible to resolve many of the outstanding issues posed
in [10].

In [6] the MHI was used directly as a representation of
motion in a single still of a game of snooker. The MHI is a
projection of image material from surrounding frames into
a current frame, at locations of high displaced frame differ-
ence. Used in its original form it results in a the creation
of a mask that covers the entire 2D region swept out by a
moving object (c.f. making angels in snow). Modified to
be used as an effect (as in [6]) it is an implicit technique
that results in a comet tail around moving objects. In [6] a
still camera was assumed, however this work takes the idea
further by coping with moving cameras and arbitrary shape
objects.

One key contribution of this work is to connect content
based analysis with the creation of a salient still. The other
key contribution is to avoid the need for explicit segmenta-
tion and instead rely on the content based analysis in such

Fig. 2. Three images showing typical shots in tennis
footage. The full court view shot (centre) contains the main
semantic game atom: the act of hitting the ball.

a way that implicit segmentation occurs. The pictures pre-
sented here consider Tennis as an example of the process.

Consider for the moment that a sementically relevant
event in the video stream has been detected at a particu-
lar frame. In tennis, the basic game atom is the instant that
a player makes contact with the ball, and that event will
be used to demonstrate the idea proposed here. Define this
event the impact event. Figure 2 shows a frame from three
typical shots in grass court Tennis. The centre shot showing
the full view of the court the shot of significance and is the
focus in this paper. That shot contains all the impact events.

Because the semantics of the detected event are known
a-priori it is possible to exploit the fact that only moving
objects in this atom are relevant. The idea therefore is to
create a single frame that represents this motion in some
sense. The obvious approach is to register moving objects
in frames before and after the instant of interest onto the cur-
rent frame, and superimpose those objects in a single frame,
hence cartoonising the motion in a sense.

2.1. Global Motion Compensation

Define the frame containing the impact event as I,,. It is
necessary to compensate surrounding frames for camera mo-
tion in the view. This can be done with a variety of existing
estimators [12, 8]. Here a bilinear global motion model is
used such that

Ly(h, k) =
In_l(aoh —+ alk‘ —+ aghk —+ d’l}, boh —+ blk —+ bghk —+ dy)

where the pixel intensity at position (h, k) in frame n is
I,(h, k). {a;,b;} are the six bilinear transformation param-
eters, with dx, dy the translation. In practice this model was
the best computational compromise between purely affine
and perspective transformations that would allow compen-
sation of the slight camera rotation. Using integral pro-
jections [4] at the original image resolution a reasonably
robust estimate of dx,dy can be generated. A version of
the estimator presented in [12] is then used to estimate the
bilinear parameters, by exploiting a coarse to fine refine-
ment strategy with 2 levels of image downsampling. Each
frame I,,_1, I;,—2, In—3, ..., In—p is registered with respect



Fig. 3. Top: Giving the appearance of ball tracking by
rough segmentation using displaced frame difference and
colour. Ball masks from 18 frames have been extracted.
Bottom: Superposition of each mask on frame I, in colour.

to I, separately in order to achieve the best final effect.
Furthermore, experiments with creating the Motion Based
Keyframe using both next and previous frames around I,
indicate that users prefer the Motion Keyframe to include a
representation using previous frames only. For tennis p =
12 frames seems sufficient.

2.2. Implicit motion representation

The motion of three objects must be represented in the Key
Frame. The ball and the two players. The ball in tennis
moves fast enough that the difference between global mo-
tion compensated images is significant at ball locations. De-
fine the displaced frame difference between two frames as
follows

Aq,q—j(ha k) = Iq(h7 k) - I(,;—j(hv k) (1)
Aq,q+j<h7 k) = Iq(h> k) - IZ;H (h, k) (2)

where I;_;(-,-) is the image ¢ — j motion compensated with
reference to the image at ¢ with the global motion estimated
previously. At locations where the foreground has moved,
both the forward and backward differences are large. Hence
a binary mask L, (h, k) can be created denoting with 1 the
presence of a moving object and 0 otherwise as follows

L,(h,k) =

1 if (|Ag,q—j(h, k)| > T) AND (|Ag,q+;(h, k)| > T)
0 Otherwise

Ly(h, k) is a good indicator of the location of foreground
when the motion is large, hence ;7 = 2 for creation of the
pictures shown later. To remove noise a morphological clos-
ing operation is performed. However, L, covers both player
and ball location. By retaining only closed regions larger
than 2 x 2 pixels and less than 10 x 10 pixels, the ball re-
gions can be selected. These regions are then marked on
frame n by changing the colour of the pixels there. Alter-
nate representations could enlarge these regions and super-
impose them on the Motion Key frame. Figure 3 shows the
effect created. Note that the ball track is clearly visible even
though no explicit object tracking has been performed.

2.2.1. Player delineation

Representing the motion of the player is slightly more diffi-
cult. Simply superimposing the player mask into the current
frame is confusing. Instead, it is possible to superimpose the
outline of each player in previous frames into the current
frame n. Unfortunately, the caption can also be included
into the player mask because it often has some apparent mo-
tion. Explicit tracking of the tennis players allows a region
of interest to be delineated around each player and hence
the creation of player masks for manipulation. While the
methods presented in [6, 13] using particle filters are viable,
a lower cost technique works well here.

There are two features that can be used to locate play-
ers in view: motion, indicated by the energy of A above
and colour. For wimbledon for instance, the tennis players
wear white. A rough colour mask can be generated by de-
tecting pixels which are loosely white for instance. Assum-
ing that players generally keep to the top or bottom half of
the view it is possible to integrate motion and colour infor-
mation vertically and observe that the result contains peaks
corresponding to possible horizontal locations of the player.
Only the horizontal position is extracted since in general all
that is required is to delineate a vertical region of interest
in the image for superimposing. By selecting the 5 largest
peaks as candidate locations, the viterbi algorithm can be
used to track the best horizontal location path of the player
through the set of frames.

The features are defined as follows

S;(h) = Z Aq,qH(h’ k)
k

S(;(h) = Z Aq,q—l(h7 k)
k

Co(h) = (I (h, k) > 30) + (|IF (b, k)| > 30)+
k
(1P (h, k)| > 30)

where I, I& | I8 are the Red, Green and Blue components
of colour at the relevant pixel location. The combined fea-
ture is then p,(h) o< 0.5(S;F (h) 4+ S (h)) + Cy(h). pe(h)
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Fig. 4. Top: a plot showing the estimated horizontal posi-
tion of a player versus frame. Bottom: the corresponding
frames. Note that the right side state is called into play as
the player moves off the right of the screen.

is normalised to one, and can be considered as a measure of
probability that the object exists at horizontal location h in
the image. This is the data likelihood.

The transition probability connecting object position be-
tween frames is defined as follows

— (g1 = wq)2>

2
20z

P(zg+1]Tq) X exp ( 3)
where x4 is the player position in frame q.

In order to cope with the rare situation in which the
player moves off the left and right hand side of the field
of view, two outlier states are introduced denoted to have
position x = —1 and « = M respectively. M is the hori-
zontal resolution of the image. The associated likelihood is
inversely proportional to the number of detected white pix-
els. Thus, if there are no white pixels, implying that there
could be no player in view, then these off-screen states are
more likely. The likelihood is as follows
1 ( > j Cq(9) >

2
207%

pq(h) = —exp— (4)

5
where 02 = 30 for the pictures generated here. There is
some experimental choice in setting this relationship, but
the notion is to allow the off-screen states to compete on the
same basis for the track as the on-screen positions.

Using this configuration the viterbi algorithm can be
used to track the player horizontally. Figure 4 shows how
the tracker works across 12 frames of a full court view.

2.2.2. Onion Skinning

Given an estimate of player location through the registered
group of frames, a region of interest for the mask L, (h, k)
can be generated. Within this region of interest, signif-
icant gradients are marked in colour on the target frame

Fig. 5. Final representation of player and ball. Note as
the effect is to superimpose time history on a single frame,
this implicit method does not occlude the ball track with the
player in the current view.

n. By exploiting the position information, outlines can be
drawn only when the player object no longer overlaps with
its “skin” from previous frames. To render a sense of time
on the pictures, the colour is changed depending on how far
in the past the skin originated. Figure 5 shows the created
effect at one impact event.

3. CONTENT ANALYSIS

In Tennis, detection of the impact event can be achieved by
combining an audio detector with a view classifier. A visual
feature can be created by examining implicit scene geome-
try. That geometry is used to classify shots containing a full
view of the court. The audio track gives information about
the instant that a ball is hit when such views are identified.

3.1. Implicit Geometry

The second moment of the hough transform of an edge map
of each image is computed for each image [?]. This mea-
sure, noted x,, is used to detect frames showing a main
view of the court where its value remains constant. Hough
space contains peaks corresponding to image lines, and in
full court views, for example as shown in the centre image
of figure 2, there is strong geometry and hence Hough space
is populated with few compact clusters. The orientation of
these peaks therefore changes with geometry of the input
image which in turn is affected by the court view. As the
full view of the court is dominated by the physical, rectan-
gular court structure the feature works well to discriminate
it without the need of any 3D information (as used in [14]).
Figure 6 shows the plateaus in moment measure that corre-
spond to the court views in an example of tennis footage.
The likelihood of this feature given a main view of the court
can be expressed as
2
(Xy — o) ] (5)

P(x,|Full view) x exp [ o
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Fig. 6. Top: ground truth over the sequence (rose: crowd;
green: full view of the court, yellow: close up of the players,
grey: dissolve; black: cut), Middle: Moment of the hough
space, Bottom: DFFS computed using audio features.

where the mean y,, and variance o2 are estimated from train-
ing sequences.

3.2. Frame level audio feature

Since the racket hit is a short sound between 10 to 20 ms
long, a spectrogram of the audio track using a 40 ms win-
dow (duration of a frame in the video) is sufficient to ex-
press the relevant temporal resolution. The power spectrum
of this Fourier transform, normalised by its energy, is then
computed for each window and corresponds to the audio
features x,.

Eigenspace representation. K audio features correspond-
ing to racket hits are collected. A Principal Component

Analysis (PCA) is then performed over this training database.

J eigenvectors corresponding to the .J highest eigenvalues
are retained to span the eigenspace F'.

Distance from the feature space. The similarity of an un-
known observation x, with the training cloud, is estimated
by computing the distance between x, and the eigenspace
F'. This Distance From Feature Space (DFFS) is defined as
[11]:

dffs(x4) = [|%a — pa — UUT(Xa — o) (6)

where 11, is the mean of the audio features, and U is the ma-
trix collecting the J eigenvectors computed in the learning
step with PCA.

Likelihood of having a Racket hit. Assuming a uniform
distribution over the eigenspace F, the likelihood of having
a racket hit can be approximated [11] using the likelihood
of the reconstruction error :

P(xq|Racket hit) o exp [W} 7

o2 is estimated using the mean value of the eigenvalues

{Aj}j>J in FJ‘ [11]

3.3. Video features at shot level

Frame level video features are processed to generate shot
level features. These features allow access to higher level
content information, in classifying shots as rallies R or not
R.

Shot level visual feature. The mean likelihood of the mo-
ment feature over a shot is used to represent the visual con-
tent of a shot xJ :

2
qu; = Exves [()%;M)) ] (8)

This feature is independent of the length of the shot and its
likelihood is expressed as

S

P(x;|s = R) x exp — {X;} )

Shot level audio feature. Shot audio content is estimated
as the minimum of the similarity measure DFFS computed
over the shot x; :

s . { <dffs(xa))2}
x% = min "
Xq€s 04

The likelihood is then:

S

P(x;|s = R) x exp — {XQ‘I} (10)

Fusion of audio and visual information. Assuming the
independence of audio and visual data, the likelihood using
both audio and visual features has simply been computed

by:
P(x.,x5|s=R)=P(x}|s=R) x P(x}|]s=R) (11)

Figure 6 shows the ground truth over one test sequence
(0f 2500 frames): shots {5, 7,11, 14, 17} belong to the class
of interest R. The middle plot shows the second moment
of the hough transform. Plateaus correspond to full court
views but also at player close ups. Therefore false alarms
may appear when using only visual features. The bottom
plot presents the similarity (DFFS) computed over the se-
quence. Low values indicate high probability of racket hits.
Visually, it can be seen that while both detectors separately
can show false alarms, together they achieve very good per-
formance despite their simplicity. See [5] for further exper-
imental evaluation of this detector.



4. PICTURES AND APPLICATIONS

Figure 7 shows three events rendered with Motion Keyframes
at time instants detected by the impact detector discussed
above. Viewers preferred skins to preceed the event rather
than follow it. A zoom on a single frame representation is
shown in figure 5. As can be seen, player colour fades with
time, while only outlines are represented.

These frames can also be used to create a content sam-
pled sequence. In such a sequence a new frame is transmit-
ted only when an interesting event occurs, and at that time,
the Motion Keyframe can be transmitted instead of the real
frame. This would convey a sense of motion to the viewer
who would then be viewing essentially stop action footage.
However, experiments show that viewers prefer some im-
age sequence to be shown even though nothing of semantic
relevance may be seen. To resolve this problem any sin-
gle frame within a 1 sec window (for example) is shown
if there is no impact event. If an impact event does occur
in that window the motion keyframe is used. Experiments
show that such content aware low frame rate sequences are
easier to understand than non-content aware sequences. It is
difficult to convey the effect of this kind of sequence in the
format of this publication. The reader is directed to view the
video examples at
www.mee.tcd.ie/~sigmedia/publications/cbmi05/
to gain an appreciation of content aware sampling.

In practice content aware streaming such as this can be
more appealing if the objects appear to move against a static
background. Otherwise, each new Motion Keyframe can
appear to jump by a large amount horizontally. This re-
quires rendering Motion Keyframes against the entire back-
drop e.g. the entire court in tennis. This is possible by
mosaicing frames (see fig. 8) across the shot. Given that
the content analysis engine can reliably extract the sequence
frames for which a mosaic is feasible, it becomes easier to
process a continuous broadcast.

5. FINAL COMMENTS

This paper has presented the notion that content based anal-
ysis can be used to resolve many issues in hard image pro-
cessing and computer vision problems by allowing the con-
fident application of contextual information. Further, it has
presented the idea of Motion Keyframes that attempt to rep-
resent the motion across several frames in a single image.
The combination of content based analysis and content rep-
resentation allows sequences to be viewed by content rather
than by time. In addition, the Motion Keyframe can better
represent content when used as a menu for summary pur-
poses for instance. While it must be acknowledged that the
effects shown here may not be of cinematic quality, there is
wide scope for adding to the current human-user centric fo-

cus of content based analysis by acknowledging that it also
could be used to control the low level processing of media.
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Representation using images following the reference

Fig. 7. Representation by superimposing previous or following frames. Viewers prefer previous frames as skins.

Fig. 8. Creating a mosaic across the full court view shot. Top 4 frames out of 18 used for the mosaic shown at the bottom.



Fig. 9. Summarization with motion keyframes.
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